SYSTEMATIC ANALYSIS OF THE bHLH TRANSCRIPTION FACTOR FAMILY IN TOONA SINENSIS: POTENTIAL REGULATORY ROLES IN TERPENE SYNTHESIS VIA THE MEP PATHWAY

LIPING REN^{1,2}, XIANHUI DENG², TIANHAO HU², MIAO LI², WENYANG WAN², DANDAN YIN², ZONGXIN MA¹ AND XIAOHAN CAO^{2*}

¹Horticultural Institute, Fuyang Academy of Agricultural Sciences, Fuyang, China ²Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang236037, Anhui, China ^{*}Corresponding author's email: caoxiaohan@163.com

Abstract

Basic helix-loop-helix (bHLH) transcription factors which constitute the second-largest transcription factor superfamily in plants, play an important complex regulatory role in the biosynthesis of plant secondary metabolites. However, little information of bHLH family is available in the multi-prupose horticultural plant *T. sinensis*. Systematic research on the *T. sinensis* bHLH TF family will enable a comprehensive and in-depth understanding of this species. In this study, we identified 132 TsbHLH family members using phylogenetic analysis and categorized them into 21 subfamilies based on their structural characteristics. Then, the bHLH domain, gene structures, protein conserved motifs, cis-regulatory elements and Chromosomal distribution were probed. In addition, we performed a gene duplication analysis and found the TsbHLH TF family is composed of three gene tandems and 96 segmental duplications, which may be responsible for the prosperity of it. Furthermore, 20 differential expressed *TsbHLH* genes identified in a *T. sinensis* transcriptome database were selected to detect their expression across four distinct harvesting periods. Finally, we found that some TsbHLHs may participate in regulating terpene synthesis via the MEP pathway according to the correlation study between the expression of TsbHLHs genes and terpene synthase genes. Our findings provides basic information about TsbHLH TF family and lay a groundwork for further research on the function of *bHLH* genes in regulating the terpene synthesis.

Key words: Toona sinensis; bHLH transcription factors; terpenes; genome-wide analysis; gene expression analysis.

Introduction

Toona sinensis (A. Juss) Roem, a deciduous tree belonging to the Meliaceae family, is indigenous to eastern and southeastern Asia (Dong et al., 2013). T. sinensis has been cultivated in China for over 2000 years, due to its timber, medicinal, vegetable and ornamental value (Wang et al., 2022). The tender leaves of T. sinensis are highly popular as vegetable owing to its unique aroma, good taste, and rich nutrition (Ren et al., 2021). Research shows terpenes serve an important role in aroma (Ren et al., 2021) and have been experimentally proven to be major component of essential oil from plants (Hyldgaard et al., 2012). In recent years, increasing attention and interests are focused on the diverse value of terpenes. Firstly, essential oils are great food flavorings as natural products (Pandey et al., 2017). Additionally, terpenes possess good antibacterial properties as secondary metabolites, making them suitable for use as food preservatives (Falleh et al., 2020). Furthermore, the essential oil from roots demonstrates its anti-tumour activities through inducing apoptosis of mitochondrial-dependent (Chen et al., 2021). Equally noteworthy, in the seeds of T. sinensis, the terpenoids have demonstrated their capacity to mitigate oxidative stress and inflammation induced by high glucose levels in rat glomerular mesangial cells (Chen et al., 2022).

The basic helix-loop-helix (bHLH) family, known for conserved alkaline/helix-loop-helix domains, plays an important role in the biosynthesis of plant secondary metabolites (Feller *et al.*, 2011). The bHLH domain containing approximately 60 amino acids, which has two regions with different functions: a basic region (b) at the Nterminal side and a HLH region at the C-terminal side

(Carretero-Paulet et al., 2010). The basic region comprises 13-17 basic amino acids (with a high proportion of basic amino acids) and plays an integral role in binding to the Ebox (5'-CANNTG-3') motif within their target genes. On the other hand, the HLH region spans approximately 40-50 amino acids and encompasses two alpha helices demarcated by a variable-length loop. In addition, the HLH region is of great significance due to its important role in dimerization, which is a key process in regulating the expression of target genes involved in different signaling pathways (Massari & Murre, 2000; Nesi et al., 2000). In eukaryotes, bHLHs are classified into six main groups (named A, B, C, D, E and F) based on their phylogenetic relationship and DNA binding function (Atchley & Fitch, 1997). To sum up, Group A can specifically bind to the Ebox core sequence, while Group B exhibits a preference for binding to the G-box, and Group C displays a binding propensity towards the ACTTG or GCGTG sequence (Henriksson & Lüscher, 1996). Notably, Group D is characterized by the absence of a conventional basic region and primarily engages in heterodimerization with other bHLH family proteins (Sun et al., 1991). In contrast, Group E displays a selective binding inclination towards the CACGNG sequence, whereas members of Group F are proficient in binding to specific DNA target sequences (Fisher & Caudy, 1998; Ledent & Vervoort, 2001).

In 1989, the bHLH genes, TFs E12 and E47 were first discovered in the murine muscle development and since then have been widely studied (Murre *et al.*, 1989). *bHLHs* are found across the genome and present in a wide range of plants, including *Arabidopsis*(Bailey *et al.*, 2003), *Solanum lycopersicum* (Sun *et al.*, 2015), *Cucumis sativus*

(Li et al., 2020b), Capsicum annuum (Liu et al., 2021) and Prunus persica (Zhang et al., 2018b). It has been proven that bHLH is widely involved in a spectrum of metabolic and developmental processes, such as biosynthesis (Nims et al., 2015; Chu et al., 2018), light signaling (Castelain et al., 2012; Buti et al., 2020), flowering and fruit development (Ito et al., 2012; Yin et al., 2015; Ortolan et al., 2024), and plant morphological development (Zhu et al., 2017; Dong et al., 2018). Additionally, the bHLH family proteins are crucial for resistance to biotic and abiotic stress. Research showed that overexpression of Apple MdbHLH130 can significantly enhance tolerance to water stress in transgenic Tobacco through regulating stomatal closure and ROS Homeostasis (Zhao et al., 2020). In peanut, overexpression of AhbHLH121 improves salt tolerance (Zhao et al., 2024).

The maize R gene, the first founded member of the bHLH supergene family, has been experimentally confirmed to hold a pivotal role in anthocyanin production (Ludwig et al., 1989). Subsequently, an increasing number of *bHLHs* were shown to regulate secondary metabolic processes in plants. TcJAMYC, a bHLH transcription factor in Taxus chinensis, can activates paclitaxel biosynthetic pathway genes (Nims et al., 2015). PabHLH1 was characterized to regulate the biosynthesis of flavonoids as well as bibenzyls in liverworts and stimulated the accumulation of the flavonols and anthocyanins in Arabidopsis (Zhao et al., 2019). It was shown that the bHLH transcription factors Aa6119 and Aa7162 have positive and synergistic effects on the regulation of artemisinin accumulation (Mohammad et al., 2023). Significantly, bHLHs has been notably implicated in the regulation of terpenoid biosynthesis. In Arabidopsis, AtMYC2 directly bind to the promoters of sesquiterpene synthase genes TPS21 and TPS11, thereby instigating their expression and concomitantly augmenting sesquiterpene production (Hong et al., 2012). The elevation of terpenoid levels. particularly caryophyllene, was a direct consequence of LaMYC4 overexpression in Lavender (Dong et al., 2022). Moreover, it was found that in Taraxacum antungense, TaMYC2 plays a positive regulatory role in triterpenoid biosynthesis (Liu et al., 2023). The above studies provide important clues for revealing the molecular mechanism by which bHLH transcription factors regulate terpene synthesis via terpene synthase. Terpenoids, with the most abundant volatile metabolites in plants and significant medicinal value, are synthesized through the cytoplasmic mevalonate (MVA) pathway and the plastid 2-C-methyl-D-erythritol 4phosphate (MEP) pathway (Vranová et al., 2013). In a singular metabolic cascade, the influence of transcription factors extends to the regulation of a multiplicity of genes. Notably, Several enzyme genes involved in secondary metabolic biosynthesis can have their expression regulated by transcription factors such as WRKY and bHLH in plants (Hong et al., 2012; Ding et al., 2020). However, the existing studies on T. sinensis mainly focus on the chemical composition identification of the extracts from different organizations and effects in treating various diseases, little is known about how the synthesis of terpenoids is regulated in T. sinensis, especially studies on the regulation of terpene synthesis by bHLH have not been reported yet.

The present study conducted a systemaitic investigation of bHLH TF genes in T. sinensis. Here, 132 members of the TsbHLHs genes family were identified, and carried out a comprehensive exploration of their physical attributes, subcellular localization, phylogenetic relationships, chromosomal distribution, gene architecture, conserved motifs, and gene promoters. Furthermore, expression patterns of terpene synthase gene and bHLH gene in Toona sinensis were analyzed through young leaves at different stages. Our work has established a systematic understanding of the bHLH of Toona sinensis and laid a solid foundation for the subsequent functional research on elucidating the mechanism of regulating terpene biosynthesis.

Material and Methods

Identification of the bHLH transcription factor family of T. sinensis: The T. sinensis data reported in this study was available under Accession No. CNP0000958 in the CNGB Nucleotide Sequence Archive (CNSA: https://db.cngb.org/ search/project/CNP0000958/). In order to identify the TsbHLH genes, HMMER 3.0 software was employed with an E-value set at 1e-5, utilizing the Hidden Markov Model (HMM) file of the bHLH domain (ID: PF00010) downloaded from the Pfam database's online search (http://pfam.xfam.org/) (Mistry et al., 2021). The preliminary candidate sequence of T. sinensis bHLH was acquired. The total count of conserved structural domains was determined, eliminating incomplete sequences, and retaining members with the bHLH structural domain using the SMART online program (http://smart.emblheidelberg.de/) and the CCD database (https://www.ncbi.nlm. nih.gov/cdd/) (Lu et al., 2020; Letunic et al., 2021). The online program ExPASy's ProtParam (https://web.expasy.org/ protparam/) was utilized to predict the isoelectric point (pI), molecular weights (Mw), amino acid count, Grand Average of Hydropathicity (GRAVY), instability index (II), and aliphatic index (AI) of the identified TsbHLH proteins (Artimo et al., 2012). For forecasting the subcellular positions of TsbHLH proteins, ProtComp 9.0 software from Softberry (http://www.softberry.com) was employed.

Multiple sequence alignment and phylogenetic analysis of the TsbHLHs genes: We used the Clustalw software to align the conserved structural domains of TsbHLH proteins through multiple sequence alignment. Subsequently, the software GeneDoc was employed to manually modify the amino acid sequences of the inferred conserved structural domains. Additionally, all identified TsbHLH genes were classified into distinct categories using the AtbHLH classification system, along with the conserved structural domains of both TsbHLH and AtbHLH proteins (Heim *et al.*, 2003). Employing the Neighbor-Joining (NJ) technique within the MEGA 7.0 program, phylogenetic trees were generated with the settings: p-distance, pairwise deletion, and 1000 bootstrap replicates (Kumar *et al.*, 2016).

Gene structures, protein conserved motifs and Cisregulatory elements analysis of TsbHLHs genes: The exon-intron structure of the TsbHLHs gene sequence was predicted and visualized using the Gene Structure Display Server (GSDS: http://gsds.gao-lab.org/) (Hu *et al.*, 2015). The MEME online software (http://meme.sdsc.edu/meme/ itro.html) was employed to explore the conserved motifs within the identified TsbHLH proteins. The settings used included an "arbitrary" number of repeats, a maximum motif count of "20," a motif width set from 6 to 50, and all other default values (Bailey *et al.*, 2015). For predictive analysis of the Cis-regulatory elements of the genes, the promoter sequence in each TsbHLH (2000 bp upstream of the translation start site) was extracted from the genome and submitted to the PlantCARE online software (http://bioinformatics.psb.ugent.be/webtools/plantcare/ht ml/) (Lescot *et al.*, 2002).

Chromosomal distribution and gene duplication analysis of TsbHLHs genes: Utilizing annotation data from the *T. sinensis* genome, the positioning of *TsbHLHs* on chromosomes was determined. The collinearity among *TsbHLHs* was examined using the Multiple Collinearity Scan Toolkit (MCScanX) program to identify gene duplication events (Wang *et al.*, 2012). The Dual Synteny Plotter software was employed to construct covariance analysis plots comparing *T. sinensis* bHLH genes with those from Arabidopsis, tomato, pineapple, rice, and maize. Genomic data for Arabidopsis, tomato, pineapple, rice, and maize were obtained via Ensembl Plants (http://plants. ensembl.org/index.html).

Plant material and gene expression analysis: The *T. sinensis* var. 'Heiyouchun' utilized was cultivated in a forestry nursery located in Taihe County, Fuyang City, Anhui Province, China in this study. The healthy-growing distal shoots with a minimum of six branches measuring 5 to 10 cm in length from four distinct harvesting periods between March 30 and April 20, 2021, were collected. Each sample was swiftly frozen in liquid nitrogen and stored at -80°C in an ultra-low freezer.

Total RNA was extracted from the specimens following the instructions provided by the Total RNA Extraction Kit (Huayueyang Biotech, Beijing, China). To eliminate any potential genomic DNA contamination, RNase-free DNase I was used. Qualified RNA was identified and selected as the template for first-strand cDNA synthesis through gel electrophoresis and A260/A280 measurements. The cDNA was generated using a reverse transcription kit (Huayueyang Biotech, Beijing, China). Fluorescent quantitative primers with specificity were designed using the Primer Premier 5.0 software based on the sequences of the TsbHLH genes and terpene synthase genes. The internal reference gene TsActin was employed to quantify expression levels at various harvesting times. The complete primer information is provided in supplemental Table S1. A CFX96 real-time quantitative PCR instrument (Biorad, Los Angeles, CA, USA) was employed for the 25 uL reaction system, as per the instructions of 2×SYBR Green qPCR Mix (With ROX) (Sparkjade, Shandong, China). The reaction procedure comprised the following steps: 94°C for 3 min; 94°C for 20s; 55°C for 20s; 72°C for 30s, repeated for 40 cycles. Each reaction was performed in triplicate for three biological replicates. The 2-AACT method was used to analyze gene expression(Livak & Schmittgen, 2001). For statistical analysis, version 26 of the SPSS software was utilized to calculate the Bonferroni multiple comparisons test. Significant variations between the two groups were defined by average fold changes greater than two and p-values below 0.05.

Results

Identification and physicochemical property analysis of the bHLH gene family members of *T. sinensis*: Based on the conserved domain PF00010 signature file of the bHLH family from the Pfam database, a total of 147 potential bHLH transcription factor sequences were identified in the *T. sinensis* genome database. These potential sequences have been examined using the online tools SMART and CDD to identify conserved structural domains, and those with incomplete structural domains were eliminated. The results are displayed in Table S2. Subsequently, 132 members of the bHLH transcription factors yielded from the complete genome of *T. sinensis* were designated *TsbHLH1* to *TsbHLH132*, based on their positions on the *T. sinensis* chromosome.

A series of physicochemical properties of the T. sinensis bHLH proteins were conducted through ExPASy online software, and the main results were as follows: the 132 TsbHLH proteins exhibited molecular weights ranging from 9.8 to 97.1 kD, encoding amino acid varying between 86 and 860, with an average of 384 amino acids. Among them, 80 were categorized as acidic proteins (PI<7), and 52 were identified as basic proteins (PI >7). All proteins exhibited negative GRAVY values which indicates their hydrophilic nature. The analysis of instability index (II) indicated that only 6 TsbHLH proteins were stable (II<40), while the remaining 126 were categorized as unstable (II>40). The aliphatic index (AI) ranged from 49.10 to 109.90. Subcellular localization predictions revealed that 109 TsbHLH proteins were localized in the nucleus, while the remaining 23 TsbHLH proteins were extracellularly localized.

Multiple sequence alignment and phylogenetic analysis of TsbHLHs genes: We used the ClustalW software to carry out the multiple sequence alignments of the conserved structural domains of TsbHLH proteins, and the results revealed that the majority of these domains were approximately 60 amino acids in length. The longest domain comprised 65 amino acids, while the shortest had 54 amino acids (Fig. 1). Within the conserved structural domain of TsbHLH, a total of 31 sites exhibited a higher frequency of conserved amino acids than 50%. Among these, six sites were located in the basic region, nine in the first α -helix, seven in the loop, and nine in the second α helix. In the two α -helical regions, 95.14% of site 25 and 92.36% of site 63 consisted of hydrophobic amino acid leucine (L). Additionally, 95.83% of sites 16, 22, and 28, and 97.22% of sites 29 and 60 consisted of hydrophobic amino acids (A, F, I, L, M, P, V, W, or Y). Within the basic region of the bHLH structural domain, 116 (81.25%) of the T. sinensis bHLH structural domains had glutamate (E) at site 9, with 115 of them also having arginine (R) at site 12.

