AN APPRAISAL OF RESISTANCE OF OLD AND NEW WHEAT GENOTYPES TO RED FLOUR BEETLE (TRIBOLIUM CASTANEUM HERBST) ## M.S. KHANZADA¹, G.H. ABRO¹*, T.S. SYED¹, S.R. KHANZADA¹, KHALIL A. KHANZADA², SHAHJAHAN¹, S. D. KHANZADA³ AND AKHLAQ AHMED⁴ ¹Department of Entomology, Sindh Agriculture University Tandojam, Pakistan. ²Crop Diseases Research Institute (PARC), University of Karachi, Karachi 75270, Pakistan ³Plant Breeding and Genetics Division, Nuclear Institute of Agriculture, Tandojam, Pakistan ⁴Grain Storage Research Institute, PARC, Karachi, Pakistan #### **Abstract** In the present investigation, 30 varieties of wheat were used to study their resistance against Red flour beetle, *Tribolium castaneum* (Herbst). The grains of all these varieties were obtained from Plant Breeding and Genetics Division, Nuclear Institute of Agriculture, Tandojam. Experiment was conducted in the laboratory at $29\pm2^{\circ}C$ and $65\pm5\%$ R.H. The standard of the samples of each variety used in the experiment was 1000 grains, kept in plastic jars (15 x 6 cm). Ten pairs of newly emerged adult flour beetles (both sexes in equivalent numbers) of uniform age from laboratory stocked culture were released in each jar. The results were evaluated on the bases of adult population development, percent grain damage and frass production, revealed that none of the genotype was completely resistant to the infestation of *T. castaneum*. All the varieties suffered losses, but their degree of resistance varied significantly. On the bases of pest population development, percent damage and frass production, the least damage was noted in variety Barani-70 and Bhittai and the highest damage was recorded in T_{21} and T_{16} ; hence these varieties were designated the most tolerant and the most susceptible varieties, respectively. The comparative resistance displayed by the wheat varieties, could be placed in the following order :< Barani-70 < Bhittai $< T_{19} < T_{14} < T_{24} < T_{13} < T_{20} < T_{9} < T_{11} < T_{15} < T_{25} < T_{1} < T_{12} < T_{8} < T_{1} - 83 < T_{22} < T_{3} < T_{18} < T_{10} < T_{23} < T_{5} < Marvi-2000 < T_{17} < Mehran-89 < T_{6} < T_{7} < T_{16} < T_{21}.$ #### Introduction Wheat (Triticum aestivum L.) is the important cereal crop and staple food of the people of Pakistan. It occupies the first position in area amongst the cereal crops and covers about 65% of food crop area of the country (Khattak et al., 2000). Wheat was grown on an area of 8.6 million hectares in the year 2008-09 with production target of 25 million tons (Minfal, 2009). Considerable amount of damage is caused by insect pests to stored wheat in Pakistan. The damage caused by insect pests to wheat grain has been estimated at 10 to 20% (Ramzan et al., 1991; Khan et al., 2010). Live adult insects were present in about 75% of the samples taken; the most common species were Sitotroga cerealella, Tribolium castaneum, Rhizopertha dominica and Sitophilus spp. (Khan et al., 2010). Irshad & Talpur (1993) studied the interaction between R. dominica, S. cereallella and T. castaneum and found maximum (2.5%) loss recorded in combined infestation of wheat by the three pests. castaneum has been found one of major insect species in surveys (Mahmood et al., 1996; Hyden & Soren, 1987; Ghizdavu & Deac, 1994; Khalil & Irsahd, 1994; Desimpelaere, 1996; Bandyopadhyay & Gosh, 1999). Redflour beetle, *Tribolium castaneum* (Herbst) is one of the major insect pests of stored grains with cosmopolitan distribution (Ghizdaru & Deac, 1994; Hyden & Soren, 1987; Desimpelaere, 1996; Abro, 1996; Wong *et al.*, 1996; Suresh *et al.*, 2001; Hulasare *et al.*, 2003). Although, *T. castaneum* is considered a pest of flour and other milled cereal products and a secondary pest in stored wheat (LeCato, 1975; Hamed & Khattak, 1985, Irshad & Talpur, 1993; Suresh *et al.*, 2001), a single larva can attack 88 grains during its life which leads to a considerable loss of quality and viability of grain (Atanasov, 1978). Apart from loss of weight and quality of food grains, insects of genus *Tribolium* secrete a variety of toxic quinones which are said to be carcinogenic. Presence of *Tribolium* spp., in the food grains give pungent smell and infested flour becomes dirty yellow in colour (Ladish *et al.*, 1967; Smith *et al.*, 1971; El-Mofty *et al.