PHYLOGENETIC STUDY OF TWO UNREPORTED EDIBLE POLYPORES FROM PAKISTAN: SPARASSIS LATIFOLIA AND GRIFOLA FRONDOSA

SHAHID HUSSAIN¹, MOHAMMAD NISAR^{1*}, HASSAN SHER², HAIDAR ALI^{2*} AND NAUSHEEN NAZIR³

¹Department of Botany, University of Malakand, Chakdara Dir Lower-18800, Khyber Pakhtunkhwa, Pakistan

²Center for Plant Sciences and Biodiversity, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan

³Department of Biochemistrty, University of Malakand, Chakdara Dir Lower-18800, Khyber Pakhtunkhwa, Pakistan

*Corresponding author email: mnshaalpk@yahoo.com (MN)

Abstract

Grifola Gray and Sparassis Fr. are among the most well-known Polyporales genera due to their immense mycogastronomic significance. Despite their economic importance and widespread distribution, they have been largely overlooked in taxonomic studies across different regions. Our analysis of morphological features and nuclear rDNA regions (ITS and nrLSU) from the voucher specimens, has led to the identification of two previously unreported species in Pakistan i.e., *G. frondosa* and *S. latifolia*. To reconstruct phylogenetic relationships of the species, the current study used three methods: maximum parsimony, maximum likelihood, and Bayesian analyses on the concatenated dataset (ITS + nrLSU). Phylogenetically, our specimen sequence from *Grifola* grouped together with *G. frondosa*, showing a robust support (100% MP, 100% ML and 1.00 BPP). However, it differed from *G. frondosa* in many distinct characteristics such a thin, non-fleshy pileoli, shallow, radially elongated pores, distinctly largest generative hyphae, lack of skeletal hyphae (monomitic hyphal system) and highest Q value, short sterigma, and spore size. Similarly, the morpho-anatomical characteristics of the *Sparassis* specimens closely resembled those of *S. latifolia*, *S. crispa*, and *S. radicata*, and were hardly distinguishable. The result of the phylogenetic analysis showed a strong association with *S. latifolia*, forming a single clade with high support (96% MP, 93% ML, and 0.98 BPP). This taxonomic study is a vital contribution to the list of polypores in the country and provides useful data about the biogeographic distribution worldwide.

Key words: Grifola, Sparassis, Mushroom, Phylogeny, Morphology

Introduction

Polyporales is one of the largest order in the fungal kingdom, consisting of 18 clades and 37 families (Justo et al., 2017). The current study examines two polyporoid species, one of which belongs to Sparassis genus that falls under the "antrodia clade" - the largest group of brown rot polypores (Hibbett & Donoghue, 2001; Ortiz-Santana et al., 2013; Justo et al., 2017; Cui et al., 2019; Yuan et al., 2022). Another species is the member of Grifola which was initially classified under the "antrodia clade" (Wu et al., 2004; Binder et al., 2005; Yu et al., 2010; Garcia-Sandoval et al., 2011). However, the genus was later transferred to the "core polyporoid clade" by Justo & Hibbett, (2011). It has been shown by the Binder et al., (2013) that the taxonomic position of the genus still remains uncertain and does not belong to either the "antrodia clade" or to the "core polyporoid clade". Nonetheless, it shows sister relationship with the latter (Justo & Hibbett, 2011; Binder et al., 2013).

The Sparassis Fr. is a type genus of edible mushrooms that belongs to Sparassidaceae Herter (Jülich, 1981). The genus is morphologically characterized by highly branched hymenophore which grows from thick stipe, forms flabellate (fan-shaped) branches with amphigenous hymenial surface and conspicuously creamy to white or yellowish color, possessing a monomitic hyphal structure composed of septate generative and gloeoplerous hyphae. Cystidia are rarely present and basidiospores are typically hyaline and ellipsoid to subglobose shaped. These characteristic have been documented in numerous studies (Wang et al., 2004; Desjardin et al., 2004; Zhao et al., 2013; Liu et al., 2023; Binder et al., 2005; Kirk, 2008).

The genus has been the subject of classification and taxonomic refinement since the late ninteen century. Martin & Gilbertson (1976), and Burdsall & Miller (1988) identified three common species, namely S. brevipes Krombh, S. crispa (Wulf.) Fr., and S. spathulata. Schw., Fr. However, based on phylogenetic data, Desjardin et al., (2004) and Wang et al., (2004) recorded seven species. Dai et al., (2006) and Ryoo et al., (2013) further refined the phylogenetic relationships of Sparassis species by studying geographical distribution of isolates using both ITS and LSU sequence data. They classified the genus into three species, namely S. crispa from Europe and eastern North America, S. radicata from western North America, and S. latifolia from Asia. Subsequently, Hughes et al., (2014) and Petersen et al., (2015) re-examined these findings and discovered that Sparassis can be divided into two complexes: the Sparassis crispa complex and the Sparassis spathulata – S. brevipes complex. The former complex includes species with curled or crisped branches such as S. crispa, S. radicata, S. latifolia, and S. americana, while the latter complex comprises species with erect or stiff, bladelike margins such as S. spathulata, S. brevipes, S. laminosa, S. nemecii, S. subalpina, S. miniensis, and S. cystidiosa. Hughes et al., (2014) also proposed the two new taxa, namely, S. americana and S. americana f. arizonica, and identified several monophyletic clades within the Sparassis crispa complex. Recently, the mitochondrial genome was used to differentiate between the Asian and European specimens and the American collections in S. crispa complex, leading to the identification of eight clades (Bashir et al., 2020).

Grifola Gray was originally described and classified in the family Hymenotheceae by Gray (1821) and later transferred to Grifolaceae Jülich (Hibbett *et al.*, 2000; Justo *et al.*, 2017). Name of the genus was typified on the basis of cosmopolitan species of *Grifola frondosa*. According to

 $\mathbf{2}$ SHAHID HUSSAIN *ET AL.*,

Justo et al., (2017), Grifolaceae is a separate family within Polyporales. These fungi produce a white rot in their substrate and are clearly distinct from brown rot fungal lineages in the antrodia clade. The genus is characterized, with eccentric simple or branched stipe and imbricate semicircular compound, annual basidiomes which consist of numerous petaloid pilei or multipileate or flabellate, with angular pores, 2-4 per mm, decurrent on stipe, possessing monomitic or dimitic hyphal system and usually clamp connections in generative hyphae and having ovoid to ellipsoid and inamyloid basidiospores (Gilbertson & Ryvarden 1986; Zhao & Zhang 1992; Shen et al., 2002). Grifola spp. are distributed throughout the globe from temperate forest to subtropics and are commonly associated with broad leaved trees (Dai, 2012; Acharya et al., 2015; Gargano et al., 2020; Wu et al., 2022).