According to the results of protein sequence alignment between 132 *TsbHLH* and 129 *AtbHLH* genes, a phylogenetic tree was constructed to explore evolutionary relationships within the TsbHLH family. The 132 *TsbHLHs* were categorized into 25 subfamilies based on the *bHLH* gene categorization system in *Arabidopsis*, among them, subfamilies IVc; VI;VIIIa and X exclusively contained *AtbHLH* genes. In other words, the 132 *TsbHLH* genes were divided into 21 subfamilies (Fig. 2). Among these, subfamily Ia held the highest number of *TsbHLH* members (15), followed by subfamilies VIIa and Vb, each with 12 members. Subfamily II had the fewest, comprising only 1 *TsbHLH* gene. The remaining subfamilies contained between 2 and 10 *TsbHLH* genes.

	(Basic)	(Helix1)	(Loop)	(Helix2)	
TsbHLH29 : TsbHLH30 :	SKDPOSVAARHRR SKDPOSVAARHRR	ERISERIRILORLVF ERISEKIRILORLVF	GGTKMDTASMLD- GGTKMDIASMLD-	EAIHYVKFLKTOVOSL EAIHYVKFLKTOVOSL	: 56
TsbHLH40 : TsbHLH42 :	SKDPQSVAARHRR SKDPQSVAARHRR	ERISERIRILQRLVF EKISERMRILQRLVF	GGTKMDTASMLD- GGTKMDTASMLD-	EAIHYVKFIKKQVQTL EAIHYVKFIKKQVQTL	: 56
TsbHLH34 : TsbHLH49 :	SDDPQSVAARHRR SDDPQSVAARHRR	ERISEKIRILORLVE ERISEKIRILORLVE	GGTKMDTASMID- GGTKMDTASMID-	EAIRYVKFUKROIRLL	: 56
TSDHLH1 : TSDHLH8 :	STDPOTVAABORD	HRISERIRVIQRIVI HRISDRFKILQSMVI	GGSKMDTASMID	EAANYIKFIRSOVKAL	: 56
TSDHLH9 : TSDHLH7 :	STOPOSVAABNEB	HRISDRFKILQSMVF HRISDRFKILQSMVF	GGTKMDTASMTE	EAINYVKFIKAVIWFH	: 56
TsbHLH23 :	SKDPOSIAAKNER	ERISERLKILONIVE	NGSKVDLVTMLE-	KAIGYVKFLOLOAKVL	: 56
TsbHLH129 : TsbHLH125 :	ATDPOSLYARKER	ERINERLRILONLVE	NGTKVDISTMLE-	EAVOYVEFLOLOIKLL	: 56
TSDHLH67 : TSDHLH64 :	ATDPHSIAERLRR ATDPHSIAERLRR	ERIAERMRALQELVE ERIAERMRALQELVE	SSNKTDRATMLD- SCNKTDRAAMLD-	EIVDYVKFLRLQVKVL	: 56
TSDHLH117 : TSDHLH86 :	ATDPHSIAERLRR ATHPRSIAERERR	ERIAERMKALQELVF TRISGKLKKLQELVF	NANKTDKASMLD NMDKQTSYSDMLD	EIIDYVKFIOLOVKVL	: 56
TsbHLH71 : TsbHLH14 :	ATHPRSIAERVRR ATHPRSIAERVRR	TRISERMRKLQELVF TRISDRMRRLQELVF	NMDKVQTNTADMLD- NMDKQTNTADMLD-	LAVDYVKELQKQVKAL	: 58
TsbHLH20 : TsbHLH55 :	ATHPRSIAERVRR ATHPRSIAERVRR	TRISERMRKLQELVF TRISERMRKLQDLFF	NMDKQTNTADMID- NMDKQTNTADMID-	LAVEYIKDLOKOFKTL	: 57
TsbHLH56 : TsbHLH61 :	ATHERSTATE	EKINERLRCLQDLVI	GCYKGTMGMAVMID	UINYVRSLORCIEFL	: 57
TSDHLH57 :	ATDSHSLAERVRR	AKISGRMKLLOSLVE	GCDKITGKAGILD	EIIKYVGTIOTOVEVI	: 57
TsbHLH131 : TsbHLH124 :	ATDSHSLAERVRR	EKISERMKYLODLVE	GCDKITGKAGMLD- GCNKITGKAGMLD-	EIINYVOSLOROVEPF	: 57
TSDHLH103 : TSDHLH105 :	AAAIHNQSERKRR AAAIHNQSERKRR	DKINGRMKTICKLVF DKINGRMKTICKLVF	NSSKTDKASMLD- NSSKTDKASMLD-	EVIEYIKCICACVCMM	: 56
TsbHLH79 : TsbHLH50 :	AASIHNQSERORR SAEVHNLSERRR	DRINGKIKALQRLVE DRINKKLKILQELVE	NANKTDKAS <mark>ML</mark> E- NCNKSDRVSMLD-	EVIDYIKCIQAQVQLM DAIEHVKTIKHQVQIF	: 56
TsbHLH39 : TsbHLH43 :	AAEVHNLSEKRRR AAEVHNLSEKRRR	SRINEKMKALQNLVF SRINEKMKALQNLIF	NSNKTDKASMID NSNKTDKASMID	EAIEYIKHIQLQVQVL	: 56
TsbHLH28 : TsbHLH99 :	TAEVHNLSEKRER TAEVHNLCERKER	SRINEKLKALQNLVE EKINKKMRALQELIE	NCNKEDKASMID	EAIEYIKGIQLQVQVN	: 56
TSDHLH62 :	AAEVHNLSERRRR	DRINEKMRADGELIF	NCNKVDKASMLD	EAIEYIKTIOLOVOIM	: 56
TSDHLH91 :	AAEVHNLSERRRR	DRINEKMRALQELIF	HCNKTDKASMLD	EAIEYIKSIQLQLQIM	: 56
TsbHLH95 : TsbHLH96 :	SAEVHNLSERRR	DRINEKMRALOELIE	RCNKSDKASMID	EAIEYIKSLOLOVOMM	: 56
TsbHLH59 : TsbHLH52 :	IRSKHSVTEORRR IRSKHSVTEORRR	SKINERFQILREIIF SKINERFQILREIIF	HSDCKRDTASFL HSDCKRDTASFLL	EVIEYVQYLQEKVQKY	: 57
TSDHLH78 : TSDHLH77 :	PRSKHSATEORRE PRSKHSATEORRE	SKINDMLRELIE SKINDSCRFCMLRELIE	HSDQKRDKASFLL HSDQKRDKASFLL	EVIEYICFICEKVHKY	: 54
TsbHLH10 : TsbHLH35 :	HRSKHSETEORRE AAKKHSEAERGRR	SKINERFQILRDLIF LRINGHYAALRNILF	QNDQKRDKASELL- NLVKNCKANVQMDKASVLG-	EVIEYIQFIREKLQMY	: 57
TsbHLH60 : TsbHLH51 :	ASKSHSEAEBRRR	ERINNHLAKIRSLIF ERINNHLAKIRSLIF	STTKTDKASLTA	EVIGHVKEIKRGTSLI	: 56
TSDHLH32 : TSDHLH25 : TSDHLH21 :	ACKSHKEAERRRR	QRINAHLSILRIILF CRINAHLSILRILF FKINSHLNKLRSILF	NTTRTDRASLIA		: 56
TsbHLH12 : TsbHLH63 :	ALKNHKEAEKRRR ISKSHSQAEKRRR	ERINCHLNKLRSILF DRINSCLATLRKLIF	CNSKIDKASLIA- KSEKMDKAALIG-		: 56
TSDHLH116 : TSDHLH5 :	ASKNHIEAERKRR ALKSHSEAERRR	RRINGHLDTLRSLIF ERINAHLDTLRSLVF	GAKKMDKATLLT CNGKMDKATLLA	EVVGHIKECKKNATEA	: 56
TsbHLH4 : TsbHLH3 :	ALKSHSEAERKRR ALKSHSEAERKRR	ERINAHLDTLRGLVF ERINAHLDTLRGLVF	CNGKMDKATLLA- CNGKMDKATLLA-	EVISOVKEIKKNAMEA	: 56
TsbHLH36 : TsbHLH46 :	OPSKNLMAERRR OPSKNLMAERRRR	KRINDRLSMIRSIVE KRINDRLSMIRSIVE	KISKMDRTSILG	DTIDYMKELLORINSL DTIDYMKELLERISKL	: 56
TSDHLH31 : TSDHLH26 :	OPSKNLMAERRRR OPSKNLMAERRRR	KRINDRLSMURSIVF KRINDRLSIURSIVF	KISKMDRTSILA	DTIDYNKELLEKINNL	: 56
TsbHLH90 : TsbHLH127 :	LPAKNLMAEPRER GKSKNLVAERKER	KKINDRLYMIRSVVF	KISKMDRASILG	DAIDYLKELLQRINDL	: 56
TsbHLH22 : TsbHLH122 :	YKSKNLHVERRR AASKNIVSERNRR	OKINDRLITIRSLVF KKINERLFALRAVVF	NITNATTSLFKKET <mark>VI</mark> E- NISKMDKASIVK-	DAITYICCIKGHVIFL	: 61
TsbHLH118 : TsbHLH58 :	AASKNIVSERNRR NRSKNLITERNRR	KKLNERLFALRAVVF NKIKDGLFTLRALVF	NISKMDKASIIK NISKMDRAA <mark>IL</mark> G-	DAIDYICELHECEKRI DAVEYIRELCCKVEEL	: 56
TSDHLH53 : TSDHLH73 :	YRSKNLITERKRE DRSRTLISEORRR	NKIKDGLFALRALVF GRMKEKLYALRALVF	NISKMDRAAILG	DAVEYIRELECKVEEL	: 56
TSDHLH72 : TSDHLH70 :	DRSRTLISERRRR	GROKEKLYADRALVE GRMEEKLYADRALVE CRMEEKLYADRALVE	NITKMDKASIVG	DAVLIVGELOTKAKKL	: 56
TSDHLH104 : TSDHLH37 :	KTTKHFATEBORB	ECISDKFKALRSLVF	GLEKNDRASVVG-	DAIDYIKELLRTVNEL	: 56
TsbHLH45 : TsbHLH44 :	NACOHVIAERKRR LAHDHVIAERKRR	EKINGRFIALSALVF EKINGLFIALSALVF	GIKKKDKASIIG	DSIKYIKCIQERVNTL	: 56
TsbHLH126 : TsbHLH128 :	QTQDHIIAERKRR QTQDHIIAERKRR	EKLSQRFIALSAIVF EKLSERFIALSAIVF	DLKKMDKASVIG GLTKMDKASVIG	DAIKYIKQIQEKVKTL DTIKYIKQIQEKVKTL	: 56
TsbHLH38 : TsbHLH98 :	YSEDHVIAERKRR LSANHVLAERRRR	EKINQRLIAISALVF EKINERFIIIRSLVF	GLIRKDKASVIV- FVTKMDKASILG-	DACKYVKCIQERVKEL	: 56
TsbHLH109 : TsbHLH75 :	LSANHVLAFERER IAANHVLSEEKRE	EKINGRFIILRSLVF EKINGRFIVIKSIVF	SISKFDKVSTIC	DTIEYVKCICKKIGDL	: 56
TSDHLH80 : TSDHLH74 : TSDHLH81 :	SPINHVEAERORR	ERINHRFYALRSVVF	NVSKMDKASLIA		: 56
TSbHLH107 : TSbHLH101 :	TPLNHVEAERORR TPLNHVEAERORR	EKINHRFYALRAVVE	NVSRMDKASLIS		: 56
TsbHLH97 : TsbHLH110 :	EPLNHVEAERORR EPLNHVEAERORR	EKINGRFYALRAVVE EKINGRFYALRAVVE	NISKMDKASLIG- NISKMDKASLIG-	DAITYITELOTKIKVL DAITYITELOTKIKVL	: 56
TsbHLH102 : TsbHLH106 :	EPLNHVEAERORR EPLNHVEAERORR	EKINGRFYALRAVVE EKINGRFYALRAVVE	NISKMDKASLIG- NISKMDKASLIG-	DAIAYINELQAKLKVM DAISYINELEAKLKVM	: 56
TsbHLH113 : TsbHLH92 :	EPLNHVEAERORR EPLNHVEAERORR	EKINQRFYAIRAVVF EKINQRFYAIRAVVF	NVSKMDKASLIG	DAISYINELRNKLQTA	: 56
TSDHLH93 : TSDHLH120 :	TCLHHMISERKRR	EKINGRFYALRAVVI EKINESFCALRILLI	PGTKILEACLTR	DAISY NEURNKLLSE	: 56
TSDHLH121 : TSDHLH119 :	TOLHHMISERKRR	ERINESFOALRSLLF	PGTEKDKASLQILEACLIP	TAKAAA EEASSSS	: 60
TsbHLH84 : TsbHLH83 :	RRHRHIINERMRR RRHRHIINERMRR	EREKONYFVIHSMLF EREKONYLVIHSMLF	PGTKNDKNSIIO-	TAAKRIGELGCCKGEL	: 56
TsbHLH19 : TsbHLH15 :	SGDSSTAKKLYHN SGDPTTAKKLYHN	ASERDRRKK <mark>MNSLYS</mark> ASERDRHKKMNSLYS	ALRSLLPAAD-ETKKLSIP- SLRSLLPAED-OTKKLSIP	-ATVSRVVKYLPELCCCVER- -VTVSRVLKYLPELCCCVER-	: 65
TsbHLH130 : TsbHLH18 :	EHEIHIWTERERR CKMTHRNIEKORR	KKMRNMFANLHALLP QEMSALHASLRSLLP	QLPPKQTLQKLQ- LEYIKASDPTCLD-	KQKLERLKGVATFGFEP	: 57
TsbHLH17 : TsbHLH16 :	CRLSHITVERNRR CRLSHITVERNRR	KOMNEHLSVIRSLMF KOMNENLSVIRSLMF	CFYVKRGDQASIIG CFYVKRGDQASIIG	GVVDY NELOCILOSL	: 58
TSDHLH89 : TSDHLH82 : TSDHLH112 ·	MSHITVERNER CRMTHTAVERNER	ROMNEHLKVLRSLTF KLMNEHLAVIDS	CFYIKRGDQASIIG CFYIKRGDQASIIG ESYACRGDQASII		: 56
TsbHLH94 : TsbHLH108 :	QRMTHIVVERNRR MTHIAVEBNBB	KIMNEHLAVIRSIME	ESYVQRGDQASIVG	GAIEFIKEIEHLLOSF	: 58
TsbHLH100 : TsbHLH85 :	CRMTHIAVERNRR CRMTHIAVERNRR	ROMNDHLSTLRSFMF	SSYVORGDOASIIG	GAIDFVKELEGLLGSL	: 58
TsbHLH87 : TsbHLH33 :	ORMTHIAVERNER ORMTHIAVERNER	KOMNEHLRVLRSLMF KOMNEYLAILRSLMF	SSYVQRGDQASII PSYVHRGDQASIIG	GAIEFVRELECLLOCL	: 58
TSbHLH24 : TSbHLH47 :	ORMTHIAVERNRR ORMTHIAVERNRR	KOMNEYLAVLRSLMP	PSYVQRGDQASIIG- PSYVQRGDQASIVG-	GSINFVKELECLLOYM	: 58
TSDHLH66 : TSDHLH65 :	CRMTHIAVERNRR CRMTHIAVERNRR	KOMNEYLSVLRSLME KOMNEYLSVLRSLME	DSYVQRGDQASIIG DSYVQRGDQASIIG	GAINFVKELEHRLOSL	: 58
TSDHLH6 : TSDHLH2 : TSDHLH76 -	SRTDRATIESNER SRTDRATIEKNER	NONKALYSKLNYLVE DHINDLEINTADATE	HORLMEATSLPDOLD- HORLMEATPLSDRLD- LAOPNNCKATT	EAANIEKEGINMEK- EAVNYIKRIGTNLEK- 	: 58
TsbHLH132 : TsbHLH123 :	RKICKADREKIRR RKICKADREKIRB	DRINEHFTEIGNALE DRINEHFNEIGNALE	PDRPKNDKAT-ILADTVQL- PDRPKNDKAT-ILADTVOL-		: 63
TsbHLH41 : TsbHLH48 :	RKLCKADREKIRR RKLCKADREKIRR	DRINDQFLEISNKID DRINEQLLEIGNTID	PDRPKNDKVT-ILTDTIOM- PDRPKNDKAT-ILTDTVOM-	LKDLTAEVNRLRTECAA- LKDLTAEVNILRTEAAA-	: 63

Fig. 1. Multiple sequence alignment of the TsbHLH domains. Amino acids with over 90% identity are highlighted in blue, and those with 50% to 90% identity are marked in red. Dotted lines denote gaps.

Fig. 2. A phylogenetic tree of bHLH proteins between *T. sinensis* and *A. thaliana*. The tree was constructed using the neighbor-joining (NJ) method with 1,000 bootstrap replications. Different colored arcs represent various groupings of bHLH domains.

Analysis of the gene structure, conserved motifs, and Cisregulatory elements of TsbHLHs genes: GSDS2.0 software was employed to map the intron-exon structure of *TsbHLHs*. The gene structure results (Fig. 3B) revealed that the exon number of *TsbHLH* genes ranged from 1 to 11, and 89.40% of *TsbHLH* genes contained 1 to 7 exons. Among them, the majority of *TsbHLH* genes (18.18% of the total) had 4 exons. Sixteen *TsbHLH* genes lacked introns, nineteen had only one intron, and these 35 genes were classified into intron deletion group. Interestingly, the members of subfamilies share the same number of introns and exons, while, it varied considerably across distinct subfamilies.