*, 1989) and negatively affect baking quality of flour (Ghazdavu & Deac, 1994; Flogliazza & Pagani, 2003). The amount of damage in quality and quantity and health hazards due to insect infestation when converted into monetary concerns may run into millions of rupees to national exchequer annually. These losses could be prevented either by use of pesticides or by non-chemical methods. Chemical methods pose many environmental hazards. Therefore, non-chemical methods, which are safe for the environment, are encouraged. Use of resistant varieties is one of the environmentally safe methods of pest control in stored product pest management. Varietal resistance in wheat against T. castaneum has been studied by different workers in Pakistan (Hamed & Khattak, 1985; Khattak & Shafique, 1986; Ali et al., 1989, Syed et al., 2001; Sartaj et al., 2001; Ali et al., 2009, Irshad et al., 1991). Varietal resistance may be governed by a few or a complex of mechanisms involving interactions of various physical, physiological and biochemical factors. Present study was carried out to determine the varietal resistance of wheat varieties/genotypes against red flour beetle in 25 old and 5 recently developed commercial varieties. The purpose of this research was to evaluate and identify the insect resistance genotypes to be utilized in breeding programmes for the development of high yielding insect resistant varieties to be utilized in pest management programme for the benefit of farming community of Pakistan. ^{*}Corresponding author, email: abrogh2003@yahoo.com 2536 M.S. KHANZADA ETAL., #### **Materials and Methods** The research on the relative resistance of old and modern varieties / genotypes of wheat to red flour beetle, *Tribolium castaneum* (Herbst) was conducted in the laboratory, Department of Entomology, Sindh Agriculture University, Tandojam from August 11, 2005 to February 11, 2006. Seeds of wheat varieties were obtained from the Plant Genetics Division, Nuclear Institute of Agriculture, Tandojam. The origin of first 25 varieties /types was from a collection of wheat varieties by a survey conducted in combined Punjab in 1907 by the Punjab Board of Agriculture from across the whole area (Aziz, 1960; Khan, 1987).The 25 varieties /types belonged to three species: T₁ to T₃ Triticum durum Desf. which was cultivated in the districts of Sialkot and Gujranwala; T₄ to T₇ Triticum sphaerococum, a dwarf drought tolerant species which was cultivated in the districts of Multan, Muzaffergarh and Dera Ghazi Khan and T₈ to T₂₅ bread wheat, Triticum aestivum L. was grown all over the province (Khan, 1987). The remaining 5 varieties were the recently developed modern wheat varieties (Table 1). Grains of genotypes were made dust and straw free, and then the sound and healthy grains were selected. The experiment was conducted in the laboratory at 29±2°C and 65±5% R.H., (Irshad & Talpur, 1993; Syed et al., 2001) replicated three times in randomized block design. Table 1. Seed characteristics of different genotypes of wheat. | C No | Name of Genotypes Weight of 1000 Grains in (g) | | | | | | |--------|------------------------------------------------|--------------------|---------|--|--|--| | S. No. | Name of Genotypes | | | | | | | 1. | T ₁ Triticum durum | 28.33 ± 0.33 | pqr | | | | | 2. | T ₂ Triticum durum | 28.00 ± 0.57 | qr | | | | | 3. | T ₃ Triticum durum | 30.00 ± 0.57 | lmnopq | | | | | 4. | T ₄ Triticum sphaerococcum | 31.67 ± 1.33 | jklmn | | | | | 5. | T ₅ Triticum sphaerococcum | 28.67 ± 0.33 | opqrr | | | | | 6. | T ₆ Triticum sphaerococcum | 30.33 ± 0.88 | klmnopq | | | | | 7. | T ₇ Triticum sphaerococcum | 31.00 ± 0.57 | klmnop | | | | | 8. | T ₈ Triticum sphaerococcum | 35.67 ± 0.33 | ghi | | | | | 9. | T ₉ Triticum aestivum | $31.33 \pm s1.202$ | jklmno | | | | | 10. | T ₁₀ Triticum aestivum | 34.00 ± 1.00 | hij | | | | | 11. | T ₁₁ Triticum aestivum | 41.33 ± 1.20 | cd | | | | | 12. | T ₁₂ Triticum aestivum | 36.33 ± 0.66 | gh | | | | | 13. | T ₁₃ Triticum aestivum | $33.00 \pm .57$ | ijk | | | | | 14. | T ₁₄ Triticum aestivum | 26.00 ± 1.15 | r | | | | | 15. | T ₁₅ Triticum aestivum | 37.67 ± 1.76 | fg | | | | | 16. | T ₁₆ Triticum aestivum | 39.67 ± 0.88 | def | | | | | 17. | T ₁₇ Triticum aestivum | 38.33 ± 0.88 | efg | | | | | 18. | T ₁₈ Triticum aestivum | 29.00 ± 0.57 | nopq | | | | | 19. | T ₁₉ Triticum aestivum | 29.67 ± 0.33 | mnopq | | | | | 20. | T ₂₀ Triticum aestivum | 37.67 ± 1.333 | fg | | | | | 21. | T ₂₁ Triticum aestivum | 29.33 ± 0.33 | mnopq | | | | | 22. | T ₂₂ Triticum aestivum | 32.33 ± 1.20 | jkl | | | | | 23. | T ₂₃ Triticum aestivum | 44.67 ± 0.33 | b | | | | | 24. | T ₂₄ Triticum aestivum | 32.00 ± 0.57 | jklm | | | | | 25. | T ₂₅ Triticum aestivum | 33.00 ± 1.15 | ijk | | | | | 26. | Barani-70 | 40.33 ± 0.33 | def | | | | | 27. | Bhattai | 40.67 ± 0.66 | de | | | | | 28. | Marvi-2000 | 51.67 ± 1.20 | a | | | | | 29. | Mehran-89 | 43.67 ± 2.33 | bc | | | | | 