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Abstract 
 

Traditional similarity methods in small-molecule mass spectrometry are severely hindered by a three-order-of-magnitude signal 

disparity between high-abundance backbone ions (relative intensity >10%) and low-abundance characteristic ions (relative intensity 

<1%). To address this limitation, a low-abundance ion–enhanced mass spectrometry entropy (MSE) similarity calculation model based 

on a multi-layer perceptron (MLP) is proposed. The approach involves four-layer db4 wavelet decomposition, soft-threshold denoising, 

intensity normalization, and calculation of MSE and statistical features. An MSE-constrained nonlinear function and dual-channel MLP 

establish spectral peak intensity-dynamic parameter mapping, with backpropagation optimizing parameters to enhance low-abundance 

ion contribution and suppress high-abundance interference. Validation using the MassBank.us and KUST-MS datasets demonstrate 

statistically significant performance improvements, with  81.18% (KUST-MS) and 77.27% (MassBank.us) of sample groups achieving 

t-values greater than 2, and over 50% exhibiting p-values below 0.05.The overall Cohen's d was 0.879, with 88.0% large effect sizes 

(Cohen's d of 0.8 or higher), and 29.4% extremely large effect (Cohen’s d of 1.5 or higher), confirming dynamic weighting significantly 

enhances the capability to discriminate structural differences in low-spectral-entropy scenarios.  
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Introduction 

 
Renowned for its precise analysis of substance 

composition and structural characteristics, mass spectrometry 
technology has become an indispensable tool in modern 
analytical science (Zhang et al., 2023). It plays a crucial role 
across diverse fields, including metabolomics, biomedical 
research, and environmental monitoring (Jones, 2020; Fang 
et al., 2024; Thomas et al., 2022; Xu et al., 2023; Wenk et al., 
2024). As a fundamental data carrier, mass spectrometry data 
encompasses ionic strength information that reflects the 
molecular structural attributes of substances. However, the 
concentrated distribution of high-abundance backbone ions 
often obscures the subtle structural differences conveyed by 
low-abundance ions in traditional methods for similarity 
retrieval. In recent years, similarity calculation methods 
based on MSE have introduced novel approaches to address 
these challenges. MSE, defined as a measure quantifying the 
uniformity of ion intensity distribution, has been 
demonstrated to effectively characterize the complexity of 
mass spectra. In low-entropy spectra, where high-abundance 
ions dominate, low-abundance ions possess particularly high 
structural indication value. Although existing studies have 
employed MSE to model ion distribution characteristics for 
enhancing low-abundance ion contributions, critical 
challenges persist (Li et al., 2021; Li & Fiehn, 2023). The 
fixed characterization of ion distribution uniformity via MSE 
limits its ability to dynamically adapt to the nonlinear 
variations in ion intensity across different entropy intervals. 
As a result, low-abundance ion information is often 
underestimated in similarity computations, and an effective 
collaborative optimization mechanism for high- and low-
abundance signals has yet to be established. 

To overcome these challenges, this study proposes a low-

abundance ion-enhanced MSE similarity model based on a 

dual-channel MLP. The proposed method aims to address the 

issue of diminished low-abundance feature representation in 

the identification of small molecule compounds. Through a 

series of data preprocessing steps, multi-dimensional features 

are systematically constructed by integrating MSE and 

statistical properties of ion intensity, thereby providing a 

robust foundation for subsequent feature-to-contribution 

mapping. A nonlinear contribution function is then formulated 

with MSE serving as the core constraint. By leveraging the 

dual-channel MLP architecture, an end-to-end mapping 

between ion characteristics and weight coefficients is 

established, enabling differentiated signal enhancement 

strategies across various entropy intervals. This approach 

effectively amplifies the contributions of low-abundance ions 

during similarity calculations. The findings of this research are 

expected to significantly enhance the accuracy of complex 

mass spectrometry data analysis, thereby providing efficient 

technical solutions for applications such as metabolomics 

biomarker screening, environmental trace pollutant analysis, 

and drug impurity identification. 

 
Material and Methods 

 

General process of the model: A low-abundance ion-

enhanced MSE similarity calculation model based on MLP 

was developed in this study. As illustrated in Fig. 1, the 

proposed model consists of four main modules: data 

preprocessing, extraction of ion distribution features, dynamic 

weighted decision-making, and similarity calculation. 
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Fig. 1. Flow chart of the low-abundance ion-enhanced mass spectra similarity calculation model. 

 

In the data preprocessing stage, invalid data were first 

removed through data cleaning. Subsequently, wavelet 

transform denoising using a db4 wavelet basis and four-layer 

decomposition was applied to suppress high-frequency noise 

while preserving the core ion peak features. Instrument 

response variations were normalized to ensure comparability 

across spectra. Finally, statistical features including MSE, 

mean ion intensity, standard deviation, and skewness, were 

extracted to quantify information value of low-abundance ion. 