To investigate the structural diversity of the TsbHLH proteins, a statistical analysis of 20 conserved motifs were discovered by utilizing MEME. The result reflects that the TsbHLH protein contains distinct types and numbers of conserved motifs (Fig. 3C). Notably, almost all TsbHLH proteins contain two highly conserved motifs (Motif1 & Motif2), which situated adjacently to each other. Although the length of *TsbHLH* genes varies significantly within the same subfamily, their conserved motifs exhibit similarities in

composition and relative positioning. For instance, group Vb contained motifs 1 and 17, group IIIb encompassed motifs 1, 2, and 3, while group XII included motifs 1, 2, and 10.

The PlantCARE online software was employed to explore Cis-regulatory elements within a 2000 bp upstream regulatory (proximal promoter) region extracted from the TsbHLHs. Different Cis-regulatory elements were predicted, and the most prevalent were visualized by TBtools program. The results demonstrated (Fig. 4) that the TsbHLH genes included a substantial number of promoters' core regulatory elements (TATA-box and CAAT-box), light responsive elements (Box 4, G-Box, G-box, GT1-motif, AE-box, and TCT-motif), and W box elements. We also observed various plant stress response elements, for instance, mechanical injury response elements (WUN-motif), drought-inducible elements (MBS), anaerobic inducible action elements (ARE), low-temperature response elements (LTR and WRE3), and defense and stress response elements (TC-rich repeats). Furthermore, hormone responsive elements were also discovered in TsbHLH genes, including abscisic acid response (ABRE), ethylene-responsive elements (ERE),

growth hormone-responsive elements (TGA-element), jasmonic acid response (CGTCA-motif and TGACG-motif), salicylic acid response elements (TCA-element), and gibberellin-responsive elements (P-box, TATC-box, and GARE-motif). In this study, all *TsbHLH* genes contained at least one Cis-regulatory element associated with stress response. Elements like ABRE, Box 4, ERE, ARE, and Gbox were predicted in over 70% of the *TsbHLH* genes. Some Cis-regulatory elements were found only in a few genes. For example, the TCA-element related to salicylic acid response was present in only 50 *TsbHLH* genes, and the P-box linked to plant gibberellin occurred in only 41 *TsbHLH* genes.

Chromosomal distribution and synteny analysis of TsbHLHs genes: Based on annotation information, we localized the *TsbHLH* genes on *T. sinensis* chromosome (Fig. 5). A total of 132 *TsbHLH* genes were Irregularly and unevenly distributed among the 28 *T. sinensis* chromosome. The Chr23 had the maximum numbers of *TsbHLHs* (14), and secondly, Chr24 contained 13 genes. In contrast, Chr2 and Chr5 respectively held only one *TsbHLH* gene. There were three tandemly duplicated pairs located on Chr11, Chr12 and Chr18. Moreover, 96 fragment duplication events were identified among the 108 *TsbHLH* genes.

To further explore the evolutionary relationships of the *TsbHLH* genes, we constructed syntenic maps between *T. sinensis* and several representative species (Fig. 6). The representative species included three monocots (pineapple, maize, and rice) and two dicots (*Arabidopsis* and tomato). Syntenic relationships were exhibited between 132 *TsbHLH* genes and those in pineapple (101), Arabidopsis (170), rice (75), tomato (207), and maize (57). Compared to monocots, the *TsbHLH* genes comprised more syntenic gene pairs in dicots.

Expression and correlation analysis of TsbHLHs genes and terpene synthase genes in different harvesting periods: Based on differential expressed genes identified in a *T. sinensis* transcriptome database (unpublished data), 20 *TsbHLH* genes were selected to detect their expression across four distinct harvesting periods. As shown in Fig. 7, expressions of *TsbHLH24* and *TsbHLH33* were downregulated, while 12 *TsbHLH* genes (7, 13, 15, 75, 91, 94, 97, 103, 108, 112, 124, 131) expression was up-regulated. Interestingly, we noticed that *TsbHLH30* and *TsbHLH4* expressions were first up-regulated, then down-regulated, and then up-regulated. In addition, the other four *TsbHLH* genes were not significantly changed (|log2FC| > 1) in different harvesting periods.

It has been confirmed that several key terpene synthase genes in both the MVA and MEP pathways were significantly changed during the development of *T. sinensis*, with *TsIDI*, *TsDXS*, and *TsDXR* expressions changing over 5-fold(Ren *et al.*, 2022). Figure 8 presents the results of an analysis of gene expression for the remaining *T. sinensis* terpene synthase genes in the MVA and MEP pathways. At diverse harvesting periods, the expression of these genes showed significant changes (|log2FC| > 1). After April 6, all terpene synthase genes except *TsHDR* changed significantly, with *TsMVD*, *TsFPPS*, and *TPS28* expressions changing more than 5-fold during during four different harvesting periods.

The expression of *TsbHLHs* and terpene synthase genes were correlated, and the results are shown in Fig. 9.

TsDXS, *TsDXR*, *TsHDS*, *TsHDR*, *TsGGPS1* on the MEP pathway, and *TsHMGS* and *TsFPPS1* on the MVA pathway were correlated with some of the *TsbHLH* genes. Additionally, *TsHMGS*, *TsFPPS1*, and *TsbHLH33* have been discovered to be negatively correlated to other genes. While *TsDXS*, *TsHDS*, *TsHDR*, *TsbHLH29*, and *TsbHLH108* were almost all positively correlated factors.

Discussion

The bHLH transcription factors play crucial roles in regulating plant growth and development, stress response, and secondary metabolism (Ito et al., 2012; Zhao et al., 2019; Zhao et al., 2020). In previous studies, we have already known that Terpenoids are the major volatile components of T. sinensis, we have also known that bHLHs plays an important role in regulating the terpenoid pathway (Qi et al., 2020; Ren et al., 2021). Up to now, extensive studies of the bHLH family have been carried out in various plants, such as Arabidopsis, rice, and maize (Bailey et al., 2003; Carretero-Paulet et al., 2010; Zhang et al., 2018b). However, the identification and the regulation of terpenoids study of bHLH gene family have never been reported before in T. sinensis. For the first time, we have comprehensively identified and analyzed the bHLH gene family in T. sinensis, which provides important information for revealing the terpene biosynthesis pathway in T. sinensiss.

In this study, a total of 132 *TsbHLH* genes were identified. Phylogenic tree analysis indicated that the identified 132 *TsbHLHs* divided into 21 subfamilies. The number of inferred *bHLH* genes in *T. sinensiss* are the same as the number of *bHLH* genes in cucumber (142) (Li *et al.*, 2020b), and greater than some plants such as lotus (115) (Mao *et al.*, 2019), pepper (107) (Liu *et al.*, 2021), and peach (95) (Zhang *et al.*, 2018a), but fewer than in apple (188) (Mao *et al.*, 2017), *Arabidopsis* (162) (Bailey *et al.*, 2003), and tomato (159) (Sun *et al.*, 2015).

The diversity of gene structure is an essential basis for the evolution of gene families, and structural variation plays an important role in the process of gene evolution, in which introns and exons evolve mainly through gain and loss, insertion and deletion (Xu et al., 2012). The TsbHLH genes were found to have between 0 and 10 introns. whereas rice (Li et al., 2006) and apple (Yang et al., 2017) had 0 to 5 and 0 to 19 introns, respectively. This finding indicates that the exon-intron of the bHLH genes underwent deletion or insertion during the evolution of T. sinensis. Most members of the same subfamily share a similar intron-exon distribution, which is the foundation for similar functions amongs members of the same evolutionary group (Li et al., 2020a). Among the 132 TsbHLH proteins, twenty conserved motifs were identified. Conservative motifs within the same subfamily exhibit similarity in composition and relative position. Notably, nearly all TsbHLH proteins contain adjacent Motif1 and Motif2, which together form the bHLH structural domain (Liu et al., 2021). The uniqueness and conservation of conserved motifs of all bHLH proteins in the same subfamily also corroborate the evolutionary classification of the TsbHLHs gene family. It is also hypothesized that conserved motifs other than the bHLH structural domain are essential for each subfamily to perform its corresponding function.

Fig. 3. Phylogenetic tree, exon-intron distribution, and conserved protein motifs of *TsbHLHs*. (A) The *TsbHLHs* are divided into several groups, each with a distinct color. (B) Yellow rectangles and black lines represent exons and introns, respectively. (C) Each motif with conserved amino acid residues is represented in different colors (motifs 1-20).

WRE3 GTI-motif G-box GARE-motif Box 4 AE-box MBS TGA-element TGACG-motif ARE W box CGTCA-motif ABRE P-box WUN-motif LTR ERE TATG-box TC-rich repeat

Fig. 4. Prediction of Cis-regulatory elements in the 2000 bp promoter upstream of the *TsbHLHs*. The main Cis-regulatory elements are displayed in the upper right.

Fig. 5. Segmental duplication of *bHLH* genes in *T.sinensis*. Gray lines indicate syntemy blocks, while red lines represent duplicated *bHLH* gene pairs that have been identified.

Genome recombination and amplification are important causes of the diversity of gene family members, and gene duplication usually causes gene recombination and amplification, causing the gene family as a whole to expand (Vision *et al.*, 2000). Gene duplication events include both tandem and fragmental patterns (Cannon *et al.*, 2004). One hundred and thirty-two members of the *T. sinensis* bHLH transcription factor family were irregularly and unevenly distributed on 27 chromosomes, and 96 fragmental duplication events were found in 108 *TsbHLH* genes, along with the presence of three tandem duplication gene pairs, demonstrating that the primary force behind the evolution of the *TsbHLHs* gene family has been fragmental duplication events.

Plant promoters contain many key regulatory elements that respond to gene expression, thereby exerting pivotal regulatory functions at the transcriptional level (Li *et al.*, 2020b). The prediction outcomes of Cis-regulatory elements signify that the promoter sequence of TsbHLH genes comprises an array of coregulatory, hormone-responsive, light-responsive, and stress-responsive elements. It has been demonstrated that plants regulate the expression of stress resistance genes downstream of abiotic stress by means of functional regions within transcription factors that interact with stress-responsive elements (Selvaraj et al., 2020). In a study by Manavella on the sunflower HAHB4 promoter, it was revealed that the ABRE element within the HAHB4 promoter responded to ABA, NaCl, and drought stress (Manavella et al., 2008). Remarkably, 87.88% of TsbHLH genes were found to contain ABRE elements, potentially signifying the critical role of *TsbHLH* genes in *T. sinensis*'s response to drought stress. Additionally, the remaining Cisregulatory elements may be involved in governing plant growth and development while also responding to various abiotic stressors.

Studies have confirmed that terpenoids are the primary volatile components of the Anhui Taihe 'Heiyouchun' cultivar (Liu et al., 2013; Ren et al., 2021). The terpenoids start to be synthesized gradually from sprouting to maturity of T. sinensis shoots(Ren et al., 2022). The outcomes of the real-time fluorescence quantitative PCR revealed that 80% of the screened TsbHLH genes were significantly different in expression levels at four different harvesting periods. Although the regulatory network of terpenoid synthesis has been less studied, bHLH transcription factors are the main factors in regulating terpenoid metabolism. It is speculated that the accumulation of terpenoids may be connected to the expression of TsbHLHs. Thus, the expression patterns of terpene synthase genes on the MVA and MEP pathways were further analyzed and correlated with TsbHLHs genes, and several genes on the MEP pathway were found to be involved in the regulation of terpene accumulation. Notably, TsbHLHs were highly correlated with the expression trends of 11 terpene synthase genes. For instance, TsDXS, TsDXR, TsHDS, TsHDR, TsbHLH103, TsbHLH124, and TsbHLH131 may synergistically regulate the synthesis and accumulation of terpenoids.

Transcription factors regulate the transcriptional levels of secondary metabolite synthesis pathway genes. Presently, the primary transcription factors known in relation to terpenoid metabolism include AP2/ERF, WRKY,

bHLH, MYC, bZIP, and NAC (Xu et al., 2019). Among these, bHLH transcription factors are chiefly associated with the synthesis of compounds like flavonoids and artemisinin (Qi et al., 2020; Mohammad et al., 2023). The regulatory role of bHLH genes involved in plant monoterpenes and sesquiterpenes has yet to be studied, but some research results are available. In Catharanthus roseus, CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis(Zhang et al., 2011). PbbHLH4 overexpression significantly increases the synthesis and accumulation of volatile monoterpenes in Phalaenopsis and significantly increases the aroma of this orchid (Chuang et al., 2018). In tomato (Solanum lycopersicum), SlMYC1 regulates terpene biosynthesis (Xu et al., 2018). In Litsea cubeba, overexpression of LcbHLH78 increased the content of geraniol and linalool (Yang et al., 2022). It was confirmed that *AabHLH112* is a positive regulator of β -stigmasterol, epibasic alcohol and β-farnesene biosynthesis in Artemisia annua (Xiang et al., 2022). The co-expression network between TsbHLHs and a few key genes of terpenoid synthesis provided information to reveal the terpenoid biosynthesis pathway in T. sinensis. This study helps to thoroughly investigate the regulatory mechanism of *TsbHLH* in terpene biosynthesis.

Fig. 6. Synteny analysis of *bHLH* genes between *T. sinensis* and five representative plant species: *Ananas comosus, Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum,* and *Zea mays.* Each horizontal bar signifies a distinct chromosome. Red curves indicate syntenic *bHLH* gene pairs, while gray lines denote collinear blocks within *T. sinensis* and other plant genomes.

3.00

2.00

·1.00

·0.00

-1.00

-2.00

-3.00

Fig. 7. Differential transcription of *TsbHLHs* genes in four different harvesting periods (March 30, April 6, April 13, and April 20, 2021). Blue and red indicate lower and higher transcript abundance, respectively, compared to the initial data (March 30).

Fig. 9. Correlation analysis of *TsbHLHs* and terpenoid synthesis genes (Pearson correlation coefficient > 0.95). Square nodes colored in blue are *TsbHLHs*, square nodes colored in yellow are terpenoid synthesis genes, green lines represent positive correlation, and red lines represent negative correlation. *HMGS*, 3-hydroxy-3-methylglutaryl-CoA synthase; *HMGR*, 3-hydroxy-3-methylglutaryl-CoA reductase; *IDI*, isopentenyl diphosphate isomerase; *DXS*, 1-deoxyd-xylulose 5-phosphate synthase; *DXR*, 1-deoxy-D-xylulose 5-phosphate reductoisomerase; *GGPPS*, geranylgeranyl diphosphate synthases; *MTPS*, monoterpene synthase.

Fig. 8. Expression patterns of several terpene synthase genes in four different harvesting periods (March 30, April 6, April 13, and April 20, 2021). *MDS*, 2-C-methyld-erythritol 2,4-cyclodiphosphate synthase; *HDS*, (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase; *HDR*, (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase; *GPPS*, Geranylgeranyl pyrophosphate synthase; *MVD*, mevalonate diphosphate decarboxylase; *FPPS*, farnesyl diphosphate synthase; *TPS28*, terpenoid synthase 28. *, **, ***, and **** denote significant differences at p<0.05, p<0.01, p<0.001, and p<0.0001, respectively.

Conclusions

In our study, 132 valid *TsbHLHs* were identified and categorized into 21 subfamilies, all of which possess characteristic HLH domains. The gene structures and conserved motifs within the same subfamily exhibit similarities. *TsbHLH* genes encompass a range of crucial regulatory elements, and some *TsbHLH* genes might participate in regulating terpenoid synthesis via the MEP pathway. The findings of this study contributes to a broad understanding of the bHLH family and lays the foundation for elucidating the mechanism of regulating terpene biosynthesis.

Acknowledgments

This work was supported by the grant from the research funds for postdoctoral researchers in Anhui Province (2020B434), the Natural Science Key Foundations of the Anhui Bureau of Education (KJ2021A0677), the Training Action Project for Young and Middle aged Teachers in universities in Anhui Province (JWFX2023029) and Biological and Medical Sciences of Applied Summit Nurturing Disciplines in Anhui Province (Anhui Education Secretary Department (2023)13).