30. | T.J-83 | 45.33± 1.45 | b | | | | | | LSD | 2.76 | | | | | The standard samples of each variety used in the experiment were 1000 grains, kept in plastic jars (15x 6 cm). Ten pairs of newly emerged adult red flour beetle, *T. castaneum*, (both sexes in equivalent numbers) of uniform age structure from laboratory-stock culture were released in each jar. The mouth of each jar was covered with muslin cloth, tightened with rubber band. The observations were taken at 15 days intervals and adult beetle population fluctuations were recorded at each interval by counting the number of adults. Increase/decrease in adult numbers was considered criterion for the relative resistance of a genotype to insect attack. After the expiry of the experimental period, the following parameters were studied to judge the relative susceptibility of wheat genotypes: - a) Adult population - b) Percentage grain damage. - c) Frass weight and d) Percent germination Each sample was passed through a 60-mesh sieve for separation of frass and grains. The grains containing holes were separated from the sound grains as damaged grains. The percent damage was calculated according to the method of Khattak *et al.*, (1987). The effect of *T. castaneum* infestation on germination of grains was determined after completion of resistance studies. The grains of all varieties / genotypes were divided into three categories i.e., control grains, healthy grains and infested grains from different treatments. Germination of 25 grains per treatment was tested in Petri dishes lined with moist (Whatman No1) filter paper. Three replications were kept for every category of grains of each genotype. The germination data were taken after 7 to 10 days. The data obtained were statistically analyzed by using ANOVA and DMR test by computer programme. The coefficient of correlation between various parameters was also determined (Steel *et al.*, 1997). ### Results **Adult population:** Depending upon the genotype behaviors, the genotypes differed significantly (F= 6.06; DF= 29, 58; p<0.01) in their ability to harbor the total number of adult red flour beetle, T. castaneum (Table 2). The highest population build up was recorded in variety T_{21} that harbored 132.30 adults, followed by T_{16} and T_{7} harboring 95.00 and 41.67 adult insects, respectively. The lowest population was recorded in Barani-70 harboring 1.33 adults, followed by Bhittai, T₁₉, T₁₄ and T₂ varieties where 2.33, 4.67, 4.67 and 6.00 adults were counted, respectively. The remaining génotypes T₆, Mehran-89, T₁₇, Marvi-2000, T₅, T₂₃, T₁₀, T₁₈, T₃, T₂₂, T.J-83, T₄, T₈, T_{12} , T_{1} , T_{25} , T_{15} , T_{11} , T_{9} , T_{20} , T_{13} and T_{24} harbored 30.00, 28.00, 27.33, 26.67, 25.67,25.33, 24.33, 18.67, 16.33, 15.67, 15.00, 14.67, 14.13, 13.33, 13.00, 13.00, 12.33, 11.33, 10.67, 10.67, 8.33 and 7.00 T. castaneum, respectively. From the results obtained, it could be assumed that Barani-70 was the most resistant, whereas T₂₁ was found the most susceptible genotypes with the lowest and the highest adult population, (1.33 and 132.33 adults), respectively. A correlation study carried out between T. castaneum adult population and different damage parameters, indicated that there was highly significant (p<0.01), positive correlation between adult population growth and damaged grains, % infestation and frass production (Figs. 1-3). | Table 2. Tribolium castaneum population and damage characteristics on different genotypes of wheat. | | | | | | | | |-----------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------|-----------------------------|------------------------------|-----------------------------------|--|--| | C Na | Name of genotypes | No. of damaged | Adult | (%) | Frass weight | | | | S. 1NO. | | grains | population | Infestation | (mg) | | | | 1. | T ₁ Triticum durum | 43.67 ± 3.18 mno | 13.00 ± 0.57 cd | 4.37 ± 0.31 no | 36.67 ± 0.88 ghijklmn | | | | 2. | T ₂ Triticum durum | $38.67 \pm 0.88 \text{ opq}$ | 6.00 ± 1.52 d | $3.87 \pm 0.08 \text{ op}$ | 29.00 ± 4.72 jklmn | | | | 3. | T ₃ Triticum durum | $40.33 \pm 4.70 \text{ nop}$ | $16.33 \pm 4.09 \text{ cd}$ | 4.03 ± 0.47 o | 49.33 ± 7.62 defghijkl | | | | 4. | T ₄ Triticumsphaerococcum | $66.00 \pm 1.15 \text{ hij}$ | $14.67 \pm 2.66 \text{ cd}$ | $6.60 \pm 0.11 \text{ ij}$ | 41.67 ± 7.26 efghijklmn | | | | 5. | T ₅ Triticum sphaerococcum | $93.33 \pm 5.66 \mathrm{f}$ | 25.67 ± 4.37 cd | $9.33 \pm 0.56 \mathrm{f}$ | $71.67 \pm 2.72 de$ | | | | 6. | T ₆ Triticum sphaerococcum | $77.67 \pm 5.36 \text{ gh}$ | 30.00 ± 6.24 cd | $7.76 \pm 0.53 \text{ gh}$ | $59.33 \pm 9.35 \text{ defghijk}$ | | | | 7. | T7 Triticum sphaerococcum | $87.33 \pm 1.20 \text{ fg}$ | 41.67 ± 1203 c | $8.73 \pm 0.13 \text{ fg}$ | 104.33 ± 3.38 bc | | | | 8. | T ₈ Triticum sphaerococcum | $58.33 \pm 8.41 \text{ jkl}$ | 14.13 ± 3.18 cd | $5.83 \pm 0.84 \text{ jkl}$ | 61.33 ± 35.83 defghi | | | | 9. | T ₉ Triticum aestivum | $47.33 \pm 0.66 \ 1$ mno | 10.67 ± 2.90 cd | $4.73 \pm 0.06 \text{ mno}$ | $32.00 \pm 3.46 \text{ hijklmn}$ | | | | 10. | T ₁₀ Triticum aestivum | $124.00 \pm 8.54 d$ | 24.33 ± 4.41 cd | $12.40 \pm 0.49 d$ | 60.67 ± 5.60 defghij | | | | 11. | T ₁₁ Triticum aestivum | $42.33 \pm 0.66 \text{ mno}$ | 11.33 ± 1.45 cd | 4.23 ± 0.06 no | $30.00 \pm 13.29 \text{ jklm}$ | | | | 12. | T ₁₂ Triticum aestivum | $49.00 \pm 2.08 \text{ klmno}$ | 13.33 ± 4.91 cd | $4.90 \pm 0.20 \; lmno$ | 30.67 ± 2.72 ijklmn | | | | 13. | T ₁₃ Triticum aestivum | $20.00 \pm 3.05 \text{ rs}$ | 8.33 ± 5.36 d | $2.00 \pm 0.30 \text{ qrs}$ | $18.00 \pm 7.00 \text{ mn}$ | | | | 14. | T ₁₄ Triticum aestivum | $29.00 \pm 5.03 \text{ pqr}$ | 4.67 ± 1.76 d | $2.90 \pm 0.50 \text{ pq}$ | 19.67 ± 2.96 lmn | | | | 15. | T ₁₅ Triticum aestivum | $41.00 \pm 3.21 \text{ nop}$ | 12.33 ± 2.72 cd | 4.10 ± 0.32 o | 35.33 ± 8.87 ghijklmn | | | | 16. | T ₁₆ Triticum aestivum | 138.67 ± 3.33 c | $95.00 \pm 30.07 \text{ b}$ | $13.87 \pm 0.33 \text{ c}$ | 132.67 ± 14.51 b | | | | 17. | T ₁₇ Triticum aestivum | $164.67 \pm 2.60 \mathrm{b}$ | 27.33 ± 7.35 cd | $16.47 \pm 0.26 \text{ b}$ | $130.67 \pm 21.82 \mathrm{b}$ | | | | 18. | T ₁₈ Triticum aestivum | $116.00 \pm 2.30 de$ | 18.67 ± 2.72 cd | 11.60 ± 0.23 de | $63.67 \pm 4.91 \text{ defg}$ | | | | 19. | T ₁₉ Triticum aestivum | $40.67 \pm 1.33 \text{ nop}$ | 4.67 ± 1.33 d | 4.07 ± 0.13 o | $34.33 \pm 18.52 \text{ hijklm}$ | | | | 20. | T ₂₀ Triticum aestivum | $52.00 \pm 9.16 \text{ klmn}$ | 10.67 ± 0.33 cd | 5.20 ± 0.52 klmn | 38.33 ± 6.33 fghijklm | | | | 21. | T ₂₁ Triticum aestivum | $284.00 \pm 27.31 \text{ a}$ | 132.33 ± 48.21 a | $28.40 \pm 0.45 a$ | 228.00 ± 22.053 a | | | | 22. | T ₂₂ Triticum aestivum | $61.67 \pm 1.33 \text{ ijk}$ | 15.67 ± 3.66 cd | 6.17 ± 0.13 ijk | 47.33 ± 8.87 efghijklm | | | | 23. | T ₂₃ Triticum aestivum | 109.33 ± 1.45 e | 25.33 ± 4.84 cd | 10.93 ± 0.14 e | $116.33 \pm 4.84 \text{ b}$ | | | | 24. | T ₂₄ Triticum aestivum | 26.33 ± 2.66 qrs | 7.00 ± 1.00 d | $2.63 \pm 0.26 \text{ qr}$ | 25.00 ± 4.04 klmn | | | | 25. | T ₂₅ Triticum aestivum | $44.33 \pm 3.71 \text{ mno}$ | 13.00 ± 6.08 cd | $4.43 \pm 0.37 \ \text{mno}$ | 47.67 ± 6.48 efghijklm | | | | 26. | Barani-70 | $16.33 \pm 1.45 \text{ rs}$ | 1.33 ± 0.33 c | $1.63 \pm 0.14 \text{ rs}$ | $14.00 \pm 2.08 \text{ m}$ | | | | 27. | Bhattai | $15.00 \pm 1.00s$ | $2.33 \pm 0.66 d$ | $1.50 \pm 0.10s$ | $10.67 \pm 2.88 \text{ n}$ | | | | 28. | Marvi-2000 | $72.00 \pm 4.16 \text{ hi}$ | $26.67 \pm 0.88 \text{ cd}$ | $7.20 \pm 0.41 \text{ hi}$ | $67.33 \pm 2.33 \text{ def}$ | | | | 29. | Mehran-89 | $175.67 \pm 3.84 \mathrm{b}$ | $28.00 \pm 5.85 \text{ cd}$ | $16.57 \pm 0.84 \text{ b}$ | 80.33 ± 6.33 cd | | | | 30. | T.J-83 | 54.67 ± 3.33 jklm | 15.00 ± 2.51 cd | $5.47 \pm 0.33 \text{ klm}$ | 37.33 ± 5.03 fghijklmn | | | | | LSD | 13.01 | 31.01 | 1.08 | 31.67 | | | Table 2. Twikelium aggrangum population and damage characteristics on different genetypes of wheat **Percent infestation:** The percent infestation caused by T. *castaneum* to grains of different genotypes varied significantly (F= 223.07; DF= 29, 58; p< 0.01). The least percent damage was recorded in Bhittai showing 1.50% infestation and the highest was recorded in genotype T_{21} showing 28.40% infestation, hence both these genotypes were designated as the most tolerant and the most susceptible genotypes, respectively. Genotypes Mehran-89, T_{17} , T_{16} , T_{10} , T_{18} , T_{23} and T_5 gave relatively susceptible responses as 16.57, 16.47, 13.87, 12.40, 11.60, 10.93 and 9.33% damage was recorded, respectively on these genotypes. Most of the remaining genotypes, $T_7,\ T_6,\ Marvi-2000,\ T_4,\ T_{22},\ T_8,\ T.J-83,\ T_{20},\ T_{12},\ T_9,\ T_{25},\ T_1,\ T_{11},\ T_{15},\ T_{19},\ T_3,\ T_2$ and $T_{14},$ exhibited moderately susceptible responses with percent infestation of 8.63, 7.77, 7.20, 6.60, 6.17, 5.83, 5.47, 5.20, 4.90, 4.73, 4.43, 4.37, 4.23, 4.10, 4.07, 4.03 and 3.87. Rest of genotypes $T_{14},\ T_{24},\ T_{13}$ and Barani-70 were categorized as relatively resistant that displayed 2.90, 2.63, 2.00 & 1.63% of infestation. 