Gray (1821) initially attempted to morphologically classify the genus into five species, which was later refined by Murrill (1904). However, subsequent taxonomic investigations by Gilbertson & Ryvarden, (1986), and Zhao & Zhang, (1992) have revealed that the genus is likely monotypic. This taxonomic investigation revealed that North American and Asian isolates were morphologically similar. The molecular data analyses of Lee et al., (2012) showed that species from the Japan exhibit little variation but may require revision due to difference in nomenclature. Recent analyses showed that G. umbellata (Pers.) Pilat is the widely distributed species and constitute phylogenetically distinct lineage (Sotome et al., 2008; Xing et al., 2013). Similarly, G. sordulenta (Mont.) Singer is associated with Nothofagus species from southern Argentina and south-central Chile also exhibit distinct relationship in the phylogenetic studies of Rajchenberg & Greslebin, (1995), and Shen (2001). Recent phylogenetic analyses of Rugolo et al., (2023) found that Grifola spp., in Southern Hemisphere are represented by four taxa including G. sordulenta and G. colensoi, G. gargal and a newly reported species G. odorata from New Zealand. The study highlights the complex evolutionary history of Grifola species evolving from Gondwanan ancestors.

These studies highlight the importance of molecular, morphological and geographical distribution data for accurate species identification and determining phylogenetic relationship among the species of both Grifola and Sparassis. The literature review further shows a lack of complete taxonomic information about these economic fungi from many countries, hindering a comprehensive understanding of their origins and biogeographic distribution on a global scale. A broader range of collection and diversity is required from all over the world to address questions and determine the phylogenetic relationships of these fungal groups. Many Asian countries including Pakistan, although possess a significant richness in mycoflora have received inadequate attention in term of taxonomic research. Observation further suggests that there is a significant amount of diversity yet to be described and resolved. Therefore, the current study aims to examine some representative vouchers materials and infer the phylogenetic relationship using both molecular and morphological data to expand the understanding of polypore diversity in the country.

Materials and Methods

Morphological characterization: The study analyzed voucher specimens collected in temperate forest of district Swat KP, Pakistan, which is located between 35°22' 42" N and 72°10'47" E in the Hindu-Kush mountain range. The ephemeral macro-morphological features of basidiocarps were recorded in the field notebook. For color terms Petersen (1996) was adopted, and the voucher specimens were deposited at the University of Malakand (UM) herbarium.

A thorough microanatomical examination of the basidiocarps were carried out using microscopic techniques and routine notations, in accordance with Ji (2022). Freehand anatomical sections were analyzed microscopically for the hyphal system, septal features, and hymenial elements, including basidial and sterile elements, and spore characteristics. Reagents such as 5% KOH, 2% congo red, lactophenol cotton blue, and Melzer's reagent (IKI) were used to mount and stain the samples. The reactions were classified into amyloid or Melzer's-positive (IKI+), and inamyloid or Melzer's-negative (IKI-) according to Banik et al., (2012). The mean spore length (L), width (W) were calculated as the arithmetic average of all spores, and the variation in the L/W ratios between the specimens studied was denoted as Q. The number of spores measured from a given number of specimens was recorded as n. The structure measurements was performed with Image J software (Tsujikawa et al., 2003).

Cultural characterization: The isolation was done from piece of the context of freshly collected basidiocarps. The tissue was inoculated onto 90 mm PDA and MEA plates following Lindner & Banik (2011) and Virginia & Catalin (2013) and observed under a stereomicroscope for macromorphological features (Stalpers, 1978).

DNA extraction: DNA extraction was done using standardized CTAB method, as described by Murray & Thompson (1980) and Stirling (2003), with modifications. Approximately 25 mg of piece from the pore surface was homogenized in 400 µl of 2% CTAB buffer with a multibeads shocker at 3000 rpm/1min, and then incubated at 65°C for 50 minutes. To purify the homogenate, 350 µl of chloroform: isoamyl alcohol (24:1) was added and vortexed for one minute, followed by centrifugation at 13200 rpm at 4°C for 20 minutes. The aqueous phase was transferred to a new autoclaved microtube. Precipitation was performed with 133.33 µl of ice-cold iso-propanol, followed by centrifugation at 13200 rpm at 4°C for 20 minutes, and the supernatant was discarded. The resulting pellet was washed twice by adding 500 µl of ice-cold ethanol, followed by brief vortexing and centrifugation for 3 minutes. After drying the pellet was re-suspended in distilled water, and stored at -20°C until further use.

PCR and Sanger sequencing: PCR amplification of the ITS1, 5.8S, and ITS2 gene regions of rDNA, as well as the nrLSU region was carried out using primers ITS-1-ITS4 and LR0R-LR5 (Gardes & Bruns, 1993; White *et al.*, 1990; Vilgalys & Hester, 1990). PCR reactions were performed on a Veriti thermal cycler (Applied Biosystems). In 20 μl reaction

mixtures containing 2 µl of genomic DNA (~100 ng), 0.5 µl of each primer, 14.17 µl of sterile deionized water (Fisher Scientific), 26 µl of 2×Taq PCR Mastermix, 0.5 µl Taq DNA polymerase (Takara BIO INC.), 2.0 µl MgCl2, and 0.5 µl dNTPs (Promega). The following temperature regime was used: an initial denaturation step at 95°C for 3 min, followed by 35 cycles of 95°C for 30 s, an annealing phase at 55°C for 30 s, and an extension step at 72°C for 30 s. The final extension was carried out at 72°C for 8 min. PCR products were confirmed using gel electrophoresis on 1% (wt/vol) agarose gels (Fisher Scientific) prepared in 0.5x TAE buffer and stained with ethidium bromide (Stefanova et al., 2022). A 1Kb ladder (Promega) was used as a standard marker in the first well, and gel documentation was carried out for visualization. Amplicons were purified using the total fragment DNA purification Kit (MEGA quick-spinTM PLUS, Thermo Fisher Scientific) according to the manufacturer's instructions. The Purified samples were sequenced using automated Sanger sequencing at Macrogen Inc. Seoul (https://dna.macrogen.com) sequencing facility in South Korea.

Phylogenetic analyses: To confirm the identity of query nucleotide sequences, Basic Local Alignment Search Tool (BLASTn) was used against the nucleotide database in GenBank. To ensure correct identification and retrieval of right reference sequences, protocols recommended by Nilsson et al., (2012) and Schoch et al., (2014) were followed. Sequence alignment was carried out using the MAFFT 7 online multiple sequence alignment program (https://mafft.cbrc.jp/ alignment/server/; Katoh et al., 2019). We reviewed the alignment and manually adjusted misaligned sites, excluding ambiguous sites at both ends, and removed most gaps, treating remaining gaps as missing data in all analyses using BioEdit 7.2.5 (Shen et al., 2002; Hall et al., 2011). Wolfiporia dilatohypha (FP72162) served as the outgroup. We performed three different phylogenetic analyses on the combined ITS + nLSU data set. Using jModelTest2 (Darriba et al., 2012), we determined the bestfit substitution model based on AIC criterion.