References

- Artimo, P., M. Jonnalagedda, K. Arnold, D. Baratin, G. Csardi, E. de Castro, S. Duvaud, V. Flegel, A. Fortier, E. Gasteiger, A. Grosdidier, C. Hernandez, V. Ioannidis, D. Kuznetsov, R. Liechti, S. Moretti, K. Mostaguir, N. Redaschi, G. Rossier, I. Xenarios and H. Stockinger, 2012. Expasy: Sib bioinformatics resource portal. *Nucl. Acids Res.*, 40(Web Server issue): W597-603.
- Atchley, W.R. and W.M. Fitch. 1997. A natural classification of the basic helix-loop-helix class of transcription factors. *Proceedings of the National Academy of Sciences of the United States of America*, 94(10): 5172-5176.
- Bailey, P.C., C. Martin, G. Toledo-Ortiz, P.H. Quail, E. Huq, M.A. Heim, M. Jakoby, M. Werber and B. Weisshaar, 2003. Update on the basic helix-loop-helix transcription factor gene family in arabidopsis thaliana. *Plant Cell*, 15(11): 2497-2501.
- Bailey, T.L., J. Johnson, C.E. Grant and W.S. Noble. 2015. The meme suite. *Nucl. Acids Res.*, 43(W1): 39-49.
- Buti, S., S. Hayes and R. Pierik. 2020. The bhlh network underlying plant shade-avoidance. *Physiol. Plant.*, 169(3): 312-324.
- Cannon, S.B., A. Mitra, A. Baumgarten, N.D. Young and G. May. 2004. The roles of segmental and tandem gene duplication in the evolution of large gene families in arabidopsis thaliana. *BMC Plant Biol.*, 4: 10.
- Carretero-Paulet, L., A. Galstyan, I. Roig-Villanova, J.F. Martinez-Garcia, J.R. Bilbao-Castro and D.L. Robertson. 2010. Genome-wide classification and evolutionary analysis of the bhlh family of transcription factors in arabidopsis, poplar, rice, moss, and algae. *Plant Physiol.*, 153(3): 1398-1412.
- Castelain, M., R. Le Hir and C. Bellini. 2012. The non-DNAbinding bhlh transcription factor pre3/bhlh135/atbs1/tmo7 is involved in the regulation of light signaling pathway in arabidopsis. *Physiol. Plant.*, 145(3): 450-460.
- Chen, Y., H. Gao, X. Liu, J. Zhou, Y. Jiang, F. Wang, R. Wang and W. Li. 2022. Terpenoids from the seeds of toona sinensis and their ability to attenuate high glucose-induced oxidative stress and inflammation in rat glomerular mesangial cells. *Molecules (Basel, Switzerland)*, 27(18). DOI 10.3390/ molecules27185784.

- Chen, Y.C., C.L. Hsieh, B.M. Huang and Y.C. Chen. 2021. Induction of mitochondrial-dependent apoptosis by essential oil of toona sinensis root through akt, mtor and nf-kb signalling pathways in human renal cell carcinoma cells. *J. Food Drug Anal.*, 29(3): 433-447.
- Chu, Y., S. Xiao, H. Su, B. Liao, J. Zhang, J. Xu and S. Chen. 2018. Genome-wide characterization and analysis of bhlh transcription factors in panax ginseng. *Acta Pharm. Sinica*, 8(4): 666-677.
- Chuang, Y.C., Y.C. Hung, W.C. Tsai, W.H. Chen and H.H. Chen. 2018. Pbbhlh4 regulates floral monoterpene biosynthesis in phalaenopsis orchids. *J. Exp. Bot.*, 69(18): 4363-4377.
- Ding, W.J., Q.X. Ouyang, Y.L. Li, T.T. Shi, L. Li, X.L. Yang, K.S. Ji, L.G. Wang and Y.Z. Yue. 2020. Genome-wide investigation of wrky transcription factors in sweet osmanthus and their potential regulation of aroma synthesis. *Tree Physiol.*, 40(4): 557-572.
- Dong, H., H. Zhao, S. Li, Z. Han, G. Hu, C. Liu, G. Yang, G. Wang, W. Xie and Y. Xing, 2018. Genome-wide association studies reveal that members of bhlh subfamily 16 share a conserved function in regulating flag leaf angle in rice (*Oryza sativa*). *PLoS Gen.*, 14(4): e1007323.
- Dong, X.J., Y.F. Zhu, G.H. Bao, F.L. Hu and G.W. Qin. 2013. New limonoids and a dihydrobenzofuran norlignan from the roots of toona sinensis. *Molecules (Basel, Switzerland)*, 18(3): 2840-2850.
- Dong, Y., W. Zhang, J. Li, D. Wang, H. Bai, H. Li and L. Shi. 2022. The transcription factor lamyc4 from lavender regulates volatile terpenoid biosynthesis. *BMC Plant Biol.*, 22(1): 289. DOI 10.1186/s12870-022-03660-3.
- Falleh, H., M. Ben Jemaa, M. Saada and R. Ksouri. 2020. Essential oils: A promising eco-friendly food preservative. *Food Chem.*, 330: 127268.
- Feller, A., K. Machemer, E.L. Braun and E. Grotewold. 2011. Evolutionary and comparative analysis of myb and bhlh plant transcription factors. *Plant J. Cell & Mol. Biol.*, 66(1): 94-116.
- Fisher, A. and M. Caudy. 1998. The function of hairy-related bhlh proteins in cell fate decisions. *BioEssays*, 20: 298-306.
- Heim, M.A., J. Marc, W. Martin, M. Cathie, W. Bernd and P.C. Bailey. 2003. The basic helix–loop–helix transcription factor family in plants: A genome-wide study of protein structure and functional diversity. *Mol. Biol. Evol.*, 20(5): 735-747.
- Henriksson, M. and B. Lüscher, 1996. Proteins of the myc network: Essential regulators of cell growth and differentiation. Adv. Cancer Res., 68: 109-182.
- Hong, G.J., X.Y. Xue, Y.B. Mao and W. Chen. 2012. Arabidopsis myc2 interacts with della proteins in regulating sesquiterpene synthase gene expression. *Plant Cell*, 24(6): 2635-2648.
- Hu, B., J.P. Jin, A.Y. Guo, H. Zhang, J.C. Luo and G. Gao. 2015. Gsds 2.0: An upgraded gene feature visualization server. *Bioinformatics*, 31(8): 1296-1297.
- Hyldgaard, M., T. Mygind and R.L. Meyer. 2012. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. *Front. Microbiol.*, 3: 12. DOI 10.3389/fmicb.2012.00012.
- Ito, S., Y.H. Song, A.R. Josephson-Day, R.J. Miller, G. Breton, R.G. Olmstead and T. Imaizumi. 2012. Flowering bhlh transcriptional activators control expression of the photoperiodic flowering regulator constans in arabidopsis. *Proceed. Nat. Acad. Sci. of the United States of America*, 109: 3582-3587. DOI 10.1073/pnas.1118876109.
- Kumar, S., G. Stecher and K. Tamura. 2016. Mega7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Mol. Biol. Evol.*, 33(7): 1870-1874.
- Ledent, V. and M. Vervoort. 2001. The basic helix-loop-helix protein family: Comparative genomics and phylogenetic analysis. *Gen. Res.*, 11: 754-770.

- Lescot, M., P. Déhais, G. Thijs, K. Marchal, Y. Moreau, Y. Peer, P. Rouzé and S. Rombauts. 2002. Plantcare, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. *Nucl. Acids Res.*, 30(1): 325-327. DOI 10.1093/nar/30.1.325.
- Letunic, I., S. Khedkar and P. Bork, 2021. Smart: Recent updates, new developments and status in 2020. Nucl. Acids Res., 49(D1): D458-D460.
- Li, H.Y., Y.Z. Yue, W.J. Ding, G.W. Chen, L. Li, Y.L. Li, T.T. Shi, X.L. Yang and L.G. Wang. 2020a. Genome-wide identification, classification, and expression profiling reveals r2r3-myb transcription factors related to monoterpenoid biosynthesis in osmanthus fragrans. *Genes* (*Basel*), 11(4): 353. DOI 10.3390/genes11040353.
- Li, J., T. Wang, J. Han and Z. Ren. 2020b. Genome-wide identification and characterization of cucumber bhlh family genes and the functional characterization of csbhlh041 in nacl and aba tolerance in arabidopsis and cucumber. *BMC Plant Biol.*, 20(1): 272.
- Li, X., X. Duan, H. Jiang, Y. Sun, Y. Tang, Y. Zheng, J. Guo, W. Liang, L. Chen and J. Yin. 2006. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and arabidopsis. *Plant Physiol.*, 141(4): 1167.
- Liu, C., Z. Jie, Z. Zhou, Z. Hua, H. Wan, Y. Xie, Z. Wang and D. Li. 2013. Analysis of volatile compounds and identification of characteristic aroma components of *toona sinensis* (A. Juss.) roem. Using GC-MS and GC-O. *Food and Nutr. Sci.*, 4(3): 305-314.
- Liu, R., J. Song, S. Liu, C. Chen, S. Zhang, J. Wang, Y. Xiao, B. Cao, J. Lei and Z. Zhu. 2021. Genome-wide identification of the capsicum bhlh transcription factor family: Discovery of a candidate regulator involved in the regulation of speciesspecific bioactive metabolites. *BMC Plant Biol.*, 21(1): 262. DOI 10.1186/s12870-021-03004-7.
- Liu, T., J. Liao, M. Shi, L. Li, Q. Liu, X. Cui, W. Ning and G. Kai. 2023. A jasmonate-responsive bhlh transcription factor tamyc2 positively regulates triterpenes biosynthesis in taraxacum antungense kitag. *Plant Sci.*, 326: 111506.
- Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(delta delta c(t)) method. *Methods*, 25(4): 402-408.
- Lu, S., J. Wang, F. Chitsaz, M.K. Derbyshire, R.C. Geer, N.R. Gonzales, M. Gwadz, D.I. Hurwitz, G.H. Marchler, J.S. Song, N. Thanki, R.A. Yamashita, M. Yang, D. Zhang, C. Zheng, C.J. Lanczycki and A. Marchler-Bauer. 2020. Cdd/sparcle: The conserved domain database in 2020. Nucl. Acids Res., 48(D1): D265-D268.
- Ludwig, S.R., L.F. Habera, S.L. Dellaporta and S.R. Wessler. 1989. Lc, a member of the maize r gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the mychomology region. *Proceed. Nat. Acad. Sci. of the United States of America*, 86(18): 7092-7096.
- Manavella, P.A., C.A. Dezar, F.D. Ariel and R.L. Chan. 2008. Two abres, two redundant root-specific and one w-box cisacting elements are functional in the sunflower hahb4 promoter. *Plant Physiol. Biochem.*, 46(10): 860-867.
- Mao, K., Q.L. Dong, C. Li, C.H. Liu and F.W. Ma. 2017. Genome wide identification and characterization of apple bhlh transcription factors and expression analysis in response to drought and salt stress. *Front. Plant Sci.*, 8: 480. DOI 10.3389/fpls.2017.00480.
- Mao, T., Y. Y. Liu, Y. H. Zhu, H, J. Zhang and J. Yang. 2019. Genome-wide analyses of the bhlh gene family reveals structural and functional characteristics in the aquatic plant nelumbo nucifera. *Peer J.*, 7: e7153.
- Massari, M.E. and C. Murre. 2000. Helix-loop-helix proteins: Regulators of transcription in eucaryotic organisms. *Mol. Cell. Biol.*, 20(2): 429-440.

- Mistry, J., S. Chuguransky, L. Williams, M. Qureshi, G.A. Salazar, E.L.L. Sonnhammer, S.C.E. Tosatto, L. Paladin, S. Raj, L.J. Richardson, R.D. Finn and A. Bateman, 2021. Pfam: The protein families database in 2021. *Nucl. Acids Res.*, 49(D1): D412-D419.
- Mohammad, I.M. Hurrah, A. Kumar and N. Abbas. 2023. Synergistic interaction of two bhlh transcription factors positively regulates artemisinin biosynthetic pathway in *Artemisia annua* L. *Physiol. Plant.*, 175(1): e13849.
- Murre, C., P.S. McCaw and D. Baltimore. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, myod, and myc proteins. *Cell*, 56: 777-783.
- Nesi, N., I. Debeaujon, C. Jond, G. Pelletier and L. Lepiniec. 2000. The tt8 gene encodes a basic helix-loop-helix domain protein required for expression of dfr and ban genes in arabidopsis siliques. *The Plant Cell*, 12(10): 1863-1878.
- Nims, E., K. Vongpaseuth, S.C. Roberts and E.L. Walker. 2015. Tejamyc: A bhlh transcription factor that activates paclitaxel biosynthetic pathway genes in yew. *J. Biol. Chem.*, 290(33): 20104. DOI 10.1074/jbc.A109.026195.
- Ortolan, F., T.S. Trenz, C.L. Delaix, F. Lazzarotto and M. Margis-Pinheiro. 2024. Bhlh-regulated routes in anther development in rice and arabidopsis. *Gen. Mol. Biol.*, 46(3 Suppl 1): e20230171.
- Pandey, A.K., P. Kumar, P. Singh, N.N. Tripathi and V.K. Bajpai. 2017. Essential oils: Sources of antimicrobials and food preservatives. *Front. Microbiol.*, 7: 2161. DOI 10.3389/fmicb.2016.02161.
- Qi, Y., L. Zhou, L. Han, H.Z. Zou, K. Miao and Y. Wang. 2020. Psbhlh1, a novel transcription factor involved in regulating anthocyanin biosynthesis in tree peony (*Paeonia* suffruticosa). Plant Physiol. Biochem, 154: 396-408.
- Ren, L.P., W.Y. Wan, Y.H. Xie, B.B. Chen, G.S. Wang, D.D. Yin, X.H. Su and X.H. Cao. 2021. Identification of volatile aroma compounds of toona sinensis (a. Juss) roem buds and investigation of genes expression profiles confering aroma production. *Pak. J. Bot.*, 53(4): 1459-1464.
- Ren, L.P., W.Y. Wan, D.D. Yin, X.H. Deng, Z.X. Ma, T. Gao and X.H. Cao. 2022. Genome-wide analysis of wrky transcription factor genes in toona sinensis: An insight into evolutionary characteristics and terpene synthesis. *Front. Plant Sci.*, 13: 1063850. DOI 10.3389/fpls.2022.1063850.
- Selvaraj, M.G., A. Jan, T. Ishizaki, M. Valencia, B. Dedicova, K. Maruyama, T. Ogata, D. Todaka, K. Yamaguchi-Shinozaki, K. Nakashima and M. Ishitani. 2020. Expression of the ccchtandem zinc finger protein gene ostzf5 under a stressinducible promoter mitigates the effect of drought stress on rice grain yield under field conditions. *Plant Biotech. J.*, 18(8): 1711-1721.
- Sun, H., H.J. Fan and H.Q. Ling. 2015. Genome-wide identification and characterization of the bhlh gene family in tomato. *BMC Genom.*, 16(1): 9.
- Sun, X.H., N.G. Copeland, N.A. Jenkins and D. Baltimore. 1991. Id proteins id1 and id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. *Mol. Cell. Biol.*, 11(11): 5603-5611.
- Vision, T.J., D.G. Brown and S.D. Tanksley. 2000. The origins of genomic duplications in arabidopsis. *Science*, 290(5499): 2114-2117.
- Vranová, E., D. Coman and W. Gruissem. 2013. Network analysis of the mva and mep pathways for isoprenoid synthesis. *Ann. Rev. Plant Biol.*, 64: 665-700.
- Wang, X., Y. Xiao, Z.H. He, L.L. Li, Y.W. Lv and X.S. Hu. 2022. Evolutionary divergence between toona ciliata and toona sinensis assayed with their whole genome sequences. *Genes* (*Basel*), 13(10): 1799. DOI 10.3390/genes13101799.

- Wang, Y.P., H.B. Tang, J.D. Debarry, X. Tan, J.P. Li, X.Y. Wang, T.H. Lee, H.Z. Jin, B. Marler, H. Guo, J.C. Kissinger and A.H. Paterson. 2012. Mcscanx: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. *Nucl. Acids Res.*, 40(7): e49. DOI 10.1093/nar/gkr1293.
- Xiang, L., P. He, G. Shu, M. Yuan, M. Wen, X. Lan, Z. Liao and Y. Tang. 2022. Aabhlh112, a bhlh transcription factor, positively regulates sesquiterpenes biosynthesis in artemisia annua. *Front. Plant Sci.*, 13: 973591.
- Xu, G., C.C. Guo, H.Y. Shan and H.Z. Kong. 2012. Divergence of duplicate genes in exon-intron structure. *Proceed. Nat. Acad. Sci.* of the United States of America, 109(4): 1187-1192.
- Xu, J., Z.O. van Herwijnen, D.B. Dräger, C. Sui, M.A. Haring and R.C. Schuurink. 2018. Slmyc1 regulates type vi glandular trichome formation and terpene biosynthesis in tomato glandular cells. *Plant Cell*, 30(12): 2988-3005.
- Xu, Y., C. Zhu, C. Xu, J. Sun and K. Chen. 2019. Integration of metabolite profiling and transcriptome analysis reveals genes related to volatile terpenoid metabolism in finger citron (c. Medica var. Sarcodactylis). *Molecules (Basel, Switzerland)*, 24(14): 2564.
- Yang, J., Y. Chen, M. Gao, L. Wu, S. Xiong, S. Wang, J. Gao, Y. Zhao and Y. Wang. 2022. Comprehensive identification of bhlh transcription factors in litsea cubeba reveals candidate gene involved in the monoterpene biosynthesis pathway. *Front. Plant Sci.*, 13: 1081335.
- Yang, J., M. Gao, L. Huang, Y. Wang and H. Gao. 2017. Identification and expression analysis of the apple (malus × domestica) basic helix-loop-helix transcription factor family. *Sci. Reports*, 7(1): 28. DOI 10.1038/s41598-017-00040-y.
- Yin, J., X. Chang, T. Kasuga, M. Bui, M.S. Reid and C.Z. Jiang. 2015. A basic helix-loop-helix transcription factor, phfbh4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia. *Hort. Res.*, 2: 15059.