Based on these preprocessed features, a nonlinear function 

constrained by MSE was constructed, followed by the design 

of a dual-channel MLP network for adaptive ion contribution 

parameters. The input layer of the network fused the extracted 

statistical features. The hidden layer consisted of two fully 

connected layers with dimensions of 64 and 32 dimensions, 

respectively. Nonlinearity was introduced by the ReLU 

activation function, and overfitting was mitigated through the 

combination of Dropout and Batch Normalization (BN). The 

output layer generated dynamic parameters through 

independent dual-channel Sigmoid functions, enabling end-

to-end regulation of weight distribution. The Adam optimizer 

minimized a loss function combining mean square error and 

L2 regularization, promoting the adaptive learning of ion 

feature importance. Finally, MSE similarity calculations were 

performed to assess the dynamic weighting results, 

confirming that this approach significantly enhances mass 

spectrometry matching accuracy and robustness while 

maintaining data feature integrity. 

 

Data Preprocessing 

 

Data cleaning, wavelet transform denoising, and 

normalization: Invalid records with missing key information, 

such as mass-to-charge ratio (m/z) or ion intensity, were first 

removed during data cleaning. To suppress high-frequency 

noise while preserving characteristic fragment ion peaks, a 

discrete wavelet transform (DWT) de-noising strategy was 

employed using a db4 wavelet basis with four-layer 

decomposition. The db4 wavelet was selected due to its 

favorable time–frequency localization capability and 

smoothness, which provides a balanced performance between 

noise suppression and peak preservation for mass 

spectrometry signals. Compared with shorter wavelets (e.g., 

sym4) that may insufficiently suppress baseline noise, and 

longer wavelets (e.g., coif4) that may oversmooth weak ion 

peaks, db4 has been widely adopted in spectral denoising 

tasks for preserving low-abundance ion characteristics. A 

four-layer decomposition was chosen to ensure effective noise 

removal without compromising ion peak integrity; shallower 

decompositions (e.g., three layers) were found to retain 

residual noise, while deeper decompositions (e.g., five layers) 

may attenuate weak characteristic ions.  High-frequency 

coefficients were processed using a soft-threshold contraction 

algorithm to reduce random noise and baseline fluctuations. 

Subsequently, ion intensities were normalized to eliminate 

instrument response variations and ensure comparability 

across datasets, according to: 
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where Ii represents the original intensity of the ith ion, and 

iI  represents the normalized intensity.  
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Feature calculation: Feature extraction was performed to 

characterize ion distribution properties and quantify the 

informational value of low-abundance ions.  

 

Mass spectral entropy calculation: For each mass 

spectrometry dataset containing n ion peaks, where the 

relative intensity of each ion peak can be regarded as a 

random variable Ii. The formula for calculating H is: 
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This metric quantifies the uniformity of ion intensity 

distributions. Low-entropy spectra (H<3) are typically 

dominated by a small number of high-abundance backbone 

ions, often masking subtle difference signals from low-

abundance ions. In contrast, high-entropy spectra (H≥3),  

exhibit relatively more uniform ion intensity distributions 

with low information redundancy,  

 

Statistical characteristics of ion intensities: The mean, 

standard deviation, and skewness of ion intensities were 

calculated to describe the central tendency, dispersion, and 

asymmetry of ion distribution. These statistical descriptors 

complement MSE by capturing nonlinear variations in ion 

intensity patterns. 

 

Mean: Reflects the average ion intensity and overall signal 

strength trend. 
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Standard deviation: Measures intensity dispersion, 

higher values indicate more pronounced differences 

between high- and low-abundance ion. 
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Skewness: Describes distribution symmetry: negative 

skewness indicates a higher proportion of low-abundance 

ions, while positive skewness reflects dominance of high-

abundance ions. 
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Dynamic weighting strategy design: The proposed 

dynamic contribution adjustment strategy aims to enhance 

the representation of low-abundance ions under low-

entropy spectral conditions by adaptively regulating ion 

intensity weights through a dual-channel MLP network. 

The detailed methodology is described as follows: 
 

(1) Definition of MSE-driven nonlinear function: To 
address the issue where high-abundance skeleton ions 
obscure structural difference signals in low-entropy 
spectral (H<3) scenarios, leading to insufficient 
discriminative power of low-abundance ions, a nonlinear 
function is defined. A dual-channel MLP network is 
constructed based on MSE and statistical features of ion 
intensity distribution to enable dynamic adjustment of 
contribution parameters, with exponential weighting 
applied to ion intensity. The function is expressed as: 
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where H represents the MSE, I represents the original ion 
intensity, I' signifies the dynamically weighted ion intensity, 
α1 and α2 are dynamic parameters output by the MLP. 
Physically, α1 primarily controls the baseline enhancement 
of low-abundance ions based on statistical distribution 
features, while α2 modulates the sensitivity of intensity 
adjustment according to spectral entropy H, enabling 
entropy-dependent adaptive weighting. The initial values 
of α1 and α2 were set to 0.25, following the fixed-weight 
parameter benchmark commonly used in traditional MSE-
based similarity models (Li et al., 2021). This initialization 
provides a neutral prior that ensures stable network 
convergence while allowing sufficient flexibility for 
adaptive optimization during training. 

When H<3, the mass spectrometry is categorized into 
a low-entropy scenario, which is indicative of a high 
potential for information mining due to the probable 
presence of abundant low-abundance ions. Under such 
conditions, the dynamic contribution adjustment process is 
initiated. This design employs a dual-channel MLP 
network to optimize weight parameters, thereby enhancing 
the contribution of low-abundance ions while maintaining 
computational efficiency (Hart et al., 2024). 
 

(2) MLP network construction: A dual channel MLP 
neural network comprising an input layer, two hidden 
layers, and a dual-channel output layer was implemented 
using the PyTorch framework. The core architecture is 
shown in Fig. 2.  
 

Input layer: The input feature vector was a 6-dimensional 

dataset: x = [H,,,S,α1,α2]T. 
 

where H is the mass spectral entropy, μ, σ, and S represent 

the mean, standard deviation, and skewness of ion 

intensities, respectively. Here α1, α2 are the initial 

contribution coefficients. 
 

MS Entropy: Quantifies the uniformity of ion intensity 

distribution and reflects the potential information value of 

low-abundance ions. 

Statistical characteristics of ion intensity distribution 

(mean, standard deviation and skewness): Characterize the 

central tendency, dispersion, and symmetry of ion 

intensities, respectively. 

Initial weight coefficient α1 and α2: Provide a priori 

parameter baselines to facilitate network convergence. 
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Fig. 2. Architecture diagram of dual-channel MLP neural network model based on PyTorch. 

 

Hidden layer: Two fully connected layers with 64 and 32 

nodes, respectively, are included to extract high-order 

features. Nonlinearity is introduced by the ReLU activation 

function, and overfitting is suppressed through the 

combination of Dropout and BN. The hidden layer 

computations are: 

 

( )( )1 1 1 1 1Rez =W x b  , h LU BatchNorm z+ =
 (7) 

 

( )( )2 2 1 2 2 2, Rez W h b h LU BatchNorm z= + =
 (8) 

 

where W1∈R64×6 represents the connection weight from 

the input layer to the first hidden layer, which is 

responsible for mapping the original features to high-

dimensional local features, b1∈R64 corresponds to the bias 

vector of the first hidden layer, which is used to adjust the 

activation threshold of the first hidden layer and enhance 

the model's fitting ability for nonlinear features. 

W2∈R32×64 represent the weight matrices, b2∈R32 

corresponds to the bias vector of the second hidden layer, 

which is used to correct the information loss during the 

feature dimensionality reduction process. 
 

Output layer: A dual-channel architecture was designed to 

independently output dynamic parameters α1' and α2'. 

Feature-wise differentiation was achieved by applying the 

sigmoid function to constrain parameters within [0,1]: 

The local channel output α1' prioritizes statistical 

features (H,,), the weight matrix Wα1∈R1×32 assigns 

higher weights to hidden-layer outputs related to ion 

intensity distribution characteristics.  

The global channel output α2' focuses on MSE, the 

weight matrix Wα2∈R1×32 reinforces the mapping of H -

related features in the hidden-layer outputs. 

The basis for setting the initial value to 0.25: Referring 

to the parameter setting benchmark of (Li et al., 2021). in 

the fixed-weight MSE model, combined with the pre-

experiment results of this study. 

The parameter update equations are shown in Equation 

(9) and Equation (10). 
 

( )
1 11 2f W h b   =  +

 (9) 

( )
2 22 2f W h b   =  +

 (10) 
 

where f represents the sigmoid activation function. The 

weight matrix Wα1 prioritizes statistical feature-related 

latent representations, enhancing low-abundance ion 

sensitivity, while Wα2 emphasizes entropy-related features 

to regulate global intensity distribution adaptively. 

Loss function: The loss function adopted the mean square 

error as the primary metric to measure the difference 

between the predicted and true similarity scores, with an 

L2 regularization term (with intensity (λ) added: 
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Here, SIi represents the dynamically weighted 

similarity prediction SIi' represents the true similarity score, 

λ represents the regularization parameter, and n represents 

the sample size. 
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(3) Weight coefficient optimization: Weight coefficient 

optimization was implemented via the Adam optimizer 

with dynamic learning rate adjustment.  During 

backpropagation, gradients of the weight coefficients 

with respect to the loss function were computed to 

iteratively update the MLP network's weights and bias 

parameters independently. The loss function, combining 

mean square error and L2 regularization, quantified 

differences between predicted and true similarity scores 

as described in Equation (11). This optimization process 

facilitated adaptive learning of nonlinear relationships 

between MSE and ion intensity distribution features, 

enhancing the contribution of low-abundance ions in 

similarity assessments. 

 

Calculation of entropy similarity in mass spectrometry: 

The calculation of entropy similarity in mass spectrometry 

is based on the information entropy theory (Tian et al., 

2023). Which evaluates the similarity of chemical 

structures by quantifying the divergence in information 

distribution between two mass spectra. When combined 

with the dynamic contribution adjustment strategy 

described in this study, the enhanced similarity calculation 

for two mass spectra X and Y is given by Equation (12): 
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where f(x)=xlog2x, I' represents the intensity after dynamic 

contribution adjustment and  I'X,i=1,  I'Y,i=1. When 

mass-to-charge ratios m/z between two spectra do not 

match, their contribution to the score is zero. For matching 

m/z values, calculating the contribution of this ion to the 

entropy similarity of mass spectrometry. A similarity score 

closer to 1 indicates a higher degree of chemical structure 

similarity between the two mass spectrometry datasets, 

while a value approaching 0 signifies greater dissimilarity. 

The similarity calculation process is shown in the Fig. 3. 
 

 
 

Fig. 3. Workflow for mass spectrometry similarity calculation 

incorporating dynamic weighting. 

 

Figure 3a and Figure 3b present the mass spectra of 

mass spectrometry data X and Y, where the solid lines 

represent the intensity values, and the dashed lines indicate 

the correspondences of the matching ions. Figure 3c and 

Figure 3d present the mass spectrometry data after dynamic 

weight adjustment, where I' denotes the enhanced ionic 

intensity and the bolded segments highlighting the 

matching ions. The procedure is as follows: Firstly, mass 

spectrometry data X and Y are preprocessed (including 

denoising and normalization), and their mass spectral 

entropies are calculated. Since the mass spectral entropies 

of both X and Y are less than 3, a dynamic weighting 

mechanism is automatically triggered to enhance the 

weights of low-abundance ions via a nonlinear function. 

Finally, the entropy similarity between the two datasets is 

calculated using Equation (12). 

 

Results  

 

Dataset and evaluation metrics: All experiments in this 

study were conducted on a Windows 10 system equipped 

with a 13th Gen Intel® Core™ i5-13600KF 3.50 GHz CPU 

and an NVIDIA GeForce RTX 4070 GPU, with data 

processing completed using the PyCharm 2023 

development environment; the specific software 

environment for model training includes Python 3.9.18, 

PyTorch 2.0.0 ,CUDA 11.8,  and key dependency libraries 

such as numpy 1.24.3, pandas 2.1.3, scikit-learn 1.3.2 , 

matplotlib 3.8.2.Data were sourced from the MassBank.us 

public dataset and the Department of Chemistry 

Fundamentals at Kunming University of Science and 

Technology. The MassBank.us dataset (official public 

access link: https://massbank.us/) includes LC-MS/GC-

MS data for over 20,000 compounds, covering detection 

results from six major instrument types (e.g., Thermo Q-

Exactive, Bruker maXis) and encompassing diverse 

compound structures and instrument noise characteristics. 

The KUST-MS dataset contains 12,628 positive ion mass 

spectra of 1,203 compounds under seven voltage 

conditions (10 to 70 V), with differentiated ion intensity 

distributions generated through bombardment at varying 

energies, thus provide multidimensional data support for 

low-abundance ion feature analysis. 

For comparative assessment, three groups were 

established: the control group employed the MSE similarity 

algorithm and its fixed-weight version (with a coefficient 

of 0.25), the experimental group utilized the low-

abundance ion-enhanced model described in this study and 

the classic method group (including cosine similarity and 

Pearson correlation coefficient). 

Evaluation metrics included Cohen's effect size, 

paired t-tests, Average similarity score and the standard 

deviation of the similarity score. Cohen's d was used to 

measure the practical significance of intergroup mean 

differences, with values of d of 0.8 or higher defined as 

large effects. Paired t-tests were performed to assess 

https://massbank.us/
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differences in average similarity scores between the 

experimental group and control group, with a significance 

threshold set at p-value below 0.05. The mean similarity 

score (SimMean) reflects the central tendency of 

similarity calculation. The higher the value, the better the 

capture effect on the structural similarity between 

samples. The standard deviation of the similarity score 

(SimStd) quantifies the degree of dispersion of the 

similarity score. A larger value indicates a better degree 

of dispersion of the similarity score, and the model can 

better distinguish different compounds, especially those 

with highly similar structures. 

 

Data Preprocessing Effect: In the data preprocessing 

stage, the db4 wavelet basis was used to decompose the 

data into four layers, and the soft-threshold denoising 

algorithm was applied for signal preprocessing. The typical 

original mass spectrometry signals and their wavelet 

denoising results are presented in Fig. 4. 

As clearly shown in the Fig. 4, wavelet denoising 

achieved remarkable results in removing the original 

signal noise. After denoising, the high-frequency noise 

spikes in the original signal were significantly reduced, 

the ion peak contours became clearer, and the signal 

baseline became more stable. 

 

Implementation effect of dynamic weighting strategy: 

This section evaluates the effectiveness and robustness of 

the proposed dynamic weighting strategy through 

convergence analysis, statistical comparison, and entropy-

aware performance assessment using the MassBank.us and 

KUST-MS datasets. 

 

Model convergence behavior: Model training was 

conducted using the Adam optimizer with a learning rate 

of 0.001. The ReLU activation function was employed to 

introduce nonlinearity. Dropout (0.3) and Batch 

Normalization were applied to suppress overfitting. As 

illustrated in Fig. 5, the loss value decreased rapidly during 

the initial training phase due to effective gradient-based 

optimization and gradually stabilized after approximately 

100 iterations, converging to a final value of 0.012. 

In the early training stage, due to the random 

initialization of weights and biases in the network, there 

was a large deviation from the optimal solution. Through 

parameter updates using the small-batch gradient descent 

method, the model was able to quickly capture data 

patterns, resulting in a rapid decrease in the loss value. As 

training progressed, the model gradually approached the 

optimal solution, the parameter update amplitude 

decreased, and the rate of loss reduction also gradually 

slowed down. Eventually, the loss value stabilized at 

0.012, indicating that the model successfully learned the 

data characteristics and achieved a good fitting effect on 

the training set. 

 

Comparison of MSE similarity between dynamic and 

fixed - coefficient strategies: Due to generally low 

similarity scores among substances, 1,000 groups were 

constructed from the MassBank.us dataset (each group 

corresponds to one isomer, containing 5–6 mass 

spectrometry samples of the same isomer under different 

collision energies: 10–60 eV) and 300 groups from the 

KUST-MS dataset (each group corresponds to one 

compound, containing 7 mass spectrometry samples of the 

same compound under gradient voltage conditions: 10 V, 

20 V, 30 V, 40 V, 50 V, 60 V, 70 V) for in-depth analysis. 

Average similarity score calculation, paired - sample t - test, 

and correlation analysis were performed on the MSE 

similarity scores under the dynamic and fixed - initial - 

coefficient strategies. During the research, the dynamic 

coefficient weight adjustment strategy and the fixed initial 

coefficient strategy were established, and the calculation 

results of MSE similarity after low-abundance ion weight 

optimization under the two strategies were systematically 

compared (Figs. 6 and 7). 

 

 
 

Fig. 4. Comparison of mass spectral signals before and after wavelet denoising. 
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Fig. 5. MLP training loss curve. 

 

Figure 6 and Figure 7 show that the overall distribution 

of the dynamic similarity score (orange points) was 

significantly higher than that of the fixed similarity score (blue 

points), and the trends of the two datasets of data were highly 

consistent. This indicates that in the similarity calculation of 

isomers from the MassBank.us dataset and 10 - 70V voltage 

mass spectrometry data in the KUST-MS dataset, the dynamic 

contribution adjustment strategy successfully achieved 

adaptive adjustment adaptive adjustment through the feature-

to-contribution mapping of the MLP network for low-

abundance ions, effectively amplifying the contribution of this 

type of ion information in similarity measurement. The 

similarity evaluation after dynamic enhancement exhibited 

higher values in the dataset, suggesting that dynamic 

weighting could more sensitively capture the similar features 

between samples and significantly improve the overall level 

of similarity evaluation. 

Statistically, a p-value less than 0.05 were observed in 

approximately 54.12% of the groups in the KUST-MS data 

and 50.97% of the groups in the MassBank.us data. P-value 

less than 0.05 serve as a critical criterion for determining 

statistically significant differences in mean values between 

two groups of data. This indicates that significant differences 

in mean values between dynamic similarity and fixed 

similarity were identified in more than half of the groups. 

Effect size analysis provided additional insight into the 

practical significance of the observed effects: Among these 

samples, 88.0% exhibited large effect sizes, defined as a 

Cohen' d value of 0.8 or higher, and 29.4% were characterized 

by extremely large effect sizes, corresponding to a Cohen' d 

value of 1.5 or higher. Collectively, these results, from a 

statistical standpoint, demonstrate the substantial impact of 

the low-abundance ion enhancement strategy on similarity 

scores and provide additional validation for the effectiveness 

and superiority of this strategy in MSE similarity calculations. 

In the correlation analysis, the correlation coefficients 

of each group were generally high, mostly close to 1. This 

indicates a strong positive correlation between dynamic 

similarity and fixed similarity, implying that the dynamic 

strategy, through nonlinear feature importance modeling, 

introduced new information. Especially in mass 

spectrometry data dominated by low-abundance ions, its 

ability to capture feature differences showed obvious 

advantages, fully verifying the differentiated enhancement 

effect of the adaptive contribution mechanism on low-

abundance ion information. Compared with the fixed initial 

coefficient strategy, the proposed model achieved 

remarkable results in improving the similarity score, 

providing a more accurate and effective approach for mass 

spectrometry data similarity calculation. 

 

Comparison with classic similarity methods: To fully 

demonstrate the comprehensive advantage of the proposed 

model in similarity calculation accuracy and stability, a 

horizontal comparison was conducted with cosine 

similarity and Pearson correlation coefficient using the 

same dataset. The performance metrics (Mean, Std) of each 

method are shown in Table 1. 

As shown in Table 1, the proposed model outperformed 

the other three methods in both datasets in terms of 

comprehensive performance: The proposed model’s average 

similarity score is 0.0413 higher than the fixed-weight mass 

spectrometry entropy algorithm, 0.0842 higher than cosine 

similarity, and 0.0927 higher than the Pearson correlation 

coefficient, fully demonstrating superior structural similarity 

capture. This advantage stems from the model’s ability to 

balance "structural feature capture" and "differentiation of 

similar substances": the dynamic weighting of low-

abundance ions improves the accuracy of capturing 

structural similarities (higher SimMean), while the adaptive 

adjustment mechanism increases the dispersion of similarity 

scores (higher SimStd), enabling more precise 

discrimination between highly similar isomers. 

 

Visual comparative analysis of heat maps: Four groups of 

substances from the KUST-MS dataset (No.29, No.35, No.65, 

and No.70) under 10 - 70V voltage bombardment and four 

groups of isomers (C₁₂H₁₄N₄O₂S, C25H38O5, C31H36N2O11, 

C10H10N4O2S) from the MassBank.us dataset under different 

collision conditions were randomly selected for comparative 

analysis. The MSE data are shown in Table 2 and Table 3. 

Subsequently, heat maps were drawn to more intuitively 

observe and analyze the distribution of similarity 

coefficients under different weighting strategies, some heat 

maps were presented in Fig. 8. 
The analysis of heat map similarity calculation results 

indicated that the dynamic weighting strategy remarkably 
enhanced the accuracy of MSE similarity calculation. For 
example, when No.29 was considered, with initial 
coefficient weighting, the red outside the diagonal gradually 
fades while the blue gradually deepens. The similarity scores 
in the low - voltage (10 - 50V) range were between 0.3 - 0.8, 
showing an underestimation. The optimized weighting 
darkens the color in the low-voltage region, increased the 
scores to 0.4 - 0.9, and raised the average score from 0.5885 
to 0.5927. However, in the 50 - 70V high - voltage, low - 
entropy scenario, due to the model's limited adaptability to 
extreme parameters, occasional score decreases were 
observed. The analysis of isomers No.65, No.70 and 
MassBank.us shows that this strategy presents a similar 
action pattern: in the low collision energy range (low-
entropy environment), the similarity scores generally 
increase, while in the high collision energy (high-entropy) 
range, the improvement effect is relatively limited. 
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Statistical significance verification: To quantitatively 
evaluate the effect of the dynamic weighting strategy, the 
paired sample t-test is adopted in the study and the effect 
size (Cohen's d) is calculated (Stratton et al., 2019; Di 
Leo & Sardanelli, 2020). The analysis results are shown 
in Table 4. 

The dynamic weighting strategy demonstrated 
significant universality and differential efficacy in 
improving MSE similarity scores. In the KUST-MS and 
MassBank.us datasets, for substances with a high 
proportion of low - abundance ions (such as No.29, No.35, 
C₂₅H₃₈O₅), the optimized method showed the Cohen's d 

effect size generally exceeding 0.8 compared to the 
unweighted strategy, with some cases reaching 1.5. This 
indicates the notable impact of dynamic weighting on 
enhancing low - abundance signals. 

In summary, the accuracy of mass spectrometry 
similarity calculation was improved by the dynamic 
weighting strategy through the synergistic action of noise 
suppression and adaptive weight allocation. Its advantages 
were mainly reflected in the enhanced differentiation of 
low - abundance ion information. However, the model's 
adaptability to extreme scenarios needed to be further 
optimized through iterative improvements. 

 

Table 1. Comprehensive Performance Comparison of Different Similarity Calculation Methods 

Dataset 
Evaluation 

index 

Proposed 

model 

Fixed-weight 

MSE 

Cosine 

similarity 

Pearson correlation 

coefficient 

MassBank.us (1000 isomers) 
SimMean 0.7458 0.7045 0.6616 0.6531 

SimStd 0.7045 0.1979 0.1957 0.1812 

KUST-MS (300compounds) 
SimMean 0.7648 0.7080 0.6647 0.6751 

SimStd 0.2638 0.1837 0.1987 0.1926 

 

Table 2. KUST-MS spectral entropy values under different voltages. 

Substance number 10V 20V 30V 40V 50V 60V 70V 

No.29 1.73378 2.28578 2.211543 2.598199 2.54129 2.547287 2.441941 

No.35 1.452412 1.653632 1.850494 1.932888 2.112099 2.11008 2.048027 

No.65 2.17084 2.070352 2.09143 1.793943 1.531797 1.05647 0.969591 

No.70 1.257836 1.855121 2.208465 2.376669 2.289121 2.282412 2.225369 

 

Table 3. MassBank.us spectral entropy values under different collision energies. 

Chemical formula 10eV 20 eV 30 eV 40 eV 50 eV 60 eV 

C₁₂H₁₄N₄O₂S 1.717148 1.863052 1.644509 1.78759 2.44829 2.44829 

C25H38O5 1.86519 2.184712 2.096748 2.0568 2.422318  

C31H36N2O11 1.820714 1.244158 1.262042 1.085071 3.712289 2.062902 

C10H10N4O2S 0.615503 1.06403 1.142038 1.78759 2.44829  
 

Table 4. The comparison results of different substances under different contribution adjustment strategies. 

Substance number Comparison group Sample size Mean Change t-tests p value Cohen's d 

No.29 Before vs after 7 0.5885 → 0.5927 4.9078 <0.0001 1.0710▲ 

No.29 Unweighted vs after 7 0.5553 → 0.5927 5.4664 <0.0001 1.1929▲ 

No.29 Unweighted vs before 7 0.5553 → 0.5885 5.3695 <0.0001 1.1717▲ 

No.65 Before vs after 7 0.5859 → 0.5869 2.0589 0.053 0.4493 

No.65 Unweighted vs after 7 0.5682 → 0.5869 3.9655 0.0008 0.8654▲ 

No.65 Unweighted vs before 7 0.5682 → 0.5859 4.0693 0.0006 0.8880▲ 

No.35 Before vs after 7 0.5501 → 0.5536 5.8149 <0.0001 1.2689▲ 

No.35 Unweighted vs after 7 0.4933 → 0.5536 7.2587 <0.000001 1.5840■ 

No.35 Unweighted vs before 7 0.4933 → 0.5501 7.3283 <0.000001 1.5992■ 

No.70 Before vs after 7 0.6320 → 0.6437 2.2404 0.037 0.4889 

No.70 Unweighted vs after 7 0.5541 → 0.6437 6.9768 <0.000001 1.5225■ 

No.70 Unweighted vs before 7 0.5541 → 0.6320 5.4756 <0.0001 1.1949▲ 

C₁₂H₁₄N₄O₂S Before vs after 5 0.7091 → 0.7248 1.9576 0.0820 0.6191 

C₁₂H₁₄N₄O₂S Unweighted vs after 5 0.7058 → 0.7248 2.6787 0.0253 0.8471▲ 

C₁₂H₁₄N₄O₂S Unweighted vs before 5 0.7058 → 0.7091 0.3238 0.7535 0.1024 

C₂₅H₃₈O₅ Before vs after 5 0.4901 → 0.5066 3.2473 0.0100 1.0269▲ 

C₂₅H₃₈O₅ Unweighted vs after 5 0.4872 → 0.5066 4.0887 0.0027 1.2930▲ 

C₂₅H₃₈O₅ Unweighted vs before 5 0.4872 → 0.4901 2.8771 0.0183 0.9098▲ 

C₃₁H₃₆N₂O₁₁ Before vs after 6 0.6617 → 0.6678 0.3910 0.7017 0.1009▲ 

C₃₁H₃₆N₂O₁₁ Unweighted vs after 6 0.6095 → 0.6678 3.8441 0.0018 0.9925▲ 

C₃₁H₃₆N₂O₁₁ Unweighted vs before 6 0.6095 → 0.6617 3.9890 0.0013 1.0299▲ 

C₁₀H₁₀N₄O₂S Before vs after 4 0.5689 → 0.5874 2.5763 0.0497 1.0518▲ 

C₁₀H₁₀N₄O₂S Unweighted vs after 4 0.5008 → 0.5874 4.1458 0.0089 1.6925■ 

C₁₀H₁₀N₄O₂S Unweighted vs before 4 0.5008 → 0.5689 2.4604 0.0572 1.0045▲ 
Significance:*p<0.05，**p<0.01，***p<0.001(double-tail test) 
Effect size:▲Cohen's d≥0.8 (large effect)，■Cohen's d≥1.5 (extremely large effect) 
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Fig. 6. Dynamic vs. fixed similarity comparison for 1000 isomer pairs in MassBank.us dataset. 

 

 
 

Fig. 7. Dynamic vs. fixed similarity comparison for 300 KUST-MS dataset samples under 10–70V voltages. 
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Fig. 8. MS Entropy Similarity Coefficient Calculations for Selected Compounds in KUST-MS Dataset: a. Unweighted result for Compound 

No.29; b. Compound No.29 with initial coefficient weighting; c. Compound No.29 with initial coefficient weighting; d. Unweighted result 

for Compound No.35; e. Compound No.35 with initial coefficient weighting; f. Compound No.35 with optimized coefficient weighting. 
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Discussion 

 

This study addressed critical challenges in small 

molecule compound recognition, including the masking 

of trace structural differences by high-abundance 

skeleton ions and the limited discriminative power for 

low-abundance ions, by proposing an MLP-based low-

abundance ion-enhanced MSE similarity model. Data 

noise was suppressed through four-layer db4 wavelet 

decomposition and soft-threshold denoising, while 

differences in instrument responses were eliminated via 

ion intensity normalization. Features such as MSE were 

extracted to analyze the informational value of low-

abundance ions, mean, standard deviation, and skewness 

were extracted to systematically analyze the 

informational value of low-abundance ions.  

A nonlinear function constrained by MSE was 

constructed to adaptively respond to ion intensity 

distribution variations, and a dual-channel MLP network 

was employed to establish a nonlinear mapping between 

spectral peak intensities and weights—addresses the 

fixed-characterization limitation of traditional MSE-

based methods (Li et al., 2021). This mapping enables 

collaborative regulation of weight enhancement for low-

abundance ions and signal suppression for high-

abundance ions. Unlike CNN-LSTM hybrid models that 

rely on large labeled datasets and suffer from high 

computational costs, the proposed MLP-based 

architecture achieves efficient parameter optimization 

with stable convergence (loss = 0.012 after 100 

iterations), balancing performance and practicality 

(Seddiki et al., 2023).  

Validation using the MassBank. us and KUST-MS 

datasets demonstrates that the method achieves favorable 

results: 50.97%–54.12% of groups exhibit statistically 

significant differences (p < 0.05), 88.0% of samples reach 

large effect sizes (Cohen’s d ≥ 0.8), and 29.4% achieve 

extremely large effect sizes (Cohen’s d ≥ 1.5). These 

outcomes confirm that the model significantly enhances 

the contribution of low-abundance ions in similarity 

calculations, effectively addressing the underestimation of 

characteristic ions in low-entropy spectra (H < 3) where 

high-abundance ions dominate. Compared with classic 

methods (cosine similarity, Pearson correlation coefficient) 

and fixed-weight MSE, the proposed model exhibits 

superior structural difference resolution, as it avoids 

"equalized" weighting and adaptive adjustment based on 

spectral characteristics.  

The method systematically improves the accuracy 

and robustness of mass spectrometry similarity 

calculations, providing reliable technical support for 

fields such as metabolomics, environmental detection, 

and drug identification. Future research will focus on 

adaptive optimization for extreme spectral scenarios, the 

development of automated parameter selection 

algorithms, and the design of lightweight neural network 

architectures to further enhance the analytical efficiency 

and generalization capability for large-scale complex 

mass spectrometry data. 

Nevertheless, the study also identifies certain 

limitations. In high-entropy or extreme spectral scenarios, 

where ion intensity distributions are relatively uniform or 

highly variable, the improvement effect is less pronounced. 

Future research will therefore focus on adaptive 

optimization strategies for extreme entropy conditions, 

automated parameter selection mechanisms, and the 

development of lightweight neural network architectures to 

further enhance scalability and generalization for large-

scale mass spectrometry datasets. 
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