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Abstract

Traditional similarity methods in small-molecule mass spectrometry are severely hindered by a three-order-of-magnitude signal
disparity between high-abundance backbone ions (relative intensity >10%) and low-abundance characteristic ions (relative intensity
<1%). To address this limitation, a low-abundance ion—enhanced mass spectrometry entropy (MSE) similarity calculation model based
on a multi-layer perceptron (MLP) is proposed. The approach involves four-layer db4 wavelet decomposition, soft-threshold denoising,
intensity normalization, and calculation of MSE and statistical features. An MSE-constrained nonlinear function and dual-channel MLP
establish spectral peak intensity-dynamic parameter mapping, with backpropagation optimizing parameters to enhance low-abundance
ion contribution and suppress high-abundance interference. Validation using the MassBank.us and KUST-MS datasets demonstrate
statistically significant performance improvements, with 81.18% (KUST-MS) and 77.27% (MassBank.us) of sample groups achieving
t-values greater than 2, and over 50% exhibiting p-values below 0.05.The overall Cohen's d was 0.879, with 88.0% large effect sizes
(Cohen's d of 0.8 or higher), and 29.4% extremely large effect (Cohen s d of 1.5 or higher), confirming dynamic weighting significantly

enhances the capability to discriminate structural differences in low-spectral-entropy scenarios.
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Introduction

Renowned for its precise analysis of substance
composition and structural characteristics, mass spectrometry
technology has become an indispensable tool in modern
analytical science (Zhang ef al., 2023). It plays a crucial role
across diverse fields, including metabolomics, biomedical
research, and environmental monitoring (Jones, 2020; Fang
etal.,2024; Thomas et al., 2022; Xu et al., 2023; Wenk et al.,
2024). As a fundamental data carrier, mass spectrometry data
encompasses ionic strength information that reflects the
molecular structural attributes of substances. However, the
concentrated distribution of high-abundance backbone ions
often obscures the subtle structural differences conveyed by
low-abundance ions in traditional methods for similarity
retrieval. In recent years, similarity calculation methods
based on MSE have introduced novel approaches to address
these challenges. MSE, defined as a measure quantifying the
uniformity of ion intensity distribution, has been
demonstrated to effectively characterize the complexity of
mass spectra. In low-entropy spectra, where high-abundance
ions dominate, low-abundance ions possess particularly high
structural indication value. Although existing studies have
employed MSE to model ion distribution characteristics for
enhancing low-abundance ion contributions, critical
challenges persist (Li ef al., 2021; Li & Fiehn, 2023). The
fixed characterization of ion distribution uniformity via MSE
limits its ability to dynamically adapt to the nonlinear
variations in ion intensity across different entropy intervals.
As a result, low-abundance ion information is often
underestimated in similarity computations, and an effective
collaborative optimization mechanism for high- and low-
abundance signals has yet to be established.
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To overcome these challenges, this study proposes a low-
abundance ion-enhanced MSE similarity model based on a
dual-channel MLP. The proposed method aims to address the
issue of diminished low-abundance feature representation in
the identification of small molecule compounds. Through a
series of data preprocessing steps, multi-dimensional features
are systematically constructed by integrating MSE and
statistical properties of ion intensity, thereby providing a
robust foundation for subsequent feature-to-contribution
mapping. A nonlinear contribution function is then formulated
with MSE serving as the core constraint. By leveraging the
dual-channel MLP architecture, an end-to-end mapping
between ion characteristics and weight coefficients is
established, enabling differentiated signal enhancement
strategies across various entropy intervals. This approach
effectively amplifies the contributions of low-abundance ions
during similarity calculations. The findings of this research are
expected to significantly enhance the accuracy of complex
mass spectrometry data analysis, thereby providing efficient
technical solutions for applications such as metabolomics
biomarker screening, environmental trace pollutant analysis,
and drug impurity identification.

Material and Methods

General process of the model: A low-abundance ion-
enhanced MSE similarity calculation model based on MLP
was developed in this study. As illustrated in Fig. 1, the
proposed model consists of four main modules: data
preprocessing, extraction of ion distribution features, dynamic
weighted decision-making, and similarity calculation.
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Fig. 1. Flow chart of the low-abundance ion-enhanced mass spectra similarity calculation model.