- Zhang, C.H., R.C. Feng, R.J. Ma, Z.J. Shen, Z.X. Cai, Z.Z. Song, B. Peng and M.L. Yu. 2018a. Genome-wide analysis of basic helix-loop-helix superfamily members in peach. *PLoS One*, 13(4): e0195974.
- Zhang, H., S. Hedhili, G. Montiel, Y. Zhang, G. Chatel, M. Pré, P. Gantet and J. Memelink. 2011. The basic helix-loop-helix transcription factor crmyc2 controls the jasmonate-responsive expression of the orca genes that regulate alkaloid biosynthesis in catharanthus roseus. *Plant J*, 67(1): 61-71.
- Zhang, T., W. Lv, H. Zhang, L. Ma, P. Li, L. Ge and G. Li. 2018b. Genome-wide analysis of the basic helix-loop-helix (bhlh) transcription factor family in maize. *BMC Plant Biol.*, 18(1): 235.
- Zhao, Q., Z. Fan, L. Qiu, Q. Che and Y. Wang. 2020. Mdbhlh130, an apple bhlh transcription factor, confers water stress resistance by regulating stomatal closure and ros homeostasis in transgenic tobacco. *Front. Plant Sci.*, 11: 543696.
- Zhao, X., Q. Wang, C. Yan, Q. Sun, J. Wang, C. Li, C. Yuan, Y. Mou and S. Shan. 2024. The bhlh transcription factor ahbhlh121 improves salt tolerance in peanut. *Int. J. Biol. Macromol.*, 256: 128492.
- Zhao, Y., Y.Y. Zhang, H. Liu, X.S. Zhang, R. Ni, P.Y. Wang, S. Gao, H.X. Lou and A.X. Cheng. 2019. Functional characterization of a liverworts bhlh transcription factor involved in the regulation of bisbibenzyls and flavonoids biosynthesis. *BMC Plant Biol.*, 19(1): 497. DOI 10.1186/s12870-019-2109-z.
- Zhu, Z., G. Chen, X. Guo, W. Yin, X. Yu, J. Hu and Z. Hu. 2017. Overexpression of slpre2, an atypical bhlh transcription factor, affects plant morphology and fruit pigment accumulation in tomato. *Sci. Reports*, 7(1): 5786.

(Received for publication 11 August 2024)

	Table 51. Frimers used in	KI-YI CK.
Gene	Forward Primer (5'-3')	Reverse Primer (5'-3')
TsbHLH7	CTTCCGGGTTCTTTTCCTTA	TCTTCACTTTGGAAGCCATT
TsbHLH8	ATCCGTAGCATCCCTTCC	TTAATGCGTCTGACTCTTCATC
TsbHLH13	CACGTATGAAGCTGCTACAAGA	CAGGGAAGTTACCGTCCATTA
TsbHLH15	AAGAAACTAAGCATTCCGGT	TGACAAAAGCTGTTCCTTCT
TsbHLH24	TTTACTCTTTGGGAGGAGGA	GCATGTTGAATCACTGAAGG
TsbHLH29	ATGGACACTGCCTCTATGTT	TGCTGACCGTTTTGAACT
TsbHLH30	CCACCAAGGAGAAGAAATGT	CAGGGACAAGTCTTTGAAGT
TsbHLH33	TCACGAAGAAACGACCCA	TTCCTCGACCTGCTTAACAC
TsbHLH39	TCTCAGATGACAACGGGATT	ATACTTGGCACATTGGGTAG
TsbHLH43	AAGGCTCTGATCGAAAGG	CAAGTGCGGGGAAAGTAT
TsbHLH71	CCACCAAAAACAGATGAACC	TTTCTGGACTTGAAGGTCTG
TsbHLH75	GCGAAGGGAAAAGCTAAATC	GTCTCTAACTCTGCTCTGTG
TsbHLH91	CAAAGAAATACAATGCCTCC	GTCCCTTACAAGATCCTAACTCAC
TsbHLH94	ACCTCCTTTTTCCCAGTTTT	GAAGTTTTGCATGGGTTTCA
TsbHLH97	GCATAAACAGATTCCAGTGC	GTCCTCCGTTGTAGAAACAT
TsbHLH103	AACTCCAGATGTCGATGATG	CACGCTAGGAATGTGGATAA
TsbHLH108	CAGTTGTTGAAAGCCATTGT	AATGTTCTGTTCCCCTTCTC
TsbHLH112	ATCCTTTCTCGACGAAGT	ACTGATAGAGTAGAGGACCAAT
TsbHLH124	AATCCTGCCTACCTTCCTTT	TGGTTCTCCTTAGCCCAATA
TsbHLH131	TCAGATATTGGGCTAAGGAGA	TGAGATGGAAAGTGCGTTG
TsMVD	GAAGGACTGGGAAAAATTGC	GCTGGCTCTGATTTTCTTTC
TsMDS	AAGCTATCAGAACCAACCTG	TGAGCTGCAATACTTCGATT
TsHDR	GGAACTCAAGCAATACCTCA	TTCTTTCTCAACCAGCTCTC
TsHDS	ATATTGACGCTACGATGCTT	ATGGTGAATTACAGGCAAGT
TsFPPS2	CTCTTAGCCTTGCTCATTCA	TGACAGGCTAAAACCTTCTC
TsGPPS2	GCTGTTGTTTCAGGTAGTTG	CTTTGATCCTTCAATCCCCA
TsTPS28	TAAGACAGCAGTCTTGGTG	CAATTTACATACCTTCCGT
TsActin1	TATGGTTGGTATGGGTCAGA	GTGTGATGCCAGATTTTCTC

Table S2. The	e physiological a	and biochemica	l properties o	f bHLH g	genes in 2	T. sinensi

	Ta	able S2. The physiological and bioc	hemical proper	ties of l	bHLH gene	s in <i>T. sine</i>	ensis.		
Cana nama	Conclosus	Chromosome	Subcellular	лI	Mw	Protein	CDAW	Instability	Aliphatic
Gene name	Gene locus	location	localization	рі	(Da)	length	GRAV Y	index	index
TsbHLH1	Maker00019392	Chr02 (39101613911600)	Nuclear	5.22	49778.15	451	-0.64	53.62	72.26
TsbHLH2	Maker00018298	Chr03 (1260802112609255)	Extracellular	9.24	20344.24	181	-0.502	36.48	83.54
TsbHLH3	Maker00018229	Chr03 (1336563813368390)	Nuclear	8.26	28467.38	259	-0.363	43.65	81.81
TsbHLH4	Maker00022311	Chr03 (1374691413749664)	Nuclear	8.26	28419.33	259	-0.358	43.65	82.93
TsbHLH5	Maker00012521	Chr04 (27185592721307)	Nuclear	8.95	28382.36	259	-0.335	47.58	84.05
TsbHLH6	Maker00021798	Chr04 (34036373404407)	Extracellular	7.93	20513.37	182	-0.521	38.23	79.34
TsbHLH7	Maker00011935	Chr05 (1831273418313243)	Nuclear	5.72	19078.18	169	-0.714	62.47	58.28
TsbHLH8	Maker00009754	Chr06 (943523944029)	Nuclear	5.16	19021.00	168	-0.704	66.81	58.04
IsbHLH9	Maker00019102	Chr06 (11155121115973)	Nuclear	9.47	17144.24	153	-0.51	52.21	66.93
TSDHLH10	Maker00034188	Chr0/(3203694320/203)	Nuclear	5.36	382/6.24	343	-0.84	28.81	62.83
	Maker0000503 /	Chr07 (51562795157584)	Nuclear	0.10	35905.70	322	-0./58	38.28 54.47	60 80.27
TebHI H13	Maker00010318	Chr07 (14531686 - 14535508)	Nuclear	0.17 6.28	2/101.00	259	-0.450	52 55	66 23
TebHI H14	Maker00025042	Chr07 (1453508014535508)	Nuclear	0.28 8 59	42578 41	384	-0.603	55.17	65.23
TebHI H15	Maker00025042	Chr07 (15583769 15585508)	Nuclear	6.19	20370.20	255	-0.021	60.26	89.1
TsbHLH16	Maker000029000	Chr07 (18294797 18297282)	Nuclear	5 34	36970.60	336	-0.39	58 72	86.16
TsbHLH17	Maker00018660	Chr08 (1410441, 1411554)	Nuclear	5.32	35689.04	326	-0.425	56.41	86.41
TsbHLH18	Maker00003964	Chr08 (29929532993752)	Nuclear	9.46	9787.06	86	-1.009	64.05	74.88
TsbHLH19	Maker00003886	Chr08 (39225623931692)	Extracellular	8.56	54229.97	474	-0.486	67.92	89.94
TsbHLH20	Maker00031426	Chr08 (51534585155842)	Nuclear	8.63	40975.37	370	-0.77	47.66	57.97
TsbHLH21	Maker00032321	Chr08 (1472016814721560)	Nuclear	7.73	27164.00	239	-0.456	61.17	90.17
TsbHLH22	Maker00003302	Chr08 (1581970915820392)	Extracellular	9.16	20223.53	177	-0.462	45.57	95.76
TsbHLH23	Maker00003348	Chr08 (1585626415857623)	Nuclear	6.67	37347.53	337	-0.689	32.74	68.07
TsbHLH24	Maker00008404	Chr09 (1266127712662499)	Nuclear	5.69	36631.09	329	-0.539	59.78	73.53
TsbHLH25	Maker00006272	Chr09 (1335599513356784)	Nuclear	6.54	25940.98	233	-0.68	48.11	66.57
TsbHLH26	Maker00006155	Chr09 (1389854813900118)	Nuclear	4.95	34917.58	304	-0.506	53.19	73.75
TsbHLH27	Maker00005958	Chr09 (1459918414600697)	Nuclear	4.54	36071.11	326	-0.471	55.15	69.69
TsbHLH28	Maker00006073	Chr09 (1507960715082096)	Extracellular	6.10	30509.88	281	-0.508	60.81	72.21
TsbHLH29	Maker00006030	Chr09 (1516608215166480)	Nuclear	10.26	14846.17	132	-0.536	55.86	81.36
TsbHLH30	Maker00005722	Chr10 (35668283568539)	Nuclear	6.93	31799.00	285	-0.571	49.15	65.44
TsbHLH31	Maker00005696	Chr10 (43519964353218)	Nuclear	4.69	35024.60	308	-0.467	63.54	75.71
TsbHLH32	Maker00007903	Chr10 (50070175007841)	Nuclear	5.92	26943.29	243	-0.56	49.81	71.4
TsbHLH33	Maker00007936	Chr10 (54485525449549)	Nuclear	7.06	28946.65	259	-0.55	68.81	74.21
TsbHLH34	Maker00013999	Chr11 (46686024669231)	Nuclear	5.76	23922.89	209	-0.8	63.4	73.73
TsbHLH35	Maker00032680	Chr11 (1141954711422205)	Extracellular	8.83	62692.89	561	-0.753	33.85	71.52
Table U27	Maler00009621	Chr11(1284094012842295)	Nuclear Extracallular	5.15 9.61	38242.18	33/ 860	-0.539	57.11	/0.38
TebHI H38	Maker00009077	$Chr11 (1308423215150481) \\Chr11 (13137339, 13145223)$	Extracellular	0.01 8 51	37373 75	281	-0.495	51.65	04.40 107 10
TebHI H30	Maker00020140	Chr11 (14985457 - 14988870)	Extracellular	5.63	12201 70	281	-0.189	52.2	72 27
TsbHLH40	Maker00020140	$Chr11 (15053064 \ 15053843)$	Nuclear	9.54	28894 38	259	-0.304	61.2	64 4
TsbHLH41	Maker00031833	Chr11 (17612619, 17614397)	Nuclear	6.03	36075.86	321	-1.035	52.97	57.69
TsbHLH42	Maker00026700	Chr12 (29552732956052)	Nuclear	9.32	28874.46	259	-0.412	57.13	65.52
TsbHLH43	Maker00026395	Chr12 (30185053023506)	Extracellular	5.94	44988.61	411	-0.624	59.41	68.3
TsbHLH44	Maker00026830	Chr12 (48842764886049)	Nuclear	5.74	38932.10	346	-0.382	58.12	88.76
TsbHLH45	Maker00026825	Chr12 (49061914916772)	Extracellular	6.90	78720.20	709	-0.385	55.55	86.08
TsbHLH46	Maker00026766	Chr12 (50860875087439)	Nuclear	5.20	37837.62	335	-0.537	60.86	73.64
TsbHLH47	Maker00000467	Chr12 (68766296877750)	Nuclear	6.09	36650.59	321	-0.272	54.5	80.5
TsbHLH48	Maker00026481	Chr12 (878213879614)	Nuclear	5.56	39298.77	348	-0.805	49.71	63.3
TsbHLH49	Maker00028535	Chr12 (1420069314201660)	Nuclear	5.81	27113.57	239	-0.703	60.03	73.85
TsbHLH50	Maker00023442	Chr13 (884608887695)	Extracellular	6.23	35461.45	325	-0.296	63.2	81.6
TsbHLH51	Maker00032793	Chr13 (1361355513615408)	Nuclear	6.28	38238.00	346	-0.586	66.41	80.66
TsbHLH52	Maker00026079	Chr13 (1513300315136633)	Nuclear	5.34	37562.83	336	-0.775	54.67	71.96
TsbHLH53	Maker00025766	Chr13 (1825241718255239)	Nuclear	5.71	52424.33	461	-0.566	52.17	86.25
TsbHLH54	Maker00025736	Chr13 (1995686519957924)	Nuclear	9.85	20070.89	182	-0.826	51.33	73.41
IsbHLH55	Maker000259/2	Chr13(205/4422205/6/03)	Nuclear	7.69	49108.99	443	-0.815	44.62	49.1
ISDHLH56	Maker00010886	Chr14 (368015370238)	Nuclear	8.52	4/084.03	426	-0.785	50.72	54.72 72.64
Table US	Maker00010812	Chr14 (930193937411)	Nuclear	9.44	25/2/.58	251	-0.00/	57.91	/2.04
150111138 Tehtt 1150	Maker00021652	Chr14 (50095795012188) Chr14 (5554740 5558227)	Nuclear	0.49 5.62	38756 59	43/	-0.307	57.85	07.24 70.5
Терні нео	Maker00031032	Chr14 ($6070706 + 6081643$)	Nuclear	6.09	38340 11	345	-0.724	61.04	84.05
TshHI H61	Maker00003238	Chr14 (19663257 19664632)	Nuclear	6.45	27267 72	240	-0.545	54 94	71.88
TsbHLH62	Maker00029664	Chr15 (566470569209)	Extracellular	6.06	80535.86	743	-0.523	49.75	66.12
TsbHLH63	Maker00027153	Chr15 (1800340618004337)	Nuclear	9.33	29072.05	260	-0.434	53.92	79.85
TsbHLH64	Maker00027898	Chr15 (1992996419934220)	Nuclear	6.60	30816.08	288	-0.342	57.73	73.3
TsbHLH65	Maker00027975	Chr15 (2072338120724599)	Nuclear	5.24	38405.70	342	-0.606	62.72	72.4
TsbHLH66	Maker00009553	Chr16 (793052794268)	Nuclear	5.37	38481.68	343	-0.655	55.45	70.2

		Tab	le S2. (Cont'd.)	•					
		Chromosome	Subcellular	_	Mw	Protein		Instability	Aliphatic
Gene name	Gene locus	location	localization	pI	(Da)	length	GRAVY	index	index
TabUI U67	Malcor00000250	$Ch_{\pi}16(1488262, 1402840)$	Nuclear	5 50	25460.02	220	0.427	50.67	72.21
T-LILLIO/	Malaw00015902	$Ch_{10}(14882021492840)$	Trucical	5.59	79470.92	710	-0.437	59.07	72.21 50.00
TSDHLH08	Maker00015805	Chr16(2302055723023400)	Extracellular	0.34	/84/9.25	/19	-0.617	50.69	38.28
IsbHLH69	Maker00024125	Chr17 (1148441311504232)	Extracellular	9.54	67233.55	603	-0.52	46.29	81.33
TsbHLH70	Maker00015881	Chr17 (1176800511787095)	Extracellular	9.57	64379.42	576	-0.513	46.4	82.24
TsbHLH71	Maker00025436	Chr17 (2235504922357034)	Nuclear	6.16	46170.16	410	-0.968	61.19	56.2
TsbHLH72	Maker00007199	Chr18(1400482214005834)	Nuclear	9.62	27924.00	249	-0.392	53.62	88.39
TsbHLH73	Maker00007206	Chr18 (1409766714098722)	Nuclear	8.85	21510.44	193	-0.601	45.83	81.87
TsbHLH74	Maker00024052	Chr19 (295410296849)	Nuclear	6.44	54128.10	479	-0.472	40	77.24
TsbHI H75	Maker00002708	Chr19(1550213, 1553479)	Nuclear	5 29	71449 79	637	-0.4	48 68	88.45
TobUI U76	Malcor00002700	Chr10(1824115, 1825210)	Nuclear	5.20	25141.26	225	0.624	57.50	84.12
TSUILI170	M 1 00000145	Cli 19 (18541151855210)	Nuclear	5.60	23141.30	225	-0.024	57.59	64.13
ISBHLH//	Maker00000145	Chr19 (1/5520931/55/534)	Nuclear	8.78	61819.65	563	-0.894	51.11	59.77
TsbHLH78	Maker00031247	Chr20 (66371786642650)	Nuclear	8.67	60979.60	555	-0.862	54.72	60.81
TsbHLH79	Maker00015674	Chr20 (98203819822745)	Extracellular	9.24	44247.22	400	-0.621	64.62	73.42
TsbHLH80	Maker00017436	Chr20 (2014353020146781)	Nuclear	5.59	70314.82	628	-0.379	51.63	88.77
TsbHLH81	Maker00022216	Chr20 (2153260721534052)	Nuclear	5.80	54397.39	481	-0.483	40.19	78.36
TsbHLH82	Maker00005326	Chr21 (21603492161833)	Nuclear	8.67	21855.44	194	-0.059	55.62	109.9
TsbHLH83	Maker00012386	Chr21 (42243654225254)	Nuclear	9.31	28406.41	245	-0.782	58.68	69.27
TsbHI H84	Maker00012266	Chr21 (4369289 4370190)	Nuclear	9.53	28918.00	249	-0.755	59.33	70.48
Tabul U85	Malcor00012200	Chr21 (7627824, 7620272)	Nuclear	5 20	47876.40	424	0.169	61.00	80.02
TSUILII65	Niake100012332	$CIII_{21}(70378347039273)$	Nuclear	5.50	4/8/0.40	424	-0.408	52.92	80.02
IsbHLH86	Maker00020218	Chr21 (1301560/13021623)	Nuclear	8.18	38242.99	355	-0.621	52.83	58.79
TsbHLH87	Maker00001640	Chr22 (1285326712854837)	Nuclear	5.43	47747.65	424	-0.605	63.32	76.34
TsbHLH88	Maker00006644	Chr22 (1636015916361034)	Nuclear	7.67	26696.24	229	-0.81	58.64	74.5
TsbHLH89	Maker00006506	Chr22 (1752703017528542)	Nuclear	8.32	22490.13	201	-0.03	54.76	107.56
TsbHLH90	Maker00020960	Chr23 (38340303837402)	Nuclear	5.55	50708.20	461	-0.444	48.52	77.27
TsbHLH91	Maker00030964	Chr23 (75829387585862)	Extracellular	7.18	63318.75	572	-0.693	53.02	56.05
TsbHLH92	Maker00005769	Chr^{23} (11911712 11913730)	Nuclear	5 33	64508 77	589	-0.626	53 78	66 76
TebHI H03	Maker00032146	Chr23(12136352, 12138367)	Nuclear	5.35	73740.81	671	0.620	52.85	66.15
Tablil 1104	Malar 00022140	Chr22(12646080, 12648200)	Nuclear	9.40	25008 78	220	-0.002	54.85	00.15
TSDHLH94	Maker00032129	Cnr23 (1204008912048200)	Nuclear	8.75	55998.78	520	-0.456	54.85	88.97
IsbHLH95	Maker00030534	Chr23 (2166101/21666382)	Nuclear	6.12	54922.97	502	-0.612	61.01	58.51
TsbHLH96	Maker00021340	Chr23 (2191000321915499)	Nuclear	5.81	63000.32	578	-0.448	55.21	65.14
TsbHLH97	Maker00001126	Chr23 (2420596724207694)	Nuclear	6.06	55464.15	503	-0.511	46.33	73.4
TsbHLH98	Maker00018792	Chr23 (2574497225750094)	Nuclear	5.26	76404.19	683	-0.675	65.32	73.07
TsbHLH99	Maker00014851	Chr23 (2804158228044050)	Extracellular	9.70	70444.27	632	-0.69	59.61	65.73
TsbHLH100	Maker00014721	Chr23 (2842120428427214)	Extracellular	5.84	89708.14	797	-0.273	48.63	94.42
TsbHI H101	Maker00014629	Chr23 (28555453 28556928)	Nuclear	5.85	54580 51	491	-0.465	46.1	80.59
Tabul U102	Malcor0001402	Chr23 (2893345528936928)	Nuclear	6.14	68201 70	615	0.455	44.41	80.05
T-1 III II102	M-100020191	$Ch_{22} (21244255 - 21247502)$	Nuclear	0.14	50(44.10	4(2	-0.435	57.52	51.0
TSDHLH103	Maker00029181	Cnr23 (3134423531347502)	Nuclear	8.33	50644.10	462	-0.675	57.55	51.8
IsbHLH104	Maker00023868	Chr24 (3490736601)	Nuclear	5.36	51382.22	458	-0.602	47.24	80.87
TsbHLH105	Maker00023851	Chr24 (817898821067)	Nuclear	8.36	50786.27	469	-0.606	56.68	54.8
TsbHLH106	Maker00022912	Chr24 (28359792837826)	Nuclear	6.04	68491.05	615	-0.457	43.47	79.24
TsbHLH107	Maker00022913	Chr24 (31679473169422)	Nuclear	5.58	54693.69	491	-0.469	48.11	81.38
TsbHLH108	Maker00022717	Chr24 (34773143478379)	Nuclear	9.62	23541.03	207	-0.431	56.51	88.5
TsbHLH109	Maker00022716	Chr24 (65728796577774)	Nuclear	5.51	76383.28	684	-0.662	62.91	70.13
TsbHI H110	Maker00012648	Chr24 (8425028 8426545)	Nuclear	6.18	55664.86	505	-0.41	46 51	80.08
TebHI H111	Maker00000517	Chr24(11340277, 11355160)	Nuclear	6.27	64417 30	580	0.622	50.18	56.01
TabIII II112	Malar 00028121	Chr24(10742445, 10744042)	Nuclear	0.27	28060.60	221	-0.022	57.08	00.01
	Maker00028131	$CIII_{24}(19/4244519/44042)$	Nuclear	9.02	38009.00	551	-0.401	57.98	00.07
ISBHLH113	Maker00028128	Chr24 (2010891420110937)	Nuclear	5.55	/3266.36	667	-0.679	52.13	66.82
TsbHLH114	Maker00033429	Chr24 (2346062823463581)	Extracellular	7.97	63340.83	573	-0.727	57.89	53.6
TsbHLH115	Maker00012989	Chr24 (2727089827274255)	Nuclear	5.74	50589.12	458	-0.452	49.95	78.41
TsbHLH116	Maker00013337	Chr24 (2784371027845103)	Nuclear	8.91	29975.10	268	-0.462	57.14	83.28
TsbHLH117	Maker00015635	Chr25 (665432667880)	Extracellular	5.99	49462.87	471	-0.55	43.72	65.73
TsbHLH118	Maker00011332	Chr25(42439114244880)	Nuclear	5.22	25603.01	222	-0.532	61.48	79.5
TsbHLH119	Maker00019989	Chr25 (15151423, 15153720)	Nuclear	9.17	58204.07	520	-0.345	67.06	86.67
TsbHI H120	Maker00025619	Chr26 (6970025 6972647)	Nuclear	934	54454 21	489	-0.226	66 76	91.17
TabIII II120	Malar 00016442	Chr26 (7058058, 7060100)	Nuclear	0.27	52052.54	405	0.220	68.76	20.54
TSDHLH121	Maker00016443	Chr26(70380387060190)	Nuclear	9.27	53052.54	4/5	-0.27	08.20	89.54
IsbHLH122	Maker00033771	Chr26 (18/4948518/504/4)	Nuclear	5.25	1/041.2/	149	-0.33	58.44	91.07
IsbHLH123	Maker00021458	Chr27 (82851748287218)	Nuclear	6.48	33373.19	302	-0.912	58.04	59.8
TsbHLH124	Maker00014264	Chr27 (1795810917960342)	Nuclear	5.49	35000.06	319	-0.713	62.48	59.06
TsbHLH125	Maker00003833	Chr27 (2097019720971581)	Nuclear	5.20	39047.94	361	-0.756	52.42	64.1
TsbHLH126	Maker00003830	Chr27 (2170572721708176)	Nuclear	9.15	38421.82	342	-0.48	39.3	72.69
TsbHLH127	Maker00003865	Chr27 (2213399222136580)	Nuclear	5.47	65242.71	573	-0.671	44.23	76.81
TsbHLH128	Maker00033158	Chr28 (1423928_1425207)	Nuclear	7.73	37474 78	336	-0.379	46.92	80.09
TshHI H120	Maker00010164	Chr28 (2042005 2043504)	Nuclear	5 31	42580.05	301	_0.74	57 50	63 01
Tehui U120	Maker00010104	Chr28 (2072056 2074577)	Extracillator	6.14	76121 05	240	0.74	17 10	65.04
	Matax 000000070	$C_{1120} \left(\frac{27}{203029} \frac{43}{43} \right)$	Extracentular	0.14	20131.03	240	-0.093	47.42	(0.20
ISBHLH131	Maker00009959	Chr28 (45985894600/22)	Nuclear	6.14	28014.26	251	-0./81	61.92	60.28
IsbHLH132	Maker00028576	Chr28 (81728828174915)	Nuclear	6.86	33445.37	302	-0.903	58.57	61.69

				T I III III III		t tet penota s	T 1 HI 100				
		ISDHLH/	ISDHLH8	ISDHLH15	ISDHLHIS	ISDHLH24	ISDHLH29	ISDHLH30	ISDHLH55	ISDHLH39	ISDHLH45
Тећиг и 7	Pearson correlation coefficient	1	0.843	-0.068	0.935	-0.777	-0.096	0.654	-0.837	0.047	0.568
	Sig. (2-tailed)		0.157	0.932	0.065	0.223	0.904	0.346	0.163	0.953	0.432
т.ьш по	Pearson correlation coefficient	0.843	1	-0.556	0.705	-0.378	-0.467	0.916	-0.617	0.083	0.868
120HLH3	Sig. (2-tailed)	0.157		0.444	0.295	0.622	0.533	0.084	0.383	0.917	0.132
т.ьшт цтэ	Pearson correlation coefficient	-0.068	-0.556	1	0.197	-0.558	0.924	-0.552	-0.286	-0.441	-0.569
CIUTUASI	Sig. (2-tailed)	0.932	0.444		0.803	0.442	0.076	0.448	0.714	0.559	0.431
Тећиг ит с	Pearson correlation coefficient	0.935	0.705	0.197	1	-0.921	0.241	0.613	-0.974	-0.286	0.544
CILITINGI	Sig. (2-tailed)	0.065	0.295	0.803		0.079	0.759	0.387	0.026	0.714	0.456
таки изл	Pearson correlation coefficient	-0.777	-0.378	-0.558	-0.921	1	-0.545	-0.279	0.923	0.365	-0.209
12UULU24	Sig. (2-tailed)	0.223	0.622	0.442	0.079		0.455	0.721	0.077	0.635	0.791
т.ьыт пло	Pearson correlation coefficient	-0.096	-0.467	0.924	0.241	-0.545	1	-0.319	-0.398	-0.749	-0.305
1201111127	Sig. (2-tailed)	0.904	0.533	0.076	0.759	0.455		0.681	0.602	0.251	0.695
Тећиг изо	Pearson correlation coefficient	0.654	0.916	-0.552	0.613	-0.279	-0.319	1	-0.611	-0.248	0.994
OCHTHINSI	Sig. (2-tailed)	0.346	0.084	0.448	0.387	0.721	0.681		0.389	0.752	0.006
Т.ћШ Ц22	Pearson correlation coefficient	-0.837	-0.617	-0.286	-0.974	0.923	-0.398	-0.611	1	0.494	-0.561
CCUTUOSI	Sig. (2-tailed)	0.163	0.383	0.714	0.026	0.077	0.602	0.389		0.506	0.439
Тъћиг и 20	Pearson correlation coefficient	0.047	0.083	-0.441	-0.286	0.365	-0.749	-0.248	0.494	1	-0.304
CHITHUS1	Sig. (2-tailed)	0.953	0.917	0.559	0.714	0.635	0.251	0.752	0.506		0.696
Тећиг ида	Pearson correlation coefficient	0.568	0.868	-0.569	0.544	-0.209	-0.305	0.994	-0.561	-0.304	1
	Sig. (2-tailed)	0.432	0.132	0.431	0.456	0.791	0.695	0.006	0.439	0.696	
Тећиг и71	Pearson correlation coefficient	0.708	0.849	-0.29	0.759	-0.5	-0.039	0.958	-0.792	-0.455	0.948
	Sig. (2-tailed)	0.292	0.151	0.71	0.241	0.5	0.961	0.042	0.208	0.545	0.052
Tehui u75	Pearson correlation coefficient	-0.186	-0.492	0.868	0.165	-0.451	0.989	-0.29	-0.343	-0.815	-0.26
C/UTUOSI	Sig. (2-tailed)	0.814	0.508	0.132	0.835	0.549	0.011	0.71	0.657	0.185	0.74
Tekur uni	Pearson correlation coefficient	-0.108	-0.524	0.967	0.21	-0.542	0.991	-0.421	-0.346	-0.652	-0.416
16UTUASI	Sig. (2-tailed)	0.892	0.476	0.033	0.79	0.458	0.009	0.579	0.654	0.348	0.584
Тећиг иод	Pearson correlation coefficient	0.536	0.029	0.806	0.72	-0.933	0.724	-0.081	-0.737	-0.342	-0.146
	Sig. (2-tailed)	0.464	0.971	0.194	0.28	0.067	0.276	0.919	0.263	0.658	0.854
Тећні но7	Pearson correlation coefficient	0.772	0.636	0.205	0.929	-0.843	0.384	0.698	-0.982	-0.598	0.666
1201111001	Sig. (2-tailed)	0.228	0.364	0.795	0.071	0.157	0.616	0.302	0.018	0.402	0.334
Тећиг и102	Pearson correlation coefficient	0.211	-0.344	0.927	0.382	-0.704	0.751	-0.485	-0.392	-0.176	-0.542
COULTERING	Sig. (2-tailed)	0.789	0.656	0.073	0.618	0.296	0.249	0.515	0.608	0.824	0.458
TehHI H108	Pearson correlation coefficient	0.554	0.037	0.789	0.715	-0.926	0.678	-0.105	-0.714	-0.265	-0.176
12011111100	Sig. (2-tailed)	0.446	0.963	0.211	0.285	0.074	0.322	0.895	0.286	0.735	0.824
Тећиг и 112	Pearson correlation coefficient	0.829	0.411	0.383	0.806	-0.862	0.194	0.124	-0.697	0.156	0.019
12011111117	Sig. (2-tailed)	0.171	0.589	0.617	0.194	0.138	0.806	0.876	0.303	0.844	0.981
Тећиг и 124	Pearson correlation coefficient	0.185	-0.37	0.865	0.297	-0.617	0.624	-0.572	-0.27	0.016	-0.638
	Sig. (2-tailed)	0.815	0.63	0.135	0.703	0.383	0.376	0.428	0.73	0.984	0.362