The parsimony analyses (MP) were conducted using PAUP v.4.0.b10 (Swofford, 2002). The analysis involved 1000 heuristic search replicates, utilizing random taxon addition searches and tree-bisection-reconnection (TBR) branch swapping. A 50% majority-rule consensus tree was generated, and the tree's topology was evaluated by calculating tree length, consistency index (CI), homoplasy index (HI), and retention index (RI) (Justo & Hibbett, 2011). Maximum Likelihood (ML) estimates were computed on the combined data sets (ITS+ nLSU) using IQ-TREE version 1.6.12 (Nguyen et al., 2015). Substitution models of TIM2ef+G, TrN+I, and TrN+I were selected for the respective partitions (Chernomor et al., Branch support was determined through 2016). bootstrapping with 1000 replicates (Hoang et al., 2018). Bayesian Metropolis-coupled Markov Chain Monte Carlo (MCMCMC) inference was performed on the data set using MrBayes version 3.1 (Ronquist & Huelsenbeck, 2003). The substitution models for each partition were specified as nst=6, rates=gamma (ITS), and nst=6, rates=propinv (nLSU and rpb2). The base frequencies, substitution rates, gamma shape, and p.inv. parameters

were set based on the best-fit models obtained through the Akaike Information Criterion (AIC) as determined by JModelTest2. The analysis was run for 2 million generations with four chains, and trees were sampled every 100 generations. The first 5000 trees (25% of the total) were excluded as burn-in and were not used in constructing the consensus tree. The stop rule was set at stopval=0.01 (Lindner and Banik 2008). The trees were analyzed using FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/) and later edited. The optimal topologies from maximum likelihood (ML) analyses were displayed and validated based on the ML-BS score (≥75), MP-BS score (≥50), and Bayesian posterior probabilities (BPPs) (≥0.95) (Ji, 2022).

Results

Phylogenetic analyses: Three methods - MP, ML, and Bayesian analyses - were employed to reconstruct the phylogenetic relationships. The dataset used for the analysis consisted of 65 sequence variants, including 39 ITS and 26 nrLSU sequences. The representative voucher samples, MUS27 and MUBS92, were included in the analysis (Table 1). Figure 1 illustrates the topology of the ML analysis, indicating the bootstrap proportion (MP), bootstrap maximum likelihood (ML), and Bayesian posterior probability (BPP) values. The analysis included a total of 14 species, including, S. radicata, S. crispa, S. spathulata, S. subalpine, S. brevipes, S. miniensis, S. cystidiosa, S. latifolia, S. americana, G. frondosa, G. sordulenta, G. colensoi, G. umbellatus, and outgroup species such as P. schweinitzii (DA-38) and Wolfiporia dilatohypha (FP72162). Among the 1309 nucleotide characters in the aligned data matrix, including gaps, 845 (64.6%) were constant sites, 90 (6.88%) were variable but uninformative for parsimony analysis, and 374 (28.57%) were parsimony-informative characters.

A heuristic search was conducted using maximum parsimony analysis, which produced 100 trees with equal parsimony scores on a single island, using tree-bisectionreconnection (TBR) branch swapping. These trees were used to create a 50% majority rule consensus parsimonious tree, which had a tree length of 1072. The consensus tree had a consistency index of 0.647, a retention index of 0.872, a rescaled consistency index of 0.564, and a homoplasy index of 0.353, indicating the proportion of homoplastic characters in the dataset. A maximum likelihood (ML) analysis was performed on a combined dataset with the initial log-likelihood of the dataset was -6775.564. The optimal evolutionary model was found to be the GTR+I+G, with an estimated proportion of invariant sites (p-invariance) of 0.2450 and a shape parameter for the gamma distribution of 0.4810. A Bayesian analysis was conducted using the same dataset with the "lset nst = 6" option. The analysis was run until convergence was achieved after 20,000,000 generations, with a standard deviation of split frequencies of 0.009968. The results of both Bayesian and likelihood analyses revealed similar tree topologies and clade distributions, with most lineages supporting species-level clades.

Our sample sequence MUS27 grouped together with *G. frondosa*, showing strong support (100% MP, 100% ML and 1.00 BPP), whereas the MUBS92 showed relationship with *S. latifolia* (96% MP, 93% ML and 0.98 BPP) (Fig. 1).

4 SHAHID HUSSAIN *ET AL.*,

Table 1. List of species specimens and accession of GenBank used in the phylogenetic analyses.

S. No.	Species	Voucher	Country	ITS	nrLSU
1.	Sparassis radicata	TENN50232/ss32	USA		AY218410
2.	Sparassis radicata	TENN52558	USA	KC987592	KF053405
3.	Sparassis radicata	FP-133458	USA	KC987572	KF053408
4.	Sparassis radicata	UBC-F12464/ss	USA	AY218443	-
5.	Sparassis crispa	MBUH-PIRJO&ILKKA94-1587/ss5	USA		AY218389
6.	Sparassis crispa	MBUH-DORISLABER/ss25	USA		AY218404
7.	Sparassis crispa	CBS120826	USA	KC987552	
8.	Sparassis crispa	CBS423c2	USA	KC987554	KF053375
9.	Sparassis spathulata	zw-clarku001/ss7	USA	AY218428	
10.	Sparassis spathulata	zw-clarku004/ss11	USA	AY218432	AY218395
11.	Sparassis subalpina	HKAS57488	China	JN387093	JN387104
12.	Sparassis subalpina	HKAS57511	China	JN387094	JN387105
13.	S. brevipes	MBUH-ILKKA96-1044/ss24	USA	AY218441	AY218403
14.	S. brevipes	WU 30050	USA	KP100501	KP100475
15.	Sparassis miniensis	LOU-fungi 18390	USA	DQ270675	DQ270676
16.	Sparassis cystidiosa	HKAS59856	China	JQ743079	JQ743090
17.	Sparassis cystidiosa	HKAS59855	China	JQ743078	JQ743088
18.	Sparassis cystidiosa	Desjardin 7410	USA	AY256891	-
19.	Sparassis latifolia	HMJAU2007	China	JQ743072	JQ743082
20.	Sparassis latifolia	HKAS59854	China	JQ743071	JQ743081
21.	Sparassis latifolia	HMJAU2955	China	JQ743073	JQ743083
22.	Sparassis americana f. americana		USA	KC987581	KF053389
23.	Sparassis americana f. americana	TENN66366	USA	KC987594	KF053388
24.	Grifola frondosa	zw-clarku005	USA	AY218415	AY218413
25.	Grifola frondosa	M036	USA	AY049119	-
26.	Grifola frondosa	WC834	USA	AY049139	-
27.	Grifola frondosa	CIRM-BRFM 1162	France	GU731562	-
28.	Grifola frondosa	strain-10	Germany	FR686557	-
29.	Grifola frondosa	Dai 19172	China	ON417161	ON417211
30.	Grifola sordulenta	G01	USA	AY049142	-
31.	Grifola sordulenta	AFTOL-ID 562	USA	AY854085	AY645050
32.	Grifola sordulenta		New Zealand		-
33.	Grifola colensoi	CBS 326.49	Australia	MH856542	-
34.	Grifola umbellatus	WA0000052306	Poland	KX756417	-
35.	Grifola umbellatus	Pen13513	China	KU189772	-
36.	Wolfiporia dilatohypha	FP72162	USA	EU402556	
37.	Phaeolus schweinitzii	DA-38	USA	EU402585	
38.	Sparassis latifolia	MUS27	Pakistan	OQ453180	
39.	Grifola frondosa	MUBS92	Pakistan	OQ453162	OQ453163

Grifola frondose (Dicks. Fr.) S. F. Gray

Vouchers specimen: Pakistan, KP Province: (i) *Grifola frondose* voucher no. MUBS92, Sailand, district Swat, (34°59′23" N and 72°10′56" E, 2751 m asl), mixed coniferous forest on dead tree roots of *Quercus semicarpifolia*, September, 2020. Depository info: Mycology section of University of Malakand (UOM); (ii) *Grifola frondosa* voucher no. MUBSg21, Miandam, district Swat, (35°04′28" N and 72°35′42" E, 2820 m asl), in mixed coniferous forest on ground near *Quercus* sp., September, 2021.

Basidiocarps: Basidiocarps annual, multipileate, substipitate, imbricate, non-bruising, and large sized approx. 20-36 cm across, 12-24 cm high, rosette of multiple overlapping tongue shaped caps (Flabellae/Pileoli) fused to a common short stipe forming irregular whorl. Individual cap is deltoid, spathulate or dimidiate, about 8-12 cm long, 3-5 cm wide, and 0.8-1.2 mm thick, non-fleshy

and non-juicy with mild odour, pleasant taste, and leathery texured which become crumbly and lightweight when dry; upper surface pale grayish and dark grayish towards the margin become dark gray or dark brown to blackish when dry, faintly zonate, 3-4 concentric zones at the margin, glabrous, showing radial vaguely streaked or striation. Margin wavy, whitish or paler, blunt and almost flat. Stipe stout, short, sub cylindrical and fleshy and massive and up to 1 cm in length. Pore surface whitish or cream in appearance when fresh become light yellowish when dry, nearly decurrent on stipe. Pores are usually shallow, minute nearly rounded to slit like, number of pores 5-7 or usually 5/mm; Dissepiment is non-uniform less than 0.1 mm in thickness, and non-lacerate. Tube layer closely affixed to the context, pale whitish, about 0.1 mm in thickness, single layered both context and tube layers are concolorous. Context: indistinctly paler covered by pileal black coat or cuticle, and about 0.8- 0.9 mm at the widest point. Context to tube layer ratio is 9:1 (Fig. 6).

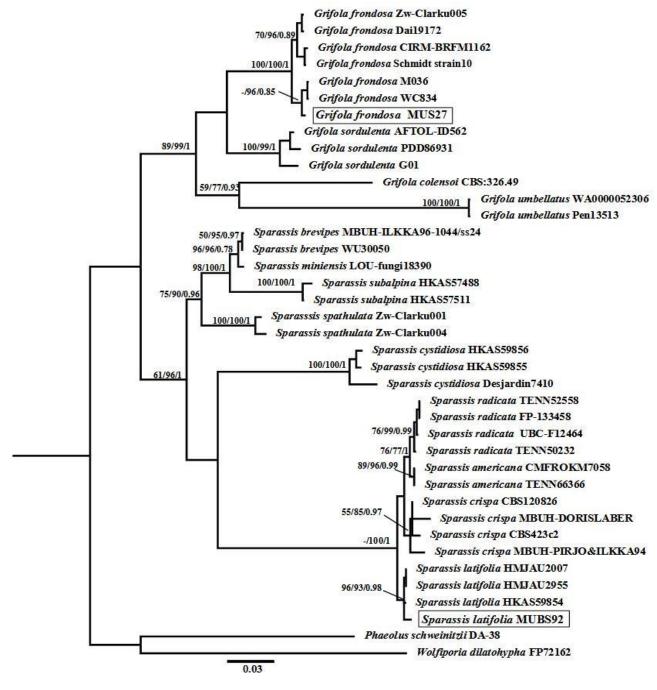


Fig. 1. The strict consensus tree determined through maximum likelihood depicts the phylogenetic relationships among *Grifola* and *Sparassis* spp., inferred from ITS + nrLSU sequences. Branch support values indicated before the corresponding node bootstrap MP/ bootstrap ML/ posterior probabilities BPP. Tip labels after taxa name designate voucher specimen number.

Hyphal system is monomitic. The contextual hyphae are wider, pale to hyaline, 11-23.5 (12.0) μm, and 0.77 to 1 μm wall thickness, frequently septate, branched or anastomosed, regular, more or less parallel, and unchanged with KOH. Tramal hyphae consist of wider generative hyphae in the subhymenial layer somewhat similar to the contextual hyphae. Whereas the generative hyphae from the hymenial layer are narrower, range 2.5-4.0 (6.6) μm in diam., thin walled, yellowish in color, interwoven, branched, rarely septate, possess abundant clamps, with lateral protuberances and swollen hyphal termii. The skeletal hyphae were not seen in the tramal layer. Basidia: clavate, with short sterigmata and a simple septum at the

base, 15-27 (15.7) × 5.5–8 (6.3) µm. Basidioles and cystidia are absent. Basidiospores ellipsoidal or ovoid, hyaline, uniguttate, thin and smooth walled, non-dextrinoid or inamyloid, acyanophilous, $6.0-8.6 \times 3.4-4.7$ µm, L = 7.1 µm, W = 3.8 µm, Q = 1.65-2.27, (n = 35/2) (Fig. 2).

Cultural characteristics (Figs. 3, 4)

Form and texture: Circular or irregular, homogeneous, silky to fleecy. The mat was flat, showing mostly aerial and sparsely grown, usually radial, azonate growth; Advancing edge: Outline was uneven, usually silky or fibrillar and raised; Colony odour: Not detected, Exudates: Not found

6 SHAHID HUSSAIN *ET AL.*,

Front color: Whitish to lightly brown, The brown to blackish color of the mycelium can be visualized when hold against the light; Obverse color: Pale to yellowish In vitro teleomorph formations: Denser lumps were observed on the margin in the old culture while the center is left uncovered KOH test: Light brown; Growth rate: The average GR was measured as 5.1 (\pm 0.5) mm day-1 . The colony achieved the total radial growth of 40.95 mm on day 9 at 25°C.; Hyphal characteristics (Fig. 3): The hyphae were usually long, branched, septate, rarely clamped, hyphal diameter was ranging from 2-4.5µm. Hyphal loops and swelling were rarely examined in the culture. Short lateral branches and protuberances were appeared on the hyphae. No chlamydospores were found. Comments: Inoculum was obtained internally from the context of basidiocarp collected from the base of Oak trees. Colony initiation and establishment was slightly slow. Culture viability was lost after few sub-culturing.

Morphological similarity: The morphological charactermatrix revealed that the species within the Grifola genus exhibit a little variation among the species. All of the described species were found to produce annual, imbricate, flabellate, stipitate, rosette-like multipileat, basidiocarps. The pileoli were observed to be irregularly lobed to petaloid or spatulate and radially rugose, and finely tomentose surface. The size of the fruiting bodies remains relatively consistent, typically ranging from 20-35 cm in width, although minor variations have been observed across the species (Table 2). Additionally, slight differences in coloration on the pileal and pore surfaces have been recorded. Our specimen exhibits several distinctive features that distinguish it from other species in the genus. In G. colensoi, G. gargal, and G. odorata, the pores were irregular, labyrinthine, and elongated, while G. frondosa possessed somewhat irregular to rounded or elongated pores. When compared pore size, hyphal structure, basidial and basidiospores our specimen exhibits relationship with G. frondosa. In our specimens, the pore size was smaller, ranging from 5-7, which is notably smaller than the pores found in G. colensoi, G. gargal, G. odorata, and G. sordulenta, which typically range from 1-2/mm. Notably, distinct characteristics were recorded in our specimen including monomitic hyphal structure, shallow pores (0.1 mm), largest generative hyphae (11-23.5), highest Q value (1.86), short sterigma does not match with the previously described species in the genus. Further, few of the species G. gargal, G. odorata, G. sordulenta monomitic hyphal system was recorded for the species rest of species were dimitic hyphal structure. The recorded distribution indicated that G. amazonica, G. americana, (North American) G. umbellate (rare European) G. frondosa (cosmopolitan species) were showing the norther hemispheric distribution while the G. colensoi, G. gargal G. odorata, G. sordulenta were found in the southern hemisphere.