2538 M.S. KHANZADA ETAL., Fig. 1. Relationship between adult populaiton and number of damage grains. Fig. 2. Relationship between adult population and percentage infestation. Fig. 3. Relationship between adult population and frass weight (mg). **Frass weight:** Frass produced as a result of feeding by T. *castaneum* on seeds of different genotypes varied significantly (F= 17.28; DF= 29, 58; p< 0.01). Frass weight followed almost similar pattern in all the genotypes as was observed in case of percent infestation. Maximum frass material was recorded in genotype T_{21} (228.00) milligrams followed by T_{16} (132.67) milligrams and T_{17} (130.67) milligrams. The minimum frass material was found in genotype Bhittai having (10.67) milligrams followed by Barani-70 with (14.00) milligram and T_{13} (18.00) milligrams. These observations clearly proved that genotype Bhittai was most resistant and T21 the most susceptible amongst all the genotypes tested. All the remaining genotypes T23, T7, Mehran-89, T5, Marvi-2000, T_{18} , T_{8} , T_{10} , T_{6} , T_{3} , T_{25} , T_{22} , T_{4} , T_{20} , T.J-83, T_{1} , T_{15} , T_{19} , T₉, T₁₂, T₁₁, T₂, T₂₄, T₁₄ and T₁₃ showed frass weight in the order of 116.33, 104.33, 80.33, 71.67, 67.33, 63.67, 61.33, 60.67, 59.33, 49.33, 47.67, 47.33, 41.67, 38.33, 37.33, 36.67, 35.33, 34.33, 32.00, 30.67, 30.00, 29.00, 25.00, 19.67, 18.00 and 14.00 milligram, respectively. A highly significant correlation was recorded between percent grain infestation and frass production (Fig. 4). The grain size of different varieties in present study varied significantly (F= 40.79; DF= 29, 58 p<0.001). The highest weight of 1000 grains was recorded in variety Marvi-2000 followed by TJ-83 and T_{23} (Table 1). Fig. 4. Relationship between number of damage grains and frass weight (mg). There was 100% germination in control and healthy seeds from infested treatments, whereas the germination was nil of damaged grains. #### Discussion The rate of increase in population densities and the resultant loss to stored wheat due to insect development and feeding were the two parameters used to assess the relative resistance or susceptibility of various wheat genotypes. The results of present study are in accordance with the finding of previous workers where it is concluded that each wheat variety or genetic line behaved differently to stored grain insect pests. The idea was to categorize these varieties according to their potential to resist the attack of stored grain insects under laboratory conditions. Similar studies have been conducted by different workers against red flour beetle such as Singh et al., (1968), Sarin & Sharma (1977, 1982), Singh et al., (1977), Bhatia (1978), Nehra et al., (1985), Levchenko (1986), Bergerson & Wool (1987), Ramzan & Chahal, (1987), Tiwari et al., (1989). Varietal resistance studies have also been undertaken against red flour beetle in Pakistan by various scientists such as Hamed & Khattak (1985), Ali et al., (1989), Irshad et al., (1991), Abro (1996), Lohar et al., (1997) and Sartaj *et al.*, (2001). These researchers evaluated different wheat cultivars, which were different from the genotypes tested during the present research. In present study minimum T. castaneum population was recorded in variety Barani-70 followed by Bhattai. These varieties also showed minimum percent infestation and frass production by pest indicating that these varieties were comparatively the most resistant genotypes in present study. There was a highly significant positive correlation between adult population, percent infestation and frass production. Highly significant correlation has been reported between pest population increase and grain weight loss and grain moisture (Syed et al., 2001; Khan et al., 2005). Sinha et al., (1988) examined the susceptibility of 7 wheat cultivars to 9 stored grain pest species and concluded that the susceptibility was related to kernel hardness. Irshad et al., (1991) tested ten wheat varieties against red flour beetle and the total development period and larval development in red flour beetle was inversely proportional with susceptibility. Warchalewski & Nawrot (1993a) studied the population parameters of various stored grain insects including Tribolium, feeding on nine wheat varieties, whose physicochemical properties were analyzed. Some properties such as kernel hardness, falling number, non-protein nitrogen content and protein quality (rather than quantity) appeared to contribute towards increased wheat grain resistance. Further it was inferred that, grain hardness had close relationship with the insect resistance and protein content possibly acted through hardness changes in gluten strength. The degree of resistance and susceptibility of different wheat genotypes seemed to be dependent upon number of factors like hardness, texture, colour, and size, percent moisture content and different chemical constituents of the grain. Possibly, a combination of more than one or all the factors, play their part in making a variety resistant or susceptible to insect attack. Warchalewski & Nawrot (1993b) recorded that increased levels of non protein nitrogen had a negative effect on growth of T. castaneum and other insects. Bekon & Fleurat (1992) assessed dry matter loss and frass production in 200 g wheat samples by T. castaneum. The average frass production varied from 27 to 44 mg per pair. Tiwari & Sharma (2002) determined the response of 60 wheat genotypes (Triticum aestivum and T. durum) on the growth and development of three major stored grain insect pests i.e., Sitophilus oryzae, Rhizopertha dominica and Tribolium castaneum. The extent of damage caused by all three insect species was significantly different and the genotypes differed significantly in their susceptibility to the same insect. The growth and development of all tested insect species was found lowest on durum wheat germplasm. In present study, 3 genotypes of old germplasm belonged to T. durum which did not show any degree of resistance against T. castaneum. Treatment (T2) showed moderate level of resistance against pest compared with other two genotypes. In old genotype T₉ which belonged to T. aestivum also showed moderate level of resistance against pest with comparatively low population growth and percent grain damage (Table 2). Ali et al., (2009) screened 10 wheat varieties against T. castaneum and found wheat variety Marvi-2000 was the most tolerant variety with minimum pest population, percentage of infestation and frass production compared with other varieties. The significant differences observed among the wheat varieties for different parameters in present study agree with findings of Simwat & Chahal (1982), and Ramzan & Chahal (1986), where the extent of damage in different wheat varieties has been reported to differ. Sarin & Sharma (1982) found that the resistant varieties had lower moisture and carbohydrate contents as compared with the susceptible ones. Stored grain resistance to insects depends upon many factors such as hardness of grain (Sinha *et al.*, 1988; Singh *et al.*, 2008), moisture (Khattak *et al.*, 2000; Syed *et al.*, 2001; Khan *et al.*, 2005; Syed *et al.*, 2006, Khan *et al.*, 2010), chemical composition of a variety and insect species. Highly significant positive correlation has been found between carbohydrate content of store grains and insect damage and weight loss and highly significant negative correlation has been reported for protein content of stored grains and insect damage and weight loss for a number of insects (Mansha, 1985; Khan *et al.*, 2010). In the present study, grain size was not important factor in the infestation of T. castaneum. The highest population of T. castaneum was recorded in variety (T_{21}) with medium grain size. The second highest T. castaneum population was recorded in T₁₆, while the lowest pest population was recorded in Barani-70. The grain size of both varieties (T₁₆ and Barani-70) was almost same (Table 1). This indicated that the grain size was not important factor in the resistance of wheat grains to T. castaneum. Correlation studies carried out between grain size and pest population showed insignificant relationship between both parameters (r = -0.0356). Khan et al., (2010) reported higher emergence of Sitotroga cerealella from larger grain size but the correlation between grain size and progeny was not significant (-0.053) which indicated that grain size was not an important factor. In the present study, the seeds damaged by *T. castaneum* could not germinate. This could be due to damage caused to embryo by insect feeding. Germination of seeds becomes important consideration when the grain is stored for seed purpose. There are reports which indicate that infestation of stored grain pests adversely affect the germination of seeds (Krzymanska & Grolebiowska, 1987; Ghazdava & Deac, 1994). ## References Abro, G.H. 1996. Relative resistance of commercially grown varieties of different cereals to *Tribolium casteneum* (Herbst) attack. *Pakistan J. Zool.*, 26: 39-44. Ahmad, F.U. 1980. Insect pests and their control in stored wheat. *Pak J. Agric.*, 3:9-10. Ahmad, M., M. Irshad,. and M. Shahid. 1998. Loss assessment in stored wheat in three villages of Gilgit. *Pakistan J. Zool.*, 30: 41-46. Ali, L., M. Akhtar, M. Ahmed and M. Hassan. 1989. The relative susceptibility of six new wheat varieties to *R. dominica* and *T. castaneum. Pak. Entomol.*, 11:52-57. Ali, M. Sarwar M.S. Khanzada, G.H. Abro. 2009. Reaction of Certain Wheat Varieties to the Action of Red Flour Beetle, *Tribolium castaneum* (Herbst) (Col) Under insectary conditions. *Pakistan J. Zool.*, 41: 51-56. Atanasov, K.H. 1978. Damage by the rust red grain beetle to sotred grain and its products. *Rastitelna Zashchita.*, 26:19-20. M.S. KHANZADA ET AL., Aziz, M.A. 1960. Fifty years of cereal and pulse research- pp. 1-39. In: *Agriculture Research-a retrospect*. (Ed.): K.A. Hussain. Dept. of Agriculture, Lahore. - Bandyopadhyay, B. and M.R. Ghosh. 1999. Loss of food grain by insect pests during storage in three agro climatic zones of West Bengal. *Envron. Eco.*, 17: 701-705. - Bekon, K. and T.L. Fleurat. 1992. Assessement of dry matter loss and frass production in cereal grain due to successive attack by *Sitophilus oryzae* L., and *Tribolium castaneum* (Herbst). *Insect Sci. Applic.*, 13: 129-136. - Bergerson, O. and D. Wool. 1987. Attraction of flour beetles, *Tribolium castaneum* (Herbst) (Col. Tenebrionidae) to wheat flour: heritable character or "conditioning". *J. Apl. Ent.*, 104:179-186. - Bhatia, S.K. 1978. Wheat grain variability to infestation by storage pest. *J. Entomol. Res.*, 2: 106-111. - Desimpelaere, P. 1996. Insect protection of stored grain. Agricontact. NO. 287, 1-4. - El-Mofty, M.M, S.A. Sakr, S.I. Osman, and B.A. Toulan. 1989. Carcinogenic effect of biscuits made of flour infested with *Tribolium castaneum* in bufo regularis. *Oncology (Basel)*., 46: 63-65. - Ghizdavu, I. and V.A. Deac. 1994. Investigatinos on the arthropod fauna, harmful to agricultural stored products, in the central area of the western plain of Romania. Seria-Agric.-Si-Horticul., 48: 119-126. - Hamed, M. and S.U. Khattak. 1985. Red flour bettle development and losses in various stored foodstuff. Sarhad J. Agric., 1: 97-101. - Hulasare, R.B. and N.G.D. White. 2003. Intra and inter specific interactions among *Tribolium castaneum* and *Cryptolestes ferrugineus* in stored wheat at different insect densities. *Phytoprotection.*, 84: 19-26. - Hyden, H and H. Soran. 1987. The pests and contaminators of stored wheat and flour mills in the Thrace region, Turkey. *Entomology Kongresi Bildirileri.*, 30: 13-16. - Irshad, M., W.A. Gillani and F. Gul. 1991. Relative resistance in some wheat varieties/ genetic lines to red flour beetle and lesser grain borer. *Pakistan J. Agric. Res.*, 12:51-52. - Irshad, M and S. Talpur. 1993. Interaction among three coexisting species of stored grain insect pests. *Pakistan J. Zool.*, 25: 131-133. - Khalil, S.K and M. Irshad, 1994. Field estimates of population growth rate of some important grain pests in wheat stored at farm level in northern Pakistan. Sarhad J. of Agric., 10: 273-278. - Khan, R. R., A. N. Syed and Mansoor-ul-Hassan, 2005. Interactive responsive of two wheat varieties and three insect pests. *International Journal Agriculture and Biology.*, 7: 152-153. - Khan, M.A. 1987. Wheat variety development and longerity of rust resistance. Govt. of the Punjab Agric. Dept. Lahore., pp. 206. - Khan, I. S. Afsheen, N. Din, S Khattak, S.K. Khalil, Y.H.Y. Lou. 2010. Appraisal of Different wheat genotypes against Angoumois Grain moth, *Sitotroga ceralella* (Oliv.). *Pakistan J. Zool.*, 42:161-168. - Khattak, S.U.K and M. Shafique. 1986. Varietal susceptibility studies of ten wheat cultivars to flour red flour beetle, *Tribolium castaneum* (Herbst) (Coleoptera: Tenebrionidae). *Pak. J. Zool.*, 18: 257-261. - Khattak, S.U., S. Kama, K. Amanullah, S. Ahmad, A.U. Khan and A. Jabbar. 2000. Appraisal of rainfed wheat lines against khapra beetle, *Trogoderma granarium* (Evert.). *Pakistan J. Zool.*, 32: 131-134. - Kumawat, K.C. 2007. Assessment of losses due to insect pests under wheat storage practices in semi arid region. *Annl. Plant prot. sei.*, 15: 699-701. - Krzymanska, J. and Z. Golebiowska. 1987 Biochemical composition of wheat grain as influenced by some beetles - feeding place. Nukowe-INstytutu-orchrony-Roslin., 28: 87-105. - Ladisch, R.L., S.K.Ladisch, and P.M. Howe. 1967. Quinoid secretions in grain and flour beetles. *Nature (London).*, 215: 939-940. - Lohar, M.K., S.W. Hussainy, M. Juno, A.G. Lanjar and A.A. Shah. 1997. Estimation of quantitative losses of wheat, rice and maize caused by *Tribolium castaneum*, (Herbst) under laboratory conditions. *Pak. Entomol.*, 19:32-35. - LeCato, G.L. 1975. Red flour beetle: population growth on diet of corn, wheat rice or shelled peanuts supplemented with eggs or adult of the Indian meal moth. J. Econ. Ent., 68: 763-765. - Mahmood, T., M.S. Ahmad and H. Ahmad. 1996. Dispersion of stored grain insect pests in a wheat-filled silo. *International J. Pest Management*, 42: 321-324. - Minfal. 2009. *Agricultural statistics of Pakistan*. Ministry of Food, Agriculture and Live Stock. Food and Agriculture Live Stock Division. Islamabad.46-48. - Nehra, P., K. Sarin and K. Sharma. 1985. Evaluation of certain parameters associated with categorization of wheat verities with regard to their resistance to *Tribolium castaneum* (Herbst). *Bull. Grain Tech.*, 21: 211-216. - Ramzan, M and B.S.Chahal. 1986. Effect of inter specific competition on the population builds up of some storage insects. *Ind. J. Ecol.*, 13: 313-317. - Ramzan, M. and B.S. Chahal. 1989. Effect of initial infestation levels of three common species of stored grain pests on the population build up at constant laboratory condition. *J. Res. Punjab Agric. Univ.*, 26: 71-76. - Ramzan, M., B.K. Judge and P.S. Madan. 1991. Losses caused by storage pests in different wheat varieties under normal storage condition. *Ind. J. Res. Punjab Agric. Univ.*, 2: 63-67. - Sarin, K. and A. Sharma. 1977. Screening of some high yielding varieties of wheat against *Tribolium castaneum*. *Pesticides* (*Bombay*)., 11: 15-17. - Sarin, K. and A. Sharma. 1982. Varietal resitance and suscpetiblity to *Tribolium castaneum* (Herbst) in wheat. *Ind. J. Entomol.*, 44: 199-200. - Sartaj, M., S. Naeem and T. Mahmood. 2001. Preference of wheat and maize by *Tribolium castaneum* (Herbst) under laboratory conditions. *Pak.J. Arid Agric.*, 4: 85-89. - Sharma, V.K. 2002. Susceptibility of wheat germplasm to stored grain pests. *Indian J. Entomol.*, 64: 1-11. - Smith, Jr., L.W., J. Pratt, Jr., I. NII and A.P. Umina. 1971. Baking and taste properties of bread made from hard wheat flour infested with species *Tribolium*, *Tenebrio*, *Trogoderma* and *Oryzaphilus*. J. Stored Prodc. Res., 6: 307-316. - Simwat, K.S. and B.S. Chahal. 1982. Effect of different levels of initial infestation of *Sitophilus oryzae* (L), *Trogoderma granarium* (Everst) and *Tribolium castaneum* (Herbst) on their population build up and resultant loss to wehat. *Indian J. Ecol.*, 8: 74-81. - Singh, S.R., G.G. Kundu and M. Gupta. 1968. Resistance to stored grain pests in world collection of wheat. *Indian J. Entomol.*, 30: 299-302. - Sinha, R.N., C.J. Demianyk and R.I.H. Mckenzie. 1988. Vulnerability of common wheat cultivars to major stored product beetles. *Can. J. Plant Science*, 68: 337-343. - Singh, H.N., H.K. Singh and S. Chhotoo. 1977. Estimation of losses in wheat grain by insects pests during storage in the vicinity of Varanasi. *Indian J. Entomol.*, 39: 158-164. - Singh, D.K., A. Farooq and H. Mansoor. 2008. Studies on correlation of physical factors and grain losses due to *Trogoderma granarium* on wheat varieties. *Annal. Plant Prot. Sc.*, 16: 92-94. - Steel, R.G.D., J.H. Torrie and D.A.Dickey. 1997. *Principles and Procedures of Statistics*, *A biometrical approach* 3rd Ed. MeGram Hill Inc; New York. - Suresh, S. and N.G.D. White. 2001. Mortality resulting from interactions between the red flour beetle and the rusty grain beetle. *Proc. of the Entomological Society of Manitoba.*, 57: 11-18 - Syed, A.N, Farooq Ahmed and Mansoor-ul-Hasan. 2001. Response of difference wheat varieties to *Tribolium astaneum* Herbst. *Pak. Entomol.*, 23:49-52. - Syed, T.S. Hirad, F.Y. Abro, G.H. 2006. Resistance of Different Stored wheat varieties to Khapra Beetle, *Trogoderma* granarium (Everest) and Lesser Grain Borer, *Rhizopertha* dominica (Fabricus). Pakistan J. Biological Sciences., 9: 1567-1571. - Tiwari, S.C., A.S., Rao and B.K. Dwivedi. 1989. Effect of storage period and interspecific competitition among Sitophilus oryzae L., Rhizopertha dominica Fab. And Triboium castaneum Herbst on their population build up - and the resultant loss to 67 varieties of wheat. *Indian J. Entomol.*, 51: 311-415. - Trewin, B. and C. Reichmuth.1997. Efficacy of the amorphous silia dust Dryacide against soted product pest insects. Anzeiger fur Schadlingskunde, Pflanzenschutz, Umweltschutz., 70: 51-54. - Warchalewski, J.R. and J. Nawrot. 1993a. The growth of laboratory population of some stored product insects in nine wheat grain varieties. *Roczniki-Nauk-Rolniczy ch-Seria-E, -Ochrona-Roslin.*, 22: 31-37. - Warchalewski, J.R. and J. Nawrot. 1993b. Inset infestation versus some properties of wheat grain. *Roczniki-Nauk-Rolniczych-Serial-E, Ochrona-Roslin.*, 23:85-92. - Wong Corral, F., M.O. Cortez Rocha and J. Flores. 1996. Abundance and distribution of insect in stored wehat grain in Sonora, Mexico. *South Western Entomologist.* 21: 75-81 (Received for publication 3 April 2010)