				Table	e S3. (Cont'd.)						
		TsbHLH7	TsbHLH8	TsbHLH13	TsbHLH15	TsbHLH24	TsbHLH29	TsbHLH30	TsbHLH33	TsbHLH39	TsbHLH43
Tshuri u121	Pearson correlation coefficient	0.305	-0.251	0.901	0.469	-0.767	0.732	-0.402	-0.472	-0.182	-0.464
1CTUTU0S1	Sig. (2-tailed)	0.695	0.749	0.099	0.531	0.233	0.268	0.598	0.528	0.818	0.536
	Pearson correlation coefficient	-0.52	-0.841	0.88	-0.239	-0.131	0.871	-0.71	0.098	-0.494	-0.677
ISAAUI	Sig. (2-tailed)	0.48	0.159	0.12	0.761	0.869	0.129	0.29	0.902	0.506	0.323
Tenvo	Pearson correlation coefficient	0.226	-0.333	0.891	0.364	-0.68	0.681	-0.511	-0.352	-0.073	-0.575
NVUSI	Sig. (2-tailed)	0.774	0.667	0.109	0.636	0.32	0.319	0.489	0.648	0.927	0.425
Tenve	Pearson correlation coefficient	0.301	-0.222	0.931	0.532	-0.819	0.852	-0.284	-0.583	-0.413	-0.33
CVUSI	Sig. (2-tailed)	0.699	0.778	0.069	0.468	0.181	0.148	0.716	0.417	0.587	0.67
T, EDDC1	Pearson correlation coefficient	0.553	0.627	-0.598	0.223	0.005	-0.804	0.303	-0.007	0.825	0.226
151121	Sig. (2-tailed)	0.447	0.373	0.402	0.777	0.995	0.196	0.697	0.993	0.175	0.774
	Pearson correlation coefficient	-0.085	-0.118	0.447	0.251	-0.336	0.754	0.219	-0.462	-0.999	0.278
C J J D D S J	Sig. (2-tailed)	0.915	0.882	0.553	0.749	0.664	0.246	0.781	0.538	0.001	0.722
TeCDDC1	Pearson correlation coefficient	0.734	0.441	0.957	0.474	-0.955	0.576	0.454	-0.978	-0.582	0.409
ISULLAT	Sig. (2-tailed)	0.266	0.559	0.043	0.526	0.045	0.424	0.546	0.022	0.418	0.591
Tenvice	Pearson correlation coefficient	-0.768	-0.772	0.485	-0.491	0.261	0.652	-0.46	0.292	-0.65	-0.371
NDMIISI	Sig. (2-tailed)	0.232	0.228	0.515	0.509	0.739	0.348	0.54	0.708	0.35	0.629
DUTDO	Pearson correlation coefficient	-0.387	-0.614	0.797	-0.039	-0.246	0.939	-0.365	-0.156	-0.809	-0.314
I SIVI I C	Sig. (2-tailed)	0.613	0.386	0.203	0.961	0.754	0.061	0.635	0.844	0.191	0.686
T-UMCC	Pearson correlation coefficient	-0.332	0.227	-0.852	-0.455	0.743	-0.642	0.424	0.43	0.057	0.496
CDIMIUSI	Sig. (2-tailed)	0.668	0.773	0.148	0.545	0.257	0.358	0.576	0.57	0.943	0.504
TCIDI	Pearson correlation coefficient	-0.279	-0.403	0.64	0.078	-0.272	0.877	-0.09	-0.293	-0.943	-0.029
121121	Sig. (2-tailed)	0.721	0.597	0.36	0.922	0.728	0.123	0.91	0.707	0.057	0.971
Ternor	Pearson correlation coefficient	0.221	-0.227	0.48	0.133	-0.351	0.116	-0.578	0.003	0.546	-0.666
151152	Sig. (2-tailed)	0.779	0.773	0.52	0.867	0.649	0.884	0.422	0.997	0.454	0.334
TeMDO	Pearson correlation coefficient	-0.007	-0.457	0.581	-0.051	-0.231	0.227	-0.756	0.153	0.474	-0.824
CULIVISI	Sig. (2-tailed)	0.993	0.543	0.419	0.949	0.769	0.773	0.244	0.847	0.526	0.176
TeMMD	Pearson correlation coefficient	0.237	-0.18	0.398	0.118	-0.308	0.025	-0.547	0.034	0.617	-0.638
	Sig. (2-tailed)	0.763	0.82	0.602	0.882	0.692	0.975	0.453	0.966	0.383	0.362
Terpera	Pearson correlation coefficient	0.392	-0.054	0.429	0.293	-0.466	0.079	-0.423	-0.144	0.534	-0.522
1211 220	Sig. (2-tailed)	0.608	0.946	0.571	0.707	0.534	0.921	0.577	0.856	0.466	0.478
TeCDDC7	Pearson correlation coefficient	0.525	0.15	0.231	0.366	-0.452	-0.112	-0.245	-0.186	0.633	-0.352
76 1 1061	Sig. (2-tailed)	0.475	0.85	0.769	0.634	0.548	0.888	0.755	0.814	0.367	0.648
TeHDD	Pearson correlation coefficient	0.228	-0.287	0.955	0.476	-0.778	0.887	-0.326	-0.54	-0.449	-0.365
Matter	Sig. (2-tailed)	0.772	0.713	0.045	0.524	0.222	0.113	0.674	0.46	0.551	0.635
Teuns	Pearson correlation coefficient	-0.058	-0.585	0.932	0.101	-0.471	0.724	-0.714	-0.117	-0.087	-0.755
COLLIST	Sig. (2-tailed)	0.942	0.415	0.068	0.899	0.529	0.276	0.286	0.883	0.913	0.245

		TsbHLH71	TsbHLH75	TsbHLH91	TsbHLH94	TsbHLH97	TsbHLH103	TsbHLH108	TsbHLH112	TsbHLH124
5-6111 117	Pearson correlation coefficient	0.708	-0.186	-0.108	0.536	0.772	0.211	0.554	0.829	0.185
ISDHLH /	Sig. (2-tailed)	0.292	0.814	0.892	0.464	0.228	0.789	0.446	0.171	0.815
гььшт цо	Pearson correlation coefficient	0.849	-0.492	-0.524	0.029	0.636	-0.344	0.037	0.411	-0.37
0UTU0SI	Sig. (2-tailed)	0.151	0.508	0.476	0.971	0.364	0.656	0.963	0.589	0.63
ерш 1113 2	Pearson correlation coefficient	-0.29	0.868	0.967	0.806	0.205	0.927	0.789	0.383	0.865
CINTROS	Sig. (2-tailed)	0.71	0.132	0.033	0.194	0.795	0.073	0.211	0.617	0.135
24111 111 <i>6</i>	Pearson correlation coefficient	0.759	0.165	0.21	0.72	0.929	0.382	0.715	0.806	0.297
CIUTUOS	Sig. (2-tailed)	0.241	0.835	0.79	0.28	0.071	0.618	0.285	0.194	0.703
1011114	Pearson correlation coefficient	-0.5	-0.451	-0.542	-0.933	-0.843	-0.704	-0.926	-0.862	-0.617
SDHLH24	Sig. (2-tailed)	0.5	0.549	0.458	0.067	0.157	0.296	0.074	0.138	0.383
	Pearson correlation coefficient	-0.039	0.989	0.991	0.724	0.384	0.751	0.678	0.194	0.624
SDHLH29	Sig. (2-tailed)	0.961	0.011	0.00	0.276	0.616	0.249	0.322	0.806	0.376
1110	Pearson correlation coefficient	0.958	-0.29	-0.421	-0.081	0.698	-0.485	-0.105	0.124	-0.572
OCHLINOS	Sig. (2-tailed)	0.042	0.71	0.579	0.919	0.302	0.515	0.895	0.876	0.428
сыл <u>п</u> 22	Pearson correlation coefficient	-0.792	-0.343	-0.346	-0.737	-0.982	-0.392	-0.714	-0.697	-0.27
CCHTHOS	Sig. (2-tailed)	0.208	0.657	0.654	0.263	0.018	0.608	0.286	0.303	0.73
ерні <u>н</u> зо	Pearson correlation coefficient	-0.455	-0.815	-0.652	-0.342	-0.598	-0.176	-0.265	0.156	0.016
	Sig. (2-tailed)	0.545	0.185	0.348	0.658	0.402	0.824	0.735	0.844	0.984
ернг низ	Pearson correlation coefficient	0.948	-0.26	-0.416	-0.146	0.666	-0.542	-0.176	0.019	-0.638
201111110	Sig. (2-tailed)	0.052	0.74	0.584	0.854	0.334	0.458	0.824	0.981	0.362
shur u71	Pearson correlation coefficient	1	-0.022	-0.145	0.173	0.869	-0.248	0.138	0.251	-0.373
20111111/1	Sig. (2-tailed)		0.978	0.855	0.827	0.131	0.752	0.862	0.749	0.627
ећит и <i>т</i> с	Pearson correlation coefficient	-0.022	1	0.965	0.623	0.356	0.648	0.569	0.058	0.509
201111110	Sig. (2-tailed)	0.978		0.035	0.377	0.644	0.352	0.431	0.942	0.491
	Pearson correlation coefficient	-0.145	0.965	1	0.753	0.31	0.822	0.717	0.247	0.717
16UTU08	Sig. (2-tailed)	0.855	0.035		0.247	0.69	0.178	0.283	0.753	0.283
ерні пол	Pearson correlation coefficient	0.173	0.623	0.753	1	0.63	0.911	766.0	0.817	0.843
SUILIT74	Sig. (2-tailed)	0.827	0.377	0.247		0.37	0.089	0.003	0.183	0.157
shur un7	Pearson correlation coefficient	0.869	0.356	0.31	0.63	1	0.259	0.595	0.552	0.115
16UTU0S	Sig. (2-tailed)	0.131	0.644	0.69	0.37		0.741	0.405	0.448	0.885
рні н103	Pearson correlation coefficient	-0.248	0.648	0.822	0.911	0.259	1	0.919	0.678	0.981
011111100	Sig. (2-tailed)	0.752	0.352	0.178	0.089	0.741		0.081	0.322	0.019
1100	Pearson correlation coefficient	0.138	0.569	0.717	0.997	0.595	0.919	1	0.852	0.867
	Sig. (2-tailed)	0.862	0.431	0.283	0.003	0.405	0.081		0.148	0.133
	Pearson correlation coefficient	0.251	0.058	0.247	0.817	0.552	0.678	0.852	1	0.692
2011171117	Sig. (2-tailed)	0.749	0.942	0.753	0.183	0.448	0.322	0.148		0.308
	Pearson correlation coefficient	-0.373	0.509	0.717	0.843	0.115	0.981	0.867	0.692	1
900L0124	Sig. (2-tailed)	0.627	0.491	0.283	0.157	0.885	0.019	0.133	0.308	

vi

LIPING REN ET AL.,

				Table S3. (C	ont'd.).					
		TsbHLH71	TsbHLH75	TsbHLH91	TsbHLH94	TsbHLH97	TsbHLH103	TsbHLH108	TsbHLH112	TsbHLH124
Териг и 121	Pearson correlation coefficient	-0.163	0.624	0.798	0.944	0.338	0.995	0.953	0.739	0.971
ICIUTUOSI	Sig. (2-tailed)	0.837	0.376	0.202	0.056	0.662	0.005	0.047	0.261	0.029
	Pearson correlation coefficient	-0.502	0.876	0.899	0.436	-0.119	0.662	0.404	-0.096	0.6
ISAAUI	Sig. (2-tailed)	0.498	0.124	0.101	0.564	0.881	0.338	0.596	0.904	0.4
Tenvo	Pearson correlation coefficient	-0.293	0.569	0.762	0.89	0.205	0.995	0.907	0.709	0.995
ISUAR	Sig. (2-tailed)	0.707	0.431	0.238	0.11	0.795	0.005	0.093	0.291	0.005
Tenve	Pearson correlation coefficient	-0.012	0.767	0.888	0.966	0.484	0.961	0.956	0.666	0.89
CVUSI	Sig. (2-tailed)	0.988	0.233	0.112	0.034	0.516	0.039	0.044	0.334	0.11
TCEDDC1	Pearson correlation coefficient	0.12	-0.879	-0.754	-0.175	-0.076	-0.257	-0.109	0.424	-0.121
ISTFF31	Sig. (2-tailed)	0.88	0.121	0.246	0.825	0.924	0.743	0.891	0.576	0.879
Succest	Pearson correlation coefficient	0.424	0.823	0.658	0.324	0.567	0.172	0.247	-0.185	-0.019
Isoury	Sig. (2-tailed)	0.576	0.177	0.342	0.676	0.433	0.828	0.753	0.815	0.981
Tornori	Pearson correlation coefficient	0.678	0.52	0.533	0.835	0.952	0.54	0.807	0.691	0.409
ISUPPOI	Sig. (2-tailed)	0.322	0.48	0.467	0.165	0.048	0.46	0.193	0.309	0.591
T-INICB	Pearson correlation coefficient	-0.337	0.741	0.619	-0.047	-0.207	0.128	-0.104	-0.608	0.033
ISHIMUK	Sig. (2-tailed)	0.663	0.259	0.381	0.953	0.793	0.872	0.896	0.392	0.967
DATDS	Pearson correlation coefficient	-0.128	0.976	0.911	0.442	0.193	0.519	0.384	-0.155	0.386
C 1 I I I I I	Sig. (2-tailed)	0.872	0.024	0.089	0.558	0.807	0.481	0.616	0.845	0.614
TellMore	Pearson correlation coefficient	0.208	-0.523	-0.721	-0.919	-0.281	-0.986	-0.939	-0.781	-0.985
COMINE	Sig. (2-tailed)	0.792	0.477	0.279	0.081	0.719	0.014	0.061	0.219	0.015
ICIT	Pearson correlation coefficient	0.136	0.936	0.811	0.373	0.371	0.342	0.301	-0.21	0.174
171161	Sig. (2-tailed)	0.864	0.064	0.189	0.627	0.629	0.658	0.699	0.79	0.826
Terror	Pearson correlation coefficient	-0.521	-0.018	0.244	0.54	-0.19	0.728	0.601	0.692	0.845
1311132	Sig. (2-tailed)	0.479	0.982	0.756	0.46	0.81	0.272	0.399	0.308	0.155
SUM	Pearson correlation coefficient	-0.685	0.111	0.358	0.49	-0.328	0.755	0.544	0.532	0.867
CUINSI	Sig. (2-tailed)	0.315	0.889	0.642	0.51	0.672	0.245	0.456	0.468	0.133
TSMUD	Pearson correlation coefficient	-0.515	-0.11	0.154	0.48	-0.22	0.665	0.546	0.683	0.794
	Sig. (2-tailed)	0.485	0.89	0.846	0.52	0.78	0.335	0.454	0.317	0.206
arodrar	Pearson correlation coefficient	-0.362	-0.064	0.198	0.599	-0.043	0.717	0.661	0.802	0.825
1211270	Sig. (2-tailed)	0.638	0.936	0.802	0.401	0.957	0.283	0.339	0.198	0.175
TeGDDC7	Pearson correlation coefficient	-0.229	-0.256	-0.001	0.51	0.005	0.569	0.578	0.832	0.687
19ULL 22	Sig. (2-tailed)	0.771	0.744	0.999	0.49	0.995	0.431	0.422	0.168	0.313
Teunp	Pearson correlation coefficient	-0.051	0.809	0.921	0.943	0.448	0.957	0.93	0.605	0.882
MULLEL	Sig. (2-tailed)	0.949	0.191	0.079	0.057	0.552	0.043	0.07	0.395	0.118
Teuno	Pearson correlation coefficient	-0.507	0.636	0.811	0.756	-0.015	0.958	0.768	0.487	0.966
CULISI	Sig. (2-tailed)	0.493	0.364	0.189	0.244	0.985	0.042	0.232	0.513	0.034

		TsbHLH131	TSAACT	TSDXR	TsDXS	TsFPPS1	TsGGPPS	TsGPPS1	TsHMGR	TSMTPS
54111 117	Pearson correlation coefficient	0.305	-0.52	0.226	0.301	0.553	-0.085	0.734	-0.768	-0.387
ISDHLH/	Sig. (2-tailed)	0.695	0.48	0.774	0.699	0.447	0.915	0.266	0.232	0.613
011 110	Pearson correlation coefficient	-0.251	-0.841	-0.333	-0.222	0.627	-0.118	0.441	-0.772	-0.614
SDHLH8	Sig. (2-tailed)	0.749	0.159	0.667	0.778	0.373	0.882	0.559	0.228	0.386
ерш 1113 -	Pearson correlation coefficient	0.901	0.88	0.891	0.931	-0.598	0.447	0.474	0.485	0.797
CIUTUOS	Sig. (2-tailed)	0.099	0.12	0.109	0.069	0.402	0.553	0.526	0.515	0.203
	Pearson correlation coefficient	0.469	-0.239	0.364	0.532	0.223	0.251	0.927	-0.491	-0.039
C1U7U0S	Sig. (2-tailed)	0.531	0.761	0.636	0.468	0.777	0.749	0.073	0.509	0.961
	Pearson correlation coefficient	-0.767	-0.131	-0.68	-0.819	0.005	-0.336	-0.955	0.261	-0.246
20111124	Sig. (2-tailed)	0.233	0.869	0.32	0.181	0.995	0.664	0.045	0.739	0.754
	Pearson correlation coefficient	0.732	0.871	0.681	0.852	-0.804	0.754	0.576	0.652	0.939
201111172	Sig. (2-tailed)	0.268	0.129	0.319	0.148	0.196	0.246	0.424	0.348	0.061
	Pearson correlation coefficient	-0.402	-0.71	-0.511	-0.284	0.303	0.219	0.454	-0.46	-0.365
OCUTUOS	Sig. (2-tailed)	0.598	0.29	0.489	0.716	0.697	0.781	0.546	0.54	0.635
чып изз	Pearson correlation coefficient	-0.472	0.098	-0.352	-0.583	-0.007	-0.462	-0.978	0.292	-0.156
CCUTUOS	Sig. (2-tailed)	0.528	0.902	0.648	0.417	0.993	0.538	0.022	0.708	0.844
PHI 1130	Pearson correlation coefficient	-0.182	-0.494	-0.073	-0.413	0.825	-0.999	-0.582	-0.65	-0.809
66111100	Sig. (2-tailed)	0.818	0.506	0.927	0.587	0.175	0.001	0.418	0.35	0.191
РП П/3	Pearson correlation coefficient	-0.464	-0.677	-0.575	-0.33	0.226	0.278	0.409	-0.371	-0.314
C+1171100	Sig. (2-tailed)	0.536	0.323	0.425	0.67	0.774	0.722	0.591	0.629	0.686
4UI U71	Pearson correlation coefficient	-0.163	-0.502	-0.293	-0.012	0.12	0.424	0.678	-0.337	-0.128
	Sig. (2-tailed)	0.837	0.498	0.707	0.988	0.88	0.576	0.322	0.663	0.872
PHI H75	Pearson correlation coefficient	0.624	0.876	0.569	0.767	-0.879	0.823	0.52	0.741	0.976
	Sig. (2-tailed)	0.376	0.124	0.431	0.233	0.121	0.177	0.48	0.259	0.024
PHI H01	Pearson correlation coefficient	0.798	0.899	0.762	0.888	-0.754	0.658	0.533	0.619	0.911
01111111	Sig. (2-tailed)	0.202	0.101	0.238	0.112	0.246	0.342	0.467	0.381	0.089
PDH IH4	Pearson correlation coefficient	0.944	0.436	0.89	0.966	-0.175	0.324	0.835	-0.047	0.442
	Sig. (2-tailed)	0.056	0.564	0.11	0.034	0.825	0.676	0.165	0.953	0.558
70H 1H4	Pearson correlation coefficient	0.338	-0.119	0.205	0.484	-0.076	0.567	0.952	-0.207	0.193
	Sig. (2-tailed)	0.662	0.881	0.795	0.516	0.924	0.433	0.048	0.793	0.807
ын н103	Pearson correlation coefficient	0.995	0.662	0.995	0.961	-0.257	0.172	0.54	0.128	0.519
0111110	Sig. (2-tailed)	0.005	0.338	0.005	0.039	0.743	0.828	0.46	0.872	0.481
PUT 11100	Pearson correlation coefficient	0.953	0.404	0.907	0.956	-0.109	0.247	0.807	-0.104	0.384
00111100	Sig. (2-tailed)	0.047	0.596	0.093	0.044	0.891	0.753	0.193	0.896	0.616
	Pearson correlation coefficient	0.739	-0.096	0.709	0.666	0.424	-0.185	0.691	-0.608	-0.155
71111110	Sig. (2-tailed)	0.261	0.904	0.291	0.334	0.576	0.815	0.309	0.392	0.845
	Pearson correlation coefficient	0.971	0.6	0.995	0.89	-0.121	-0.019	0.409	0.033	0.386
00101124	Sig. (2-tailed)	0.029	0.4	0.005	0.11	0.879	0.981	0.591	0.967	0.614

				Table S3. (C	Cont'd.).					
		TsbHLH131	TSAACT	TsDXR	TsDXS	TsFPPS1	TsGGPPS	TsGPPS1	TsHMGR	TSMTPS
Териг и 121	Pearson correlation coefficient	1	0.598	0.99	0.97	-0.207	0.174	0.608	0.058	0.478
ICIHTHOSI	Sig. (2-tailed)		0.402	0.01	0.03	0.793	0.826	0.392	0.942	0.522
	Pearson correlation coefficient	0.598	1	0.614	0.652	-0.831	0.516	0.109	0.819	0.911
ISAAUI	Sig. (2-tailed)	0.402		0.386	0.348	0.169	0.484	0.891	0.181	0.089
Tenyp	Pearson correlation coefficient	0.99	0.614	1	0.931	-0.169	0.069	0.492	0.056	0.437
NVDSI	Sig. (2-tailed)	0.01	0.386		0.069	0.831	0.931	0.508	0.944	0.563
Tenyo	Pearson correlation coefficient	0.97	0.652	0.931	1	-0.375	0.404	0.725	0.188	0.625
CVASI	Sig. (2-tailed)	0.03	0.348	0.069		0.625	0.596	0.275	0.812	0.375
TEDDCI	Pearson correlation coefficient	-0.207	-0.831	-0.169	-0.375	1	-0.845	-0.153	-0.958	-0.958
ISTT31	Sig. (2-tailed)	0.793	0.169	0.831	0.625		0.155	0.847	0.042	0.042
	Pearson correlation coefficient	0.174	0.516	0.069	0.404	-0.845	1	0.554	0.678	0.824
ISUULTS	Sig. (2-tailed)	0.826	0.484	0.931	0.596	0.155		0.446	0.322	0.176
Tecopet	Pearson correlation coefficient	0.608	0.109	0.492	0.725	-0.153	0.554	1	-0.133	0.338
ISUFFUL	Sig. (2-tailed)	0.392	0.891	0.508	0.275	0.847	0.446		0.867	0.662
T-INICB	Pearson correlation coefficient	0.058	0.819	0.056	0.188	-0.958	0.678	-0.133	1	0.87
NDMINI	Sig. (2-tailed)	0.942	0.181	0.944	0.812	0.042	0.322	0.867		0.13
TOTING	Pearson correlation coefficient	0.478	0.911	0.437	0.625	-0.958	0.824	0.338	0.87	1
C 1 I I I I I	Sig. (2-tailed)	0.522	0.089	0.563	0.375	0.042	0.176	0.662	0.13	
TenMCo	Pearson correlation coefficient	-0.992	-0.532	-0.994	-0.933	0.094	-0.049	-0.554	0.038	-0.373
COMPA	Sig. (2-tailed)	0.008	0.468	0.006	0.067	0.906	0.951	0.446	0.962	0.627
TeIDI	Pearson correlation coefficient	0.319	0.752	0.246	0.516	-0.954	0.952	0.437	0.829	0.957
171181	Sig. (2-tailed)	0.681	0.248	0.754	0.484	0.046	0.048	0.563	0.171	0.043
TEEDDCJ	Pearson correlation coefficient	0.721	0.213	0.795	0.531	0.361	-0.55	0.061	-0.35	-0.126
76 1 1 161	Sig. (2-tailed)	0.279	0.787	0.205	0.469	0.639	0.45	0.939	0.65	0.874
TeMDS	Pearson correlation coefficient	0.725	0.408	0.813	0.545	0.17	-0.468	-0.05	-0.125	0.043
CUINCI	Sig. (2-tailed)	0.275	0.592	0.187	0.455	0.83	0.532	0.95	0.875	0.957
TeMVD	Pearson correlation coefficient	0.66	0.132	0.739	0.458	0.439	-0.621	0.014	-0.416	-0.214
L V IVICI	Sig. (2-tailed)	0.34	0.868	0.261	0.542	0.561	0.379	0.986	0.584	0.786
TeTDC78	Pearson correlation coefficient	0.727	0.096	0.784	0.546	0.452	-0.544	0.184	-0.479	-0.201
076 1161	Sig. (2-tailed)	0.273	0.904	0.216	0.454	0.548	0.456	0.816	0.521	0.799
TeGDDC7	Pearson correlation coefficient	0.595	-0.135	0.645	0.405	0.638	-0.648	0.178	-0.668	-0.404
76 1 1061	Sig. (2-tailed)	0.405	0.865	0.355	0.595	0.362	0.352	0.822	0.332	0.596
Teunp	Pearson correlation coefficient	0.96	0.709	0.923	0.997	-0.442	0.443	0.694	0.264	0.681
MULLEL	Sig. (2-tailed)	0.04	0.291	0.077	0.003	0.558	0.557	0.306	0.736	0.319
JULT.	Pearson correlation coefficient	0.926	0.779	0.959	0.867	-0.332	0.093	0.29	0.278	0.559
CUHSI	Sig. (2-tailed)	0.074	0.221	0.041	0.133	0.668	0.907	0.71	0.722	0.441

		TsHMGS	TsIDI	TsFPPS2	TSMDS	TsMVD	TsTPS28	TsGPPS2	TsHDR	TsHDS
111 117	Pearson correlation coefficient	-0.332	-0.279	0.221	-0.007	0.237	0.392	0.525	0.228	-0.058
OHLH/	Sig. (2-tailed)	0.668	0.721	0.779	0.993	0.763	0.608	0.475	0.772	0.942
	Pearson correlation coefficient	0.227	-0.403	-0.227	-0.457	-0.18	-0.054	0.15	-0.287	-0.585
01110	Sig. (2-tailed)	0.773	0.597	0.773	0.543	0.82	0.946	0.85	0.713	0.415
	Pearson correlation coefficient	-0.852	0.64	0.48	0.581	0.398	0.429	0.231	0.955	0.932
CIUTUO	Sig. (2-tailed)	0.148	0.36	0.52	0.419	0.602	0.571	0.769	0.045	0.068
2111 1115	Pearson correlation coefficient	-0.455	0.078	0.133	-0.051	0.118	0.293	0.366	0.476	0.101
СТИТИО	Sig. (2-tailed)	0.545	0.922	0.867	0.949	0.882	0.707	0.634	0.524	0.899
	Pearson correlation coefficient	0.743	-0.272	-0.351	-0.231	-0.308	-0.466	-0.452	-0.778	-0.471
0HLH24	Sig. (2-tailed)	0.257	0.728	0.649	0.769	0.692	0.534	0.548	0.222	0.529
	Pearson correlation coefficient	-0.642	0.877	0.116	0.227	0.025	0.079	-0.112	0.887	0.724
67HTH0	Sig. (2-tailed)	0.358	0.123	0.884	0.773	0.975	0.921	0.888	0.113	0.276
	Pearson correlation coefficient	0.424	-0.09	-0.578	-0.756	-0.547	-0.423	-0.245	-0.326	-0.714
NCUTUO	Sig. (2-tailed)	0.576	0.91	0.422	0.244	0.453	0.577	0.755	0.674	0.286
ст <u>п</u> 22	Pearson correlation coefficient	0.43	-0.293	0.003	0.153	0.034	-0.144	-0.186	-0.54	-0.117
CCUTUC	Sig. (2-tailed)	0.57	0.707	0.997	0.847	0.966	0.856	0.814	0.46	0.883
0211 1130	Pearson correlation coefficient	0.057	-0.943	0.546	0.474	0.617	0.534	0.633	-0.449	-0.087
	Sig. (2-tailed)	0.943	0.057	0.454	0.526	0.383	0.466	0.367	0.551	0.913
UT 1142	Pearson correlation coefficient	0.496	-0.029	-0.666	-0.824	-0.638	-0.522	-0.352	-0.365	-0.755
C+117110	Sig. (2-tailed)	0.504	0.971	0.334	0.176	0.362	0.478	0.648	0.635	0.245
HI H71	Pearson correlation coefficient	0.208	0.136	-0.521	-0.685	-0.515	-0.362	-0.229	-0.051	-0.507
1/11/11/10	Sig. (2-tailed)	0.792	0.864	0.479	0.315	0.485	0.638	0.771	0.949	0.493
	Pearson correlation coefficient	-0.523	0.936	-0.018	0.111	-0.11	-0.064	-0.256	0.809	0.636
	Sig. (2-tailed)	0.477	0.064	0.982	0.889	0.89	0.936	0.744	0.191	0.364
	Pearson correlation coefficient	-0.721	0.811	0.244	0.358	0.154	0.198	-0.001	0.921	0.811
1111111	Sig. (2-tailed)	0.279	0.189	0.756	0.642	0.846	0.802	0.999	0.079	0.189
	Pearson correlation coefficient	-0.919	0.373	0.54	0.49	0.48	0.599	0.51	0.943	0.756
001L074	Sig. (2-tailed)	0.081	0.627	0.46	0.51	0.52	0.401	0.49	0.057	0.244
-UI 1107	Pearson correlation coefficient	-0.281	0.371	-0.19	-0.328	-0.22	-0.043	0.005	0.448	-0.015
160700	Sig. (2-tailed)	0.719	0.629	0.81	0.672	0.78	0.957	0.995	0.552	0.985
11102	Pearson correlation coefficient	-0.986	0.342	0.728	0.755	0.665	0.717	0.569	0.957	0.958
CULUTIO	Sig. (2-tailed)	0.014	0.658	0.272	0.245	0.335	0.283	0.431	0.043	0.042
11100	Pearson correlation coefficient	-0.939	0.301	0.601	0.544	0.546	0.661	0.578	0.93	0.768
	Sig. (2-tailed)	0.061	0.699	0.399	0.456	0.454	0.339	0.422	0.07	0.232
C1111 II.	Pearson correlation coefficient	-0.781	-0.21	0.692	0.532	0.683	0.802	0.832	0.605	0.487
71117110	Sig. (2-tailed)	0.219	0.79	0.308	0.468	0.317	0.198	0.168	0.395	0.513
	Pearson correlation coefficient	-0.985	0.174	0.845	0.867	0.794	0.825	0.687	0.882	0.966
nLn124	Sig. (2-tailed)	0.015	0.826	0 155	0 133	0.206	0 175	0 313	0 118	0.034

X

LIPING REN ET AL.,

				Table S3. (C	ont'd.).					
		TsHMGS	TsIDI	TsFPPS2	TsMDS	TsMVD	TsTPS28	TsGPPS2	TsHDR	TsHDS
Териг и 121	Pearson correlation coefficient	-0.992	0.319	0.721	0.725	0.66	0.727	0.595	0.96	0.926
ICIUTUOSI	Sig. (2-tailed)	0.008	0.681	0.279	0.275	0.34	0.273	0.405	0.04	0.074
	Pearson correlation coefficient	-0.532	0.752	0.213	0.408	0.132	0.096	-0.135	0.709	0.779
ISAAUI	Sig. (2-tailed)	0.468	0.248	0.787	0.592	0.868	0.904	0.865	0.291	0.221
Tenvo	Pearson correlation coefficient	-0.994	0.246	0.795	0.813	0.739	0.784	0.645	0.923	0.959
NV/ISI	Sig. (2-tailed)	0.006	0.754	0.205	0.187	0.261	0.216	0.355	0.077	0.041
Tenve	Pearson correlation coefficient	-0.933	0.516	0.531	0.545	0.458	0.546	0.405	0.997	0.867
CVASI	Sig. (2-tailed)	0.067	0.484	0.469	0.455	0.542	0.454	0.595	0.003	0.133
Teppe1	Pearson correlation coefficient	0.094	-0.954	0.361	0.17	0.439	0.452	0.638	-0.442	-0.332
ISTITOI	Sig. (2-tailed)	0.906	0.046	0.639	0.83	0.561	0.548	0.362	0.558	0.668
Dan COntra	Pearson correlation coefficient	-0.049	0.952	-0.55	-0.468	-0.621	-0.544	-0.648	0.443	0.093
ISUULTS	Sig. (2-tailed)	0.951	0.048	0.45	0.532	0.379	0.456	0.352	0.557	0.907
Tecobet	Pearson correlation coefficient	-0.554	0.437	0.061	-0.05	0.014	0.184	0.178	0.694	0.29
1971Det	Sig. (2-tailed)	0.446	0.563	0.939	0.95	0.986	0.816	0.822	0.306	0.71
T-UMCD	Pearson correlation coefficient	0.038	0.829	-0.35	-0.125	-0.416	-0.479	-0.668	0.264	0.278
VIDIMILIST	Sig. (2-tailed)	0.962	0.171	0.65	0.875	0.584	0.521	0.332	0.736	0.722
TeMTDS	Pearson correlation coefficient	-0.373	0.957	-0.126	0.043	-0.214	-0.201	-0.404	0.681	0.559
C I I MIST	Sig. (2-tailed)	0.627	0.043	0.874	0.957	0.786	0.799	0.596	0.319	0.441
TenMGe	Pearson correlation coefficient	1	-0.198	-0.8	-0.791	-0.748	-0.809	-0.69	-0.916	-0.922
COMINE	Sig. (2-tailed)		0.802	0.2	0.209	0.252	0.191	0.31	0.084	0.078
TeiDI	Pearson correlation coefficient	-0.198	1	-0.368	-0.231	-0.451	-0.409	-0.571	0.568	0.33
171161	Sig. (2-tailed)	0.802		0.632	0.769	0.549	0.591	0.429	0.432	0.67
CODCO	Pearson correlation coefficient	-0.8	-0.368	1	0.97	0.996	0.984	0.927	0.502	0.752
76 1 1 161	Sig. (2-tailed)	0.2	0.632		0.03	0.004	0.016	0.073	0.498	0.248
TeMDS	Pearson correlation coefficient	-0.791	-0.231	0.97	-	0.954	0.912	0.809	0.535	0.836
CUINCI	Sig. (2-tailed)	0.209	0.769	0.03		0.046	0.088	0.191	0.465	0.164
TeMVD	Pearson correlation coefficient	-0.748	-0.451	0.996	0.954	1	0.984	0.945	0.426	0.69
CI A INICI	Sig. (2-tailed)	0.252	0.549	0.004	0.046		0.016	0.055	0.574	0.31
TeTDC28	Pearson correlation coefficient	-0.809	-0.409	0.984	0.912	0.984	1	0.973	0.505	0.691
076 1161	Sig. (2-tailed)	0.191	0.591	0.016	0.088	0.016		0.027	0.495	0.309
TeGDDC7	Pearson correlation coefficient	-0.69	-0.571	0.927	0.809	0.945	0.973	1	0.351	0.51
76 1 1061	Sig. (2-tailed)	0.31	0.429	0.073	0.191	0.055	0.027		0.649	0.49
TeHDR	Pearson correlation coefficient	-0.916	0.568	0.502	0.535	0.426	0.505	0.351	1	0.879
Matter	Sig. (2-tailed)	0.084	0.432	0.498	0.465	0.574	0.495	0.649		0.121
TeHDS	Pearson correlation coefficient	-0.922	0.33	0.752	0.836	0.69	0.691	0.51	0.879	1
COTTIET	Sig. (2-tailed)	0.078	0.67	0.248	0.164	0.31	0.309	0.49	0.121	