In the data preprocessing stage, invalid data were first
removed through data cleaning. Subsequently, wavelet
transform denoising using a db4 wavelet basis and four-layer
decomposition was applied to suppress high-frequency noise
while preserving the core ion peak features. Instrument
response variations were normalized to ensure comparability
across spectra. Finally, statistical features including MSE,
mean ion intensity, standard deviation, and skewness, were
extracted to quantify information value of low-abundance ion.
Based on these preprocessed features, a nonlinear function
constrained by MSE was constructed, followed by the design
of a dual-channel MLP network for adaptive ion contribution
parameters. The input layer of the network fused the extracted
statistical features. The hidden layer consisted of two fully
connected layers with dimensions of 64 and 32 dimensions,
respectively. Nonlinearity was introduced by the ReLU
activation function, and overfitting was mitigated through the
combination of Dropout and Batch Normalization (BN). The
output layer generated dynamic parameters through
independent dual-channel Sigmoid functions, enabling end-
to-end regulation of weight distribution. The Adam optimizer
minimized a loss function combining mean square error and
L2 regularization, promoting the adaptive learning of ion
feature importance. Finally, MSE similarity calculations were
performed to assess the dynamic weighting results,
confirming that this approach significantly enhances mass
spectrometry matching accuracy and robustness while
maintaining data feature integrity.

Data Preprocessing

Data cleaning, wavelet transform denoising, and
normalization: Invalid records with missing key information,

such as mass-to-charge ratio (m/z) or ion intensity, were first
removed during data cleaning. To suppress high-frequency
noise while preserving characteristic fragment ion peaks, a
discrete wavelet transform (DWT) de-noising strategy was
employed using a db4 wavelet basis with four-layer
decomposition. The db4 wavelet was selected due to its
favorable time—frequency localization capability and
smoothness, which provides a balanced performance between
noise suppression and peak preservation for mass
spectrometry signals. Compared with shorter wavelets (e.g.,
sym4) that may insufficiently suppress baseline noise, and
longer wavelets (e.g., coif4) that may oversmooth weak ion
peaks, db4 has been widely adopted in spectral denoising
tasks for preserving low-abundance ion characteristics. A
four-layer decomposition was chosen to ensure effective noise
removal without compromising ion peak integrity; shallower
decompositions (e.g., three layers) were found to retain
residual noise, while deeper decompositions (e.g., five layers)
may attenuate weak characteristic ions. High-frequency
coefficients were processed using a soft-threshold contraction
algorithm to reduce random noise and baseline fluctuations.
Subsequently, ion intensities were normalized to eliminate
instrument response variations and ensure comparability
across datasets, according to:

ERC

where I; represents the original intensity of the i ion, and

1 represents the normalized intensity.
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Feature calculation: Feature extraction was performed to
characterize ion distribution properties and quantify the
informational value of low-abundance ions.

Mass spectral entropy calculation: For each mass
spectrometry dataset containing » ion peaks, where the
relative intensity of each ion peak can be regarded as a
random variable /;. The formula for calculating H is:

H ==Y Tixlog,(I)
i @

This metric quantifies the uniformity of ion intensity
distributions. Low-entropy spectra (H<3) are typically
dominated by a small number of high-abundance backbone
ions, often masking subtle difference signals from low-
abundance ions. In contrast, high-entropy spectra (H>3),
exhibit relatively more uniform ion intensity distributions
with low information redundancy,

Statistical characteristics of ion intensities: The mean,
standard deviation, and skewness of ion intensities were
calculated to describe the central tendency, dispersion, and
asymmetry of ion distribution. These statistical descriptors
complement MSE by capturing nonlinear variations in ion
intensity patterns.

Mean: Reflects the average ion intensity and overall signal
strength trend.
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Standard deviation: Measures intensity dispersion,
higher values indicate more pronounced differences
between high- and low-abundance ion.
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Skewness: Describes distribution symmetry: negative
skewness indicates a higher proportion of low-abundance
ions, while positive skewness reflects dominance of high-
abundance ions.
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Dynamic weighting strategy design: The proposed
dynamic contribution adjustment strategy aims to enhance
the representation of low-abundance ions under low-
entropy spectral conditions by adaptively regulating ion
intensity weights through a dual-channel MLP network.

The detailed methodology is described as follows:

(1) Definition of MSE-driven nonlinear function: To
address the issue where high-abundance skeleton ions
obscure structural difference signals in low-entropy
spectral (H<3) scenarios, leading to insufficient
discriminative power of low-abundance ions, a nonlinear
function is defined. A dual-channel MLP network is
constructed based on MSE and statistical features of ion
intensity distribution to enable dynamic adjustment of
contribution parameters, with exponential weighting
applied to ion intensity. The function is expressed as:

I (H23)

r=4
I"w=a,+a,H (H<3)

(6)

where H represents the MSE, I represents the original ion
intensity, /' signifies the dynamically weighted ion intensity,
o; and o, are dynamic parameters output by the MLP.
Physically, al primarily controls the baseline enhancement
of low-abundance ions based on statistical distribution
features, while a2 modulates the sensitivity of intensity
adjustment according to spectral entropy H, enabling
entropy-dependent adaptive weighting. The initial values
of al and a2 were set to 0.25, following the fixed-weight
parameter benchmark commonly used in traditional MSE-
based similarity models (Li et al., 2021). This initialization
provides a neutral prior that ensures stable network
convergence while allowing sufficient flexibility for
adaptive optimization during training.

When H<3, the mass spectrometry is categorized into
a low-entropy scenario, which is indicative of a high
potential for information mining due to the probable
presence of abundant low-abundance ions. Under such
conditions, the dynamic contribution adjustment process is
initiated. This design employs a dual-channel MLP
network to optimize weight parameters, thereby enhancing
the contribution of low-abundance ions while maintaining
computational efficiency (Hart et al., 2024).

(2) MLP network construction: A dual channel MLP
neural network comprising an input layer, two hidden
layers, and a dual-channel output layer was implemented
using the PyTorch framework. The core architecture is
shown in Fig. 2.

Input layer: The input feature vector was a 6-dimensional
dataset: x = [H, 1, 6,5, 01,02]".

where H is the mass spectral entropy, |, 6, and S represent
the mean, standard deviation, and skewness of ion
intensities, respectively. Here al, o2 are the initial
contribution coefficients.

MS Entropy: Quantifies the uniformity of ion intensity
distribution and reflects the potential information value of
low-abundance ions.

Statistical characteristics of ion intensity distribution
(mean, standard deviation and skewness): Characterize the
central tendency, dispersion, and symmetry of ion
intensities, respectively.

Initial weight coefficient a; and a»: Provide a priori
parameter baselines to facilitate network convergence.
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Fig. 2. Architecture diagram of dual-channel MLP neural network model based on PyTorch.

Hidden layer: Two fully connected layers with 64 and 32
nodes, respectively, are included to extract high-order
features. Nonlinearity is introduced by the ReL U activation
function, and overfitting is suppressed through the
combination of Dropout and BN. The hidden layer
computations are:

2=Wx-+b, . h=ReLU(BatchNorm(z,))

z, =Wy +b,,h, =Re LU (BatchNorm((z,)) ©

where W;ER%*0 represents the connection weight from
the input layer to the first hidden layer, which is
responsible for mapping the original features to high-
dimensional local features, b; ER% corresponds to the bias
vector of the first hidden layer, which is used to adjust the
activation threshold of the first hidden layer and enhance
the model's fitting ability for nonlinear features.
W,ER3?**  represent the weight matrices, b>ERY
corresponds to the bias vector of the second hidden layer,
which is used to correct the information loss during the
feature dimensionality reduction process.

Output layer: A dual-channel architecture was designed to
independently output dynamic parameters a;’ and a'.
Feature-wise differentiation was achieved by applying the
sigmoid function to constrain parameters within [0,1]:

The local channel output o’ prioritizes statistical
features (H, 1, 0), the weight matrix W,;ER'"3? assigns
higher weights to hidden-layer outputs related to ion
intensity distribution characteristics.

The global channel output .’ focuses on MSE, the
weight matrix W,,€R'*3? reinforces the mapping of H -
related features in the hidden-layer outputs.

The basis for setting the initial value to 0.25: Referring
to the parameter setting benchmark of (Li ef al., 2021). in
the fixed-weight MSE model, combined with the pre-
experiment results of this study.

The parameter update equations are shown in Equation
(9) and Equation (10).

a' =f(W, h+b,) o

a, =f(W, -h+b,) (10)

where f represents the sigmoid activation function. The
weight matrix W, prioritizes statistical feature-related
latent representations, enhancing low-abundance ion
sensitivity, while Wy, emphasizes entropy-related features
to regulate global intensity distribution adaptively.

Loss function: The loss function adopted the mean square
error as the primary metric to measure the difference
between the predicted and true similarity scores, with an
L2 regularization term (with intensity (1) added:

1 n
Loss =~ (81, L)+ 2( [ + i)
i1 (1)

Here, SI; represents the dynamically weighted
similarity prediction SI;' represents the true similarity score,
A represents the regularization parameter, and n represents
the sample size.
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(3) Weight coefficient optimization: Weight coefficient
optimization was implemented via the Adam optimizer
with dynamic learning rate adjustment. During
backpropagation, gradients of the weight coefficients
with respect to the loss function were computed to
iteratively update the MLP network'’s weights and bias
parameters independently. The loss function, combining
mean square error and L2 regularization, quantified
differences between predicted and true similarity scores
as described in Equation (11). This optimization process
facilitated adaptive learning of nonlinear relationships
between MSE and ion intensity distribution features,

Similarity(X,Y) = 1 >

2457 f(I'X,i—'_['Y,j)_f(I'X,i)_f(I'Y,i) m/ZX,i zm/ZY,j

where f{x)=xlogx, I' represents the intensity after dynamic
contribution adjustment and 2 I'y,=I, 2 I'y;/=1. When
mass-to-charge ratios m/z between two spectra do not
match, their contribution to the score is zero. For matching
m/z values, calculating the contribution of this ion to the
entropy similarity of mass spectrometry. A similarity score
closer to 1 indicates a higher degree of chemical structure
similarity between the two mass spectrometry datasets,
while a value approaching O signifies greater dissimilarity.
The similarity calculation process is shown in the Fig. 3.
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Fig. 3. Workflow for mass spectrometry similarity calculation
incorporating dynamic weighting.

Figure 3a and Figure 3b present the mass spectra of
mass spectrometry data X and Y, where the solid lines
represent the intensity values, and the dashed lines indicate
the correspondences of the matching ions. Figure 3c and
Figure 3d present the mass spectrometry data after dynamic
weight adjustment, where /" denotes the enhanced ionic
intensity and the bolded segments highlighting the
matching ions. The procedure is as follows: Firstly, mass
spectrometry data X and Y are preprocessed (including
denoising and normalization), and their mass spectral
entropies are calculated. Since the mass spectral entropies

enhancing the contribution of low-abundance ions in
similarity assessments.

Calculation of entropy similarity in mass spectrometry:
The calculation of entropy similarity in mass spectrometry
is based on the information entropy theory (Tian et al.,
2023). Which evaluates the similarity of chemical
structures by quantifying the divergence in information
distribution between two mass spectra. When combined
with the dynamic contribution adjustment strategy
described in this study, the enhanced similarity calculation
for two mass spectra X and Y is given by Equation (12):

mlzy, #mlz,,

(12)

of both X and Y are less than 3, a dynamic weighting
mechanism is automatically triggered to enhance the
weights of low-abundance ions via a nonlinear function.
Finally, the entropy similarity between the two datasets is
calculated using Equation (12).

Results

Dataset and evaluation metrics: All experiments in this
study were conducted on a Windows 10 system equipped
with a 13th Gen Intel® Core™ i5-13600KF 3.50 GHz CPU
and an NVIDIA GeForce RTX 4070 GPU, with data
processing completed using the PyCharm 2023
development environment; the specific software
environment for model training includes Python 3.9.18,
PyTorch 2.0.0 ,CUDA 11.8, and key dependency libraries
such as numpy 1.24.3, pandas 2.1.3, scikit-learn 1.3.2 ,
matplotlib 3.8.2.Data were sourced from the MassBank.us
public dataset and the Department of Chemistry
Fundamentals at Kunming University of Science and
Technology. The MassBank.us dataset (official public
access link: https://massbank.us/) includes LC-MS/GC-
MS data for over 20,000 compounds, covering detection
results from six major instrument types (e.g., Thermo Q-
Exactive, Bruker maXis) and encompassing diverse
compound structures and instrument noise characteristics.
The KUST-MS dataset contains 12,628 positive ion mass
spectra of 1,203 compounds under seven voltage
conditions (10 to 70 V), with differentiated ion intensity
distributions generated through bombardment at varying
energies, thus provide multidimensional data support for
low-abundance ion feature analysis.

For comparative assessment, three groups were
established: the control group employed the MSE similarity
algorithm and its fixed-weight version (with a coefficient
of 0.25), the experimental group utilized the low-
abundance ion-enhanced model described in this study and
the classic method group (including cosine similarity and
Pearson correlation coefficient).

Evaluation metrics included Cohen’s effect size,
paired #-tests, Average similarity score and the standard
deviation of the similarity score. Cohen's d was used to
measure the practical significance of intergroup mean
differences, with values of d of 0.8 or higher defined as
large effects. Paired ¢-tests were performed to assess
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differences in average similarity scores between the
experimental group and control group, with a significance
threshold set at p-value below 0.05. The mean similarity
score (SimMean) reflects the central tendency of
similarity calculation. The higher the value, the better the
capture effect on the structural similarity between
samples. The standard deviation of the similarity score
(SimStd) quantifies the degree of dispersion of the
similarity score. A larger value indicates a better degree
of dispersion of the similarity score, and the model can
better distinguish different compounds, especially those
with highly similar structures.

Data Preprocessing Effect: In the data preprocessing
stage, the db4 wavelet basis was used to decompose the
data into four layers, and the soft-threshold denoising
algorithm was applied for signal preprocessing. The typical
original mass spectrometry signals and their wavelet
denoising results are presented in Fig. 4.

As clearly shown in the Fig. 4, wavelet denoising
achieved remarkable results in removing the original
signal noise. After denoising, the high-frequency noise
spikes in the original signal were significantly reduced,
the ion peak contours became clearer, and the signal
baseline became more stable.

Implementation effect of dynamic weighting strategy:
This section evaluates the effectiveness and robustness of
the proposed dynamic weighting strategy through
convergence analysis, statistical comparison, and entropy-
aware performance assessment using the MassBank.us and
KUST-MS datasets.

Model convergence behavior: Model training was
conducted using the Adam optimizer with a learning rate
of 0.001. The ReLU activation function was employed to
introduce nonlinearity. Dropout (0.3) and Batch
Normalization were applied to suppress overfitting. As

Raw Spectrum
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illustrated in Fig. 5, the loss value decreased rapidly during
the initial training phase due to effective gradient-based
optimization and gradually stabilized after approximately
100 iterations, converging to a final value of 0.012.

In the early training stage, due to the random
initialization of weights and biases in the network, there
was a large deviation from the optimal solution. Through
parameter updates using the small-batch gradient descent
method, the model was able to quickly capture data
patterns, resulting in a rapid decrease in the loss value. As
training progressed, the model gradually approached the
optimal solution, the parameter update amplitude
decreased, and the rate of loss reduction also gradually
slowed down. Eventually, the loss value stabilized at
0.012, indicating that the model successfully learned the
data characteristics and achieved a good fitting effect on
the training set.

Comparison of MSE similarity between dynamic and
fixed - coefficient strategies: Due to generally low
similarity scores among substances, 1,000 groups were
constructed from the MassBank.us dataset (each group
corresponds to one isomer, containing 5-6 mass
spectrometry samples of the same isomer under different
collision energies: 10—60 eV) and 300 groups from the
KUST-MS dataset (each group corresponds to one
compound, containing 7 mass spectrometry samples of the
same compound under gradient voltage conditions: 10V,
20V,30V,40V, 50V, 60V, 70 V) for in-depth analysis.
Average similarity score calculation, paired - sample ¢ - test,
and correlation analysis were performed on the MSE
similarity scores under the dynamic and fixed - initial -
coefficient strategies. During the research, the dynamic
coefficient weight adjustment strategy and the fixed initial
coefficient strategy were established, and the calculation
results of MSE similarity after low-abundance ion weight
optimization under the two strategies were systematically
compared (Figs. 6 and 7).
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Fig. 4. Comparison of mass spectral signals before and after wavelet denoising.
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Figure 6 and Figure 7 show that the overall distribution
of the dynamic similarity score (orange points) was
significantly higher than that of the fixed similarity score (blue
points), and the trends of the two datasets of data were highly
consistent. This indicates that in the similarity calculation of
isomers from the MassBank.us dataset and 10 - 70V voltage
mass spectrometry data in the KUST-MS dataset, the dynamic
contribution adjustment strategy successfully achieved
adaptive adjustment adaptive adjustment through the feature-
to-contribution mapping of the MLP network for low-
abundance ions, effectively amplifying the contribution of this
type of ion information in similarity measurement. The
similarity evaluation after dynamic enhancement exhibited
higher values in the dataset, suggesting that dynamic
weighting could more sensitively capture the similar features
between samples and significantly improve the overall level
of similarity evaluation.

Statistically, a p-value less than 0.05 were observed in
approximately 54.12% of the groups in the KUST-MS data
and 50.97% of the groups in the MassBank.us data. P-value
less than 0.05 serve as a critical criterion for determining
statistically significant differences in mean values between
two groups of data. This indicates that significant differences
in mean values between dynamic similarity and fixed
similarity were identified in more than half of the groups.
Effect size analysis provided additional insight into the
practical significance of the observed effects: Among these
samples, 88.0% exhibited large effect sizes, defined as a
Cohen'd value of 0.8 or higher, and 29.4% were characterized
by extremely large effect sizes, corresponding to a Cohen'd
value of 1.5 or higher. Collectively, these results, from a
statistical standpoint, demonstrate the substantial impact of
the low-abundance ion enhancement strategy on similarity
scores and provide additional validation for the effectiveness
and superiority of this strategy in MSE similarity calculations.

In the correlation analysis, the correlation coefficients
of each group were generally high, mostly close to 1. This
indicates a strong positive correlation between dynamic
similarity and fixed similarity, implying that the dynamic
strategy, through nonlinear feature importance modeling,
introduced new information. Especially in mass

spectrometry data dominated by low-abundance ions, its
ability to capture feature differences showed obvious
advantages, fully verifying the differentiated enhancement
effect of the adaptive contribution mechanism on low-
abundance ion information. Compared with the fixed initial
coefficient strategy, the proposed model achieved
remarkable results in improving the similarity score,
providing a more accurate and effective approach for mass
spectrometry data similarity calculation.

Comparison with classic similarity methods: To fully
demonstrate the comprehensive advantage of the proposed
model in similarity calculation accuracy and stability, a
horizontal comparison was conducted with cosine
similarity and Pearson correlation coefficient using the
same dataset. The performance metrics (Mean, Std) of each
method are shown in Table 1.

As shown in Table 1, the proposed model outperformed
the other three methods in both datasets in terms of
comprehensive performance: The proposed model’s average
similarity score is 0.0413 higher than the fixed-weight mass
spectrometry entropy algorithm, 0.0842 higher than cosine
similarity, and 0.0927 higher than the Pearson correlation
coefficient, fully demonstrating superior structural similarity
capture. This advantage stems from the model’s ability to
balance "structural feature capture" and "differentiation of
similar substances": the dynamic weighting of low-
abundance ions improves the accuracy of capturing
structural similarities (higher SimMean), while the adaptive
adjustment mechanism increases the dispersion of similarity
scores  (higher SimStd), enabling more precise
discrimination between highly similar isomers.

Visual comparative analysis of heat maps: Four groups of
substances from the KUST-MS dataset (No.29, No.35, No.65,
and No.70) under 10 - 70V voltage bombardment and four
groups Of iSOIIlGI'S (C12H14N402S, C25H3805, C31H36N2011,
C10H 10N4O:S) from the MassBank.us dataset under different
collision conditions were randomly selected for comparative
analysis. The MSE data are shown in Table 2 and Table 3.
Subsequently, heat maps were drawn to more intuitively
observe and analyze the distribution of similarity
coefficients under different weighting strategies, some heat
maps were presented in Fig. 8.

The analysis of heat map similarity calculation results
indicated that the dynamic weighting strategy remarkably
enhanced the accuracy of MSE similarity calculation. For
example, when No.29 was considered, with initial
coefficient weighting, the red outside the diagonal gradually
fades while the blue gradually deepens. The similarity scores
in the low - voltage (10 - 50¥) range were between 0.3 - 0.8,
showing an underestimation. The optimized weighting
darkens the color in the low-voltage region, increased the
scores to 0.4 - 0.9, and raised the average score from 0.5885
to 0.5927. However, in the 50 - 707 high - voltage, low -
entropy scenario, due to the model's limited adaptability to
extreme parameters, occasional score decreases were
observed. The analysis of isomers No.65, No.70 and
MassBank.us shows that this strategy presents a similar
action pattern: in the low collision energy range (low-
entropy environment), the similarity scores generally
increase, while in the high collision energy (high-entropy)
range, the improvement effect is relatively limited.



Statistical significance verification: To quantitatively
evaluate the effect of the dynamic weighting strategy, the
paired sample #-test is adopted in the study and the effect
size (Cohen's d) is calculated (Stratton et al., 2019; Di
Leo & Sardanelli, 2020). The analysis results are shown
in Table 4.

The dynamic weighting strategy demonstrated
significant universality and differential efficacy in
improving MSE similarity scores. In the KUST-MS and
MassBank.us datasets, for substances with a high
proportion of low - abundance ions (such as No.29, No.35,
C25H3s0s), the optimized method showed the Cohen's d
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effect size generally exceeding 0.8 compared to the
unweighted strategy, with some cases reaching 1.5. This
indicates the notable impact of dynamic weighting on
enhancing low - abundance signals.

In summary, the accuracy of mass spectrometry
similarity calculation was improved by the dynamic
weighting strategy through the synergistic action of noise
suppression and adaptive weight allocation. Its advantages
were mainly reflected in the enhanced differentiation of
low - abundance ion information. However, the model's
adaptability to extreme scenarios needed to be further
optimized through iterative improvements.

Table 1. Comprehensive Performance Comparison of Different Similarity Calculation Methods

Dataset Evaluation Proposed Fixed-weight Cosine Pearson correlation
3¢ index model MSE similarity coefficient
. SimMean 0.7458 0.7045 0.6616 0.6531
MassBank.us (1000 isomers) "~ ;114 0.7045 0.1979 0.1957 0.1812
SimMean 0.7648 0.7080 0.6647 0.6751
KUST-MS (300compounds) — “q;;544 0.2638 0.1837 0.1987 0.1926
Table 2. KUST-MS spectral entropy values under different voltages.
Substance number 10V 20V 30V 40V 50V 60V 70V
No.29 1.73378 2.28578 2.211543 2.598199 2.54129 2.547287 2.441941
No.35 1.452412 1.653632 1.850494 1.932888 2.112099 2.11008 2.048027
No.65 2.17084 2.070352 2.09143 1.793943 1.531797 1.05647 0.969591
No.70 1.257836 1.855121 2.208465 2.376669 2.289121 2.282412 2.225369

Table 3. MassBank.us spectral entropy values under different collision energies.

Chemical formula 10eV 20 eV 30eV 40 eV 50 eV 60 eV
Ci12H14N4O:S 1.717148 1.863052 1.644509 1.78759 2.44829 2.44829
C15H3505 1.86519 2.184712 2.096748 2.0568 2.422318
Cs1H36N2011 1.820714 1.244158 1.262042 1.085071 3.712289 2.062902
CioH19N4O,S 0.615503 1.06403 1.142038 1.78759 2.44829

Table 4. The comparison results of different substances under different contribution adjustment strategies.

Substance number Comparison group Sample size Mean Change t-tests p value Cohen's d
No.29 Before vs after 7 0.5885 — 0.5927 4.9078  <0.0001 1.0710 A
No.29 Unweighted vs after 7 0.5553 — 0.5927 5.4664  <0.0001 1.1929 A
No.29 Unweighted vs before 7 0.5553 — 0.5885 5.3695  <0.0001 1.1717 A
No.65 Before vs after 7 0.5859 — 0.5869 2.0589 0.053 0.4493
No.65 Unweighted vs after 7 0.5682 — 0.5869 3.9655 0.0008 0.8654 A
No.65 Unweighted vs before 7 0.5682 — 0.5859  4.0693 0.0006 0.8880 A
No.35 Before vs after 7 0.5501 — 0.5536 5.8149  <0.0001 1.2689 A
No.35 Unweighted vs after 7 0.4933 — 0.5536  7.2587 <0.000001  1.5840m
No.35 Unweighted vs before 7 0.4933 — 0.5501 7.3283 <0.000001  1.5992m
No.70 Before vs after 7 0.6320 — 0.6437 2.2404 0.037 0.4889
No.70 Unweighted vs after 7 0.5541 — 0.6437 6.9768 <0.000001 1.5225m
No.70 Unweighted vs before 7 0.5541 — 0.6320 5.4756  <0.0001 1.1949 A

Ci2H14N+O-S Before vs after 5 0.7091 — 0.7248 1.9576 0.0820 0.6191
Ci2H14N+O-S Unweighted vs after 5 0.7058 — 0.7248  2.6787 0.0253 0.8471 A
Ci2H14N+O-S Unweighted vs before 5 0.7058 — 0.7091  0.3238 0.7535 0.1024
C25H350s Before vs after 5 0.4901 — 0.5066 3.2473 0.0100 1.0269 A
C25H3505 Unweighted vs after 5 0.4872 — 0.5066 4.0887 0.0027 1.2930 A
C25H3505 Unweighted vs before 5 0.4872 — 0.4901 2.8771 0.0183 0.9098 A
Cs:H36N:011 Before vs after 6 0.6617 — 0.6678  0.3910 0.7017 0.1009 A
Cs:H36N:011 Unweighted vs after 6 0.6095 — 0.6678  3.8441 0.0018 0.9925 A
Cs:H36N:011 Unweighted vs before 6 0.6095 — 0.6617  3.9890 0.0013 1.0299 A
CioH10N+O-S Before vs after 4 0.5689 — 0.5874 2.5763 0.0497 1.0518 A
CioH10N+O-S Unweighted vs after 4 0.5008 — 0.5874 4.1458 0.0089 1.6925m
CioH10N+O-S Unweighted vs before 4 0.5008 — 0.5689  2.4604 0.0572 1.0045 A

Significance:*p<0.05, **p<0.01, ***p<0.001(double-tail test)

Effect size: A Cohen's d>0.8 (large effect), mCohen's d>1.5 (extremely large effect)
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Comparison of Average Static and Dynamic Similarity Scores by Group
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Fig. 6. Dynamic vs. fixed similarity comparison for 1000 isomer pairs in MassBank.us dataset.
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Similarity Matrix Heatmap in Small molecule compound number 29
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Discussion

This study addressed critical challenges in small
molecule compound recognition, including the masking
of trace structural differences by high-abundance
skeleton ions and the limited discriminative power for
low-abundance ions, by proposing an MLP-based low-
abundance ion-enhanced MSE similarity model. Data
noise was suppressed through four-layer db4 wavelet
decomposition and soft-threshold denoising, while
differences in instrument responses were eliminated via
ion intensity normalization. Features such as MSE were
extracted to analyze the informational value of low-
abundance ions, mean, standard deviation, and skewness
were extracted to systematically analyze the
informational value of low-abundance ions.

A nonlinear function constrained by MSE was
constructed to adaptively respond to ion intensity
distribution variations, and a dual-channel MLP network
was employed to establish a nonlinear mapping between
spectral peak intensities and weights—addresses the
fixed-characterization limitation of traditional MSE-
based methods (Li ef al., 2021). This mapping enables
collaborative regulation of weight enhancement for low-
abundance ions and signal suppression for high-
abundance ions. Unlike CNN-LSTM hybrid models that
rely on large labeled datasets and suffer from high
computational costs, the proposed MLP-based
architecture achieves efficient parameter optimization
with stable convergence (loss = 0.012 after 100
iterations), balancing performance and practicality
(Seddiki et al., 2023).

Validation using the MassBank. us and KUST-MS
datasets demonstrates that the method achieves favorable
results: 50.97%—54.12% of groups exhibit statistically
significant differences (p < 0.05), 88.0% of samples reach
large effect sizes (Cohen’s d > 0.8), and 29.4% achieve
extremely large effect sizes (Cohen’s d > 1.5). These
outcomes confirm that the model significantly enhances
the contribution of low-abundance ions in similarity
calculations, effectively addressing the underestimation of
characteristic ions in low-entropy spectra (H < 3) where
high-abundance ions dominate. Compared with classic
methods (cosine similarity, Pearson correlation coefficient)
and fixed-weight MSE, the proposed model exhibits
superior structural difference resolution, as it avoids
"equalized" weighting and adaptive adjustment based on
spectral characteristics.

The method systematically improves the accuracy
and robustness of mass spectrometry similarity
calculations, providing reliable technical support for
fields such as metabolomics, environmental detection,
and drug identification. Future research will focus on
adaptive optimization for extreme spectral scenarios, the
development of automated parameter selection
algorithms, and the design of lightweight neural network
architectures to further enhance the analytical efficiency
and generalization capability for large-scale complex
mass spectrometry data.
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Nevertheless, the study also identifies certain
limitations. In high-entropy or extreme spectral scenarios,
where ion intensity distributions are relatively uniform or
highly variable, the improvement effect is less pronounced.
Future research will therefore focus on adaptive
optimization strategies for extreme entropy conditions,
automated parameter selection mechanisms, and the
development of lightweight neural network architectures to
further enhance scalability and generalization for large-
scale mass spectrometry datasets.
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