Sparassis latifolia Y.C. Dai & Zheng Wang. Vouchers Specimen: Pakistan, KP province: (i) S. latifolia voucher no. MUS27, Sailand, district Swat, (35°05'53" N and 72°35'14" E, 2587 m asl), mixed coniferous forest on roots of dead stumps of Abies pindrow, July, 2018. ii) S. latifolia

voucher no. MUCS11, Chail, district Swat, (35°07'15" N and 72°34'12" E, 2327 m asl), in mixed coniferous forest on ground near *Abies pindrow*, August, 2019. Depository info: Mycology section of University of Malakand (UOM).

Spore print: white; Rot type: white rotting

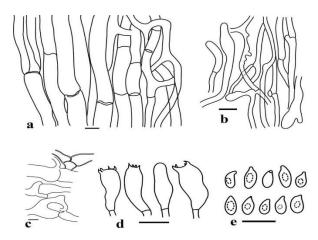


Fig. 2. Microscopic structure drawn from voucher specimen of G. frondosa a. Generative hyphae of context showing branches; b. Generative hyphae of hymenial layer; c. Clamps and branching points of the hyphal system and hymenium structure; d. basidia e. basidiospor Scale bars: a,b,c = $10 \, \mu m$.

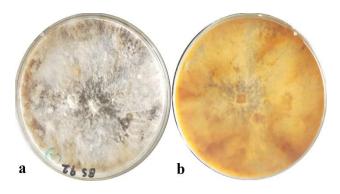


Fig. 3. Cultural characteristics; MEA grown culture of *Grifola frondosa* a. front view; b. reverse view (90 mm plate).

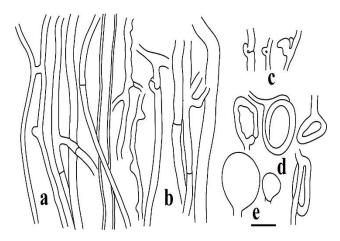


Fig. 4. *In vitro* hyphal characteristics of *Grifola frondosa*; a. Surface thick and thin hyphae showing H-shaped anastomosis; b. Submerged hyphae with short lateral protuberances and branches; c. Hyphal clamps and knots; d., e. Hyphal swelling and loops, $(100x, Bar = 10 \ \mu m)$.

3 8

Basidiocarps: Basidiocarp large sized, solitary, annual, stipitate, imbricate, about 15-30 cm across, 10-12 cm high. consisting of multiple, dissected, highly contorted flabellae, forming irregular rosette arise from stout subcylindrical rooted stipe. Flabellae: white to cream colored, azonate, nonbruising, approximately 1.5-3 cm broad, 2.5-3.5 cm long, and 0.5 mm thick. Basidiocarps having pungent odor, pleasant walnut taste, leathery-textured when fresh and become lightweight and crumbly when dry. Upper surface deeply cream or vellowish colored become light cream or pale when dry. Surface glabrous or glistening, isomorphic and concolorous hymenial and abhymenial surfaces. Flabellar margin is wavy or contorted (crisped) and entire, blunt become dark brown or burnt black when dry. Stipe is short, stout, and branched, up to 6 cm long and 3-5 cm in diam., sub cylindrical to flattened and white colored (Fig. 6).

Hymenial layer closely affixed to the context, both layers are indistinguishable. Hyphal system is monomitic, hyphae are septate, unchanged with KOH. Context is white colored. Contextual hyphae are wider pale 4.4-9.5 (7.0) µm, frequently septate and rarely branched, reticulate or interwoven arrangement, agglutinated, showing large sized medallion clamps. Encrusted gloeoplerous hyphae are rarely found 6.3-9.6 (7.5) µm in the context and stipe mycelia. Tramal hyphae long, thin walled, pale yellowish, regular and more or less parallel showing fairly abundant clamps and septation, 3.5-10.5 (5.6) µm, frequently vesiculose or irregularly inflated and agglutinated. Stipe hyphae are 3.8-11.6 (6.6) µm, septate, branched, and have abundant clamps. Dark brown to black colored spherical microcrystals were found in the context and stipe layers. Basidia: sub-clavate, 4-sterigmate, short sterigmata, with a simple septum and clamp at the base, 25-30 (28.5) \times 6.5-7.5 (7.3) µm. Basidioles are abundant, narrowly elongated, 16-32 (23) \times 3.5-5 (4.5) µm and cystidia are absent. Basidiospores ellipsoidal or subglobose, hyaline, uniguttate, thin walled, smooth walled, non-dextrinoid, and non-amyloid, $4.0-7.3 \times 3.8-5 \mu m$, L = 5.7 μm , W = 4.4 μm , Q = 1.0-1.6, (n = 30/2) (Fig. 5). Rot type: brown rotting.

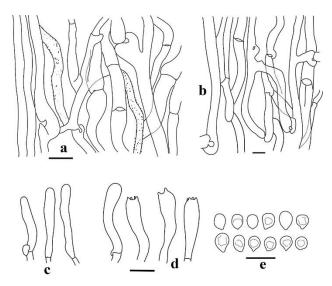


Fig. 5. Microscopic structure drawn from voucher specimen of *S. latifolia* a. hyphae of context showing gloeoplerous hyphae; b. Generative hyphae from trama; c. basidioles d. basidia e. basidiospores Scale bars: a, b, d, e = $10 \, \mu m$.

		Table 2. Morphological characters of Grifola species obtained from the original description.	haracters of Grifola s	species obtained fron	n the original des	cription.		
Species	G. colensoi	G. gargal	G. odorata	G. sordulenta	G. amazonica	G. frondosa	G. frondosa	G. umbellata
Flabellar shape	divided lobes	foliose or lamellate	flabellate lobes	flabellate	flabellate	flabelliform	flabelliform	Orbicular caps branches
Flabellar size (cm)	NA	8 × 7	-x11	NA	NA	-x4	12x 5	NA
Basidiocarp (cm)	$32 \times 27x25$	30w	$35 \times 22 \times 24$	$35 \times 15 \times 30$	NA	NA	12-24 x20-36	50w
Pileal surface color	dark brown or purplish black	cream yellow, light beige, light brown or grey	grey-brown, brown or white	cream-color, light cinnamon or grey	brown	pale olive-buff	pale grayish, darker on the margin	grayish brown
Pore surface color	pale cream-color	white	white	pale cream-color	white, pale greyish	cream to ivory white	pale whitish or cream	pale cream
No. Pores/mm	NA	1–2	1–2	1–2	3-4	2-4	5-7	1-2
Pores depth(mm)	4	5	2	5	2	4	0.1	0.5-1
Hyphal system	dimitic	monomitic	monomitic	monomitic	dimitic	dimitic	monomitic	dimitic
Gen. Hyphae (µ)	3–6	NA	2.5-9.5	NA	NA	5	11-23.5	NA
Basidiospores (L)	5.20-7.10x3.90-5.10	7-8x5-6	5.8-8.5x5.0-7.0	6-7x4-5	4-4.5 x3-3.5	5.5-6.5/7 x3.5-4.5/5	6.0-8.6x3.4-4.7	$7.5-10 \times 3-3.5$
Q range	1.35	1.46	1.24	1.35	NA	NA	1.86	NA
Geo. Distribution	Australia, Tasmania New Zealand	Argentina	New Zealand	Argentina	NA	NA	Pakistan	Europe
Host	Fuscospora Eucalyptus	Lophozonia Amomyrtus, Eucryphia, Populus.	Metrosideros Fuscospora, Salix	Nothofagus	NA	Quercus, Castanea, Fagus, Carpinus	Quercus sp	hardwood

 $\mathbf{8}$ SHAHID HUSSAIN ETAL.,

Morphological similarity: Analysis of the morphological character-matrix indicated that all species documented within the genus Sparassis share a range of morphological features, making the intraspecific delimitation difficult. These include a solitary, annual, compound fruiting body that generates a complex of branched and contorted lamellate basidiocarps, which typically exhibit an anastomosing branching and monomitic hyphal system. In addition, these species possess a 4-sterigmate clavate basidia, with basal clamps and septa, as well as ellipsoidal basidiospores with slight variation in dimension of basidial and basidiospores size (Table 3a, 3b). Based on the morphological examination of our specimens demonstrated a close relationship with S. crispa, S. latifolia, and S. radicata, making the differentiation challenging. Nevertheless, our specimen and S. latifolia share only a few characteristics, including the size of the basidiome, the presence of stout branched stipe, azonate flabellae, short basidia, thin generative hyphae, and longer basidiospores (5-9 μ m). The S. latifolia is distinct from several other species, including S. crispa, S. subalpine, S. cystidiosa, S. spathulata herbstii, S. crispa, and S. miniensis, in that it has welldeveloped stipes. The flabellar margin of several species, such as S. spathulata, S. brevipes f. nemecii, S. americana, S. radicata, and S. miniensis, is characterized by lobate, leciniate, or of frilled type. On the other hand, the margin of S. americana and S. radicata, S. crispa is crisped, while slightly contorted in the S. latifolia. Among the species analyzed, a slightly zonate flabellar surface was recorded for S. spathulata, S. spathulata herbstii, S. brevipes, S. brevipes f. nemecii, and S. crispa. On the other hand, the flabellar surface of S. subalpine, S. spathulata herbstii, S. americana f. americana, S. radicata, S. miniensis, and some other species were identified as matte and pruinose, whereas other species had a glabrous surface. Similarly, the presence or absence of clamp connections in the tramal hyphae was found to vary among the species. Specifically, S. subalpine, S. spathulata, S. spathulata herbstii, and S. brevipes were identified as clampless tramal hyphae, while other species had clamp connections in their trama.

Discussion

The two genera, *Grifola* and *Sparassis*, are among the most well-known species in the Polyporales order which having an immense mycogastronomic significance. Despite these importance (Wu *et al.*, 2019), they have been largely neglected in biogeographic, ecological, and taxonomic studies. By examining the morphological features of the collected specimens and further looking at two nuclear rDNA regions (ITS and nrLSU), we were able to identify two species which were not previously reported in Pakistan. The observed *Grifola* specimen was markedly differ from other species in the genus in many important features including thin non-fleshy pileoli, shallow, radially elongated pores, distinctly largest generative hyphae, highest Q value, short sterigma, and

spore size. The hyphal construct in the previously recorded G. frondola species was recorded dimitic, our study noticed the monomitic system consisting of two different types of generative hyphae i.e., broader generative hyphae in the context while narrower in the trama and lack of the skeletal hyphae. Similar record was found in the past taxonomic study of Pouzar (1966). The gross morphological variation of the species confirmed that the G. frondosa clade may further be divisible into several morphological or cryptic species, as previously reported in several studies (Rajchenberg & Greslebin, 1995; Shen, 2001; Shen et al., 2002; Sotome et al., 2008; Lee et al., 2012; Xing et al., 2013). However, based on combined data of ITS, LSU, and multiple phylogenetic analyses, has been observed that the specimen belongs to a larger clade consisting of isolates of G. frondosa, from USA and China. So far, four clearly defined intraspecific clades were identified in the Grifola genus.

In the genus *Sparassis*, the morphological comparison from original descriptions showed several unrecorded or even overlapping features of taxonomic interest to cause problem in species delimitation. However, phylogenetic analyses based on sequence data derived from rDNA (ITS + nrLSU) revealed that high degree of morphological resemblance among the Sparassis species was found to be merely superficial. The morpho-molecular characteristics of our Sparassis specimen, collected were consistent with the previously published descriptions of the species in question (Dai et al., 2006). In a study conducted by Dai et al., (2006), most of the Asian collection of Sparassis was identified and named S. latifolia. while, Park et al., (2005), Ryu et al., (2009) and Ryoo et al., (2013) from South Korea has shown the potential misidentification of S. latifolia as S. crispa. Based on morphological examination and phylogenetic analyses of our specimens demonstrated a close relationship with S. crispa, S. latifolia, and S. radicata, and S. americana, thus allied under same clade. Similar conclusion was derived by Wang et al., (2004), Dai et al., (2006) who revealed that the phylogenetic relationship between S. radicata or S. crispa found in western North America and S. crispa found in Europe belong to the same clade. Our study suggests that even geographically distant species are more closely related to each other than they are to species in closer geographic proximity. This fungal distribution could possibly be attributed to long-distance dispersal. Similar finding were deeply addressed in the previous study of Ryoo et al., (2013).

In conclusion, the current study provides insights into the diversity and relationships among species within the *Grifola* and *Sparassis*. Analyses of molecular data within different clads revealed a strong correspondence with morphological characteristics and biogeographical distribution. Some phylogenetic clads still require reevaluation and taxonomic clarification to refine our understanding of the biogeography and evolutionary diversity. Further work is needed to confirm edibility of these species and their potential value in food and drugs biotechnology.

Fig. 6. Basidiomes of *Grifola frondosa* (a), and *Sparassis latifolia* (b) from natural habitat; (c) pores surface (fresh) of *G. frondosa* (d) Basidiocarp of *S. latifolia* showing stipe portion (e) Pores of *G. frondosa*, (f) Flabellar arrangement and margin of *S. latifolia*; Bars: a, b = 3 cm, d, f = 2 cm, c, e = 1 division e = 1 mm.

		Tal	ble 3a. Morr	phological c	haracters of S	parassis species	Table 3a. Morphological characters of Sparassis species obtained from the original description.	riginal de	scription.		
S.	S. No. Species	Basidiocarp (L x W) cm	Stipe	Flabellar shape		Flabellar margin	_	Zonation	Zonation Abhymenial surface	Hymenial surface	Clamps in trama
1.	S. cystidiosa f. flabelliformis	25 x 30	Poor	Broadly flabelliform		Entire or dissected	Entire or dissected, slightly contorted	Azonate	Azonate Grayish brown to yellowish brown	NA	Present
2	S. latifolia	30×35	Robust	Broadly laminar		Dissected, contorted	ted	Azonate	White to cream-shallow brown	NA	Present
Э.	S. subalpina	16×15	Poor	Broadly laminar		Entire or leciniate, contorted	; contorted	NA	Grayish or brownish	NA	NA
4.	S. latifolia	30×25	Robust	Laminar		Dissected, slightly contorted	y contorted	Azonate	White cream	NA	Present
5.	S. cystidiosa	-x25	Poor	Flabelliform		Entire or dissected	Entire or dissected, slightly contorted	Azonate	Yellowish brown to brown	Bicolorous	NA
9	S. spathulata	NA	Robust	Spathulate	Spathulate or fanshaped	Entire or lobate, contorted	ontorted	Zonate	Off-white or pale ochraceous buff	Unilateral	NA
7.	S. spathulata herbstii	NA	Poor	Spathulate	Spathulate or fanshaped	Entire, contorted, labyrinthine	labyrinthine	Zonate	Off-white	Unilateral	NA
∞	S. brevipes	NA	Robust	Laminar		Labyrinthine, non-crisped	ı-crisped	Zonate	Off-white	Unilateral	NA
9.	S. brevipes f. nemecii	21×30	Robust	Lobate or gyrose		Lobate, non-crisped	ed	Zonate	Paler, non-waxy		NA
10.	S. crispa	NA	Poor	Laminar rar	bate	Entire, crisped		Zonate	Off-white, pale ochraceous buff	Unilateral	Present
11.	S. americana f. americana	20×35	Robust	Petaloid		Entire or lobate, crisped	risped	NA	Paler, light ochraceous buff, off-white	NA	NA
12.	S. americana f. arizonica	20×30	NA	Petaloid or frilled		Lobate, crisped		NA	Creamy yellow to yellowish brown	Unilateral	Present
13.	S. radicata	30×25	NA	Thin lacunose		Entire or dissected, crisped	d, crisped	NA	Off-white or pale pinkish cinnamon	Unilateral	Present
14.	S. miniensis	21×18	Poor	Broad		Leciniate, contorted	pa	Azonate	Whitish	NA	Present
15.	S. latifolia	- x 40	Robust	Broadly laminar		Dissected, slightly contorted	y contorted	Azonate	White to yellowish or cream	NA	Present
16.	S. latifolia	12×30	Robust	Laminar		Entire, contorted		Azonate	White to cream colored	NA	Present
			Table 3b. IV	Tornhologica	Characters of	Sparassis species	Table 3t Mornhological characters of S <i>nora</i> ssis snecies obtained from the original descrintion	nal descrin	fion		
				- San Jan		and a man de	9	J. Lancas			
S. N.	S. No. Species	Gloeoplerous hyphae (µm)	Tramal gen. hyphae (μm)	Cystidia	Basidia (LxW) μm	Basidiospores (LxW) μm	Geo. Distribution		Host plants	References	
1.	S. cystidiosa f. flabelliformis	2–11		Absent	55-70x7-8.5	L-9x6-L	China		Quercus spp.	Zhao et al., 2013	013
2.	S. latifolia	7-12	5-15	ZA	55-68x5-7	4.5-5.5x3.5-4	Russia, Japan, China		Conifers and Fagales spp.	Zhao et al., 2013	013
3.	S. subalpina	4-10	4-10	NA	73-85x5.5-7.5	5.5-6.5x4-5	China		Picea likiangensis, Rhododendron sp., Quercus sp.	Zhao et al., 2013	013
4.	S. latifolia	7–12.5	4.5–9.5	NA	25-29x2.6-8	4.5-5.5x3.5-4	China, Europe, North America	nerica	conifer forest	Dai et al., 2006	90
5.	S. cystidiosa	2-11	3-8	Present	65-74 x3 8-9.5	7-9x3-7	Thailand		Quercus eumorpha	Desjardin et al., 2004	al., 2004

			Table 3b. Mo	orphologica	d characters of S	parassis species	Table 3b. Morphological characters of Sparassis species obtained from the original description.		
S. No.	S. No. Species	Gloeoplerous hyphae (μm)	Tramal gen. hyphae (μm)	Cystidia	Basidia (LxW) μm	Basidiospores (LxW) μm	Geo. Distribution	Host plants	References
-:	S. cystidiosa f. flabelliformis	2-11		Absent	55-70x7-8.5	7-9x6-7	China	Quercus spp.	Zhao et al., 2013
2.	S. latifolia	7–12	5-15	NA	55-68x5-7	4.5-5.5x3.5-4	4.5-5.5x3.5-4 Russia, Japan, China	Conifers and Fagales spp.	Zhao et al., 2013
3.	S. subalpina	4-10	4-10	NA	73-85x5.5-7.5	5.5-6.5x4-5 China	China	Picea likiangensis, Rhododendron sp., Quercus sp.	Zhao et al., 2013
4.	S. latifolia	7–12.5	4.5-9.5	NA	25-29x2.6-8	4.5-5.5x3.5-4	4.5-5.5x3.5-4 China, Europe, North America	conifer forest	Dai et al., 2006
5.	S. cystidiosa	2-11	3-8	Present	65-74 x3 8-9.5	7-9x3-7	Thailand	Quercus eumorpha	Desjardin et al., 2004
.9	S. spathulata	NA	NA	NA	50-65x6.5-7	6-7x4.5-5	North Carolina, Mississippi, Maryland, Louisiana, Tennessee	Quercus, Tsuga, Fagus, Betula, Acer and Magnolia, Pinus	Petersen et al., 2015
7.	S. spathulata herbstii	NA	5-12	NA	30-42x6-8	6-7.5x4-5	Alabama, Columbia, New Jersey, Pennsylvania, South Carolina, Tennessee	NA	Petersen et al., 2015
∞:	S. brevipes	NA	5.5–11	NA	28-35x5-7	6-6.5x4-4.5	6-6.5x4-4.5 Czech Republic, Ukrain, Germany Europe silvatica or Quercus spp.	Abies alba, Picea excelsa, Fagus silvatica or Quercus spp.	Petersen et al., 2015
9.	S. brevipes f. nemecii		4-8.5	NA	40-43x5.5-7	5.5-6.5x4-4.5	5.5-6.5x4-4.5 Czech Republic, Germany, Europe	Fagus sp.	Petersen et al., 2015
10.	S. crispa	5-10	5–16	NA	37-48x7-8.5	4.5-5x3.5-4	Germany, Austria, Europe	Pinus sylvestris	Hughes et al., 2014
Ξ.	S. americana f. americana	9.5 - 14	4-15	NA	50-66x6-7	4.5-6x3.5-4	Tennessee, North America	Pinus spp.	Hughes et al., 2014
12.	S. americana f. arizonica	NA	NA	NA	40-60x4-8	5-6x3.5-4	United States, Arizona	Pseudotsuga menziesii, Pinus spp.	Hughes et al., 2014
13.	S. radicata	NA	NA	NA	38-60x6.5-8	5-6.53.5-4	North America	Pseudotsuga sp.	Hughes et al., 2014
14.	S. miniensis	NA	2.5-7	Absent	30.5-56 x4.5-9.5	6.5-7.5x4.5-5 Galicia, Spain	Galicia, Spain	Pinus pinaster	Blanco-Dios et al., 2006
15.	S. latifolia	NA	3.0-7.0	NA	39-51x5.5-8.0	39-51x5.5-8.0 5.0-5.2x4.0-4.1 Korea	Korea	Pinus koraiensis	Ryoo et al., 2013
16.	S. latifolia	9.6-9	3.5-10.5	Absent	25-30 x6.5-7.5	25-30 x6.5-7.5 4.0-7.3x3.8-5 Pakistan	Pakistan	Abides pindrow	This study

Acknowledgments

This study was conducted with support of the laboratories, at the Center for Plant Sciences and Biodiversity, University of Swat and Department of Botany, at the University of Malakand.

References

- Acharya, K., I. Bera, S. Khatua and M. Rai. 2015. Pharmacognostic standardization of *Grifola frondosa*: A well-studied medicinal mushroom. *Pharmacia Lettre*, 7(7): 72-78.
- Banik, M.T., D.L. Lindner, B. Ortiz-Santana and D.J. Lodge. 2012. A new species of Laetiporus (Basidiomycota, Polyporales) from the Caribbean Basin. Kurtziana, 37(1): 15-21.
- Bashir, K.M.I., K.M. Rheu, M.S. Kim and M.G. Cho. 2020. The complete mitochondrial genome of an edible mushroom, *Sparassis* crispa. Mitochondrial DNA. Part B, Resources 5(1): 862-3. doi: 10.1080/23802359.2020.1715855, Pubmed: 33366786.
- Binder, M., A. Justo, R. Riley, A. Salamov, F. Lopez-Giraldez, E. Sjökvist, A. Copeland, B. Foster, H. Sun, E. Larsson and K.H. Larsson. 2013. Phylogenetic and phylogenomic overview of the Polyporales. *Mycologia*, 105(6): 1350-73. doi: 10.3852/13-003, Pubmed:23935031.
- Binder, M., D.S. Hibbett, K. Larsson, E. Larsson, E. Langer and G. Langer. 2005. The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes). *System. Biodivers.*, 3(2): 113-57. doi: 10.1017/S1477200005001623.
- Blanco-dios, J.B., Z. Wang, M. Binder and D.S. Hibbett. 2006. A new Sparassis species from Spain described using morphological and molecular data. Mycol. res., 110(10): 1227-1231. https://doi.org/10.1016/j.mycres.2006.07.012.
- Burdsall, H.H. and O.K. Miller. 1988. Type studies and nomenclatural considerations in the genus Sparassis. United States Forest Service. Madison, Wis., USA.
- Chernomor, O., A. Von Haeseler and B.Q. Minh. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. *Syst. Biol.*, 65(6): 997-1008. doi: 10.1093/sysbio/syw037, Pubmed:27121966.
- Cui, B.K., H.J. Li, X. Ji, J.L. Zhou, J. Song, J. Si, Z.L. Yang and Y.C. Dai. 2019. Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. *Fungal Divers.*, 97: 137-392.
- Dai, Y.C. 2012. Polypore diversity in China with an annotated checklist of Chinese polypores. *Mycoscience*, 53(1): 49-80. doi: 10.1007/s10267-011-0134-3.
- Dai, Y.C., Z. Wang, M. Binder and D.S. Hibbett. 2006. Phylogeny and a new species of Sparassis (Polyporales, Basidiomycota): evidence from mitochondrial atp 6, nuclear rDNA and rpb 2 genes. *Mycologia*, 98(4): 584-92. doi: 10.3852/mycologia.98.4.584, Pubmed:17139851.
- Darriba, D., G.L. Taboada, R. Doallo and D. Posada. 2012. JModelTest 2: more models, new heuristics and parallel computing. *Nature Methods*, 9(8): 772-. doi: 10.1038/nmeth.2109, Pubmed:22847109.
- Desjardin, D.E., Z. Wang, M. Binder and D.S. Hibbett. 2004. *Sparassis cystidiosa* sp. nov. from Thailand is described using morphological and molecular data. *Mycologia*, 96(5): 1010-4. doi: 10.1080/15572536.2005.11832901, Pubmed:21148922.
- Garcia-Sandoval, R., Z. Wang, M. Binder and D.S. Hibbett. 2011. Molecular phylogenetics of the Gloeophyllales and relative ages of clades of Agaricomycotina producing a brown rot. *Mycologia*, 103(3): 510-24. doi: 10.3852/10-209, Pubmed:21186327.
- Gardes, M. and T.D. Bruns. 1993. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. *Mol. Ecol.*, 2(2): 113-8. doi: 10.1111/j.1365-294x.1993.tb00005.x, Pubmed:8180733.
- Gargano, M.L., G.I. Zervakis, O.S. Isikhuemhen, G. Venturella, R. Calvo, A. Giammanco, T. Fasciana and V. Ferraro. 2020. Ecology, phylogeny, and potential nutritional and medicinal value of a rare

- white "Maitake" collected in a Mediterranean forest. *Diversity*, 12(6): 230. https://doi.org/10.3390/d12060230
- Gilbertson, R.L. and L. Ryvarden. 1986. North American polypores I. Abortiporus-Lindtneria. 433 S., 209 Abb. Oslo 1986. Fungiflora A/S. J. Basic Microbiol., 27(5): 282. https://doi.org/10.1002/jobm.3620270513
- Gray, S.F. 1821. A natural arrangement of British plants. London: Baldwin, Cradock and Joy. 643.
- Hall, T. I. and C.J. Carlsbad. 2011. BioEdit: an important software for molecular biology. *GERF Bull. Biosci.*, 2(1): 60-1.
- Hibbett, D.S. and M.J. Donoghue. 2001. Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in homobasidiomycetes. *Syst. Biol.*, 50(2): 215-42. doi: 10.1080/10635150151125879, Pubmed:12116929.
- Hibbett, D.S., L.B. Gilbert and M.J. Donoghue. 2000. Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. *Nature*, 407(6803): 506-8. doi: 10.1038/35035065, Pubmed:11029000.
- Hoang, D.T., O. Chernomor, A. Von Haeseler, B.Q. Minh and L.S Vinh. 2018. UFBoot2: improving the ultrafast bootstrap approximation. *Molecular Biology and Evolution.*, 35(2): 518-22. https://doi:10.1093/molbev/msx281. doi: 10.1093/molbev/msx281, Pubmed:29077904.
- Hughes, K.W., A.R. Segovia and R.H. Petersen. 2014. Transatlantic disjunction in fleshy fungi. I. The Sparassis crispa complex. *Mycological Progress* 13(2): 407-27. doi: 10.1007/s11557-013-0927-1.
- Ji, X., J.L. Zhou, C.G. Song, T.M. Xu, D.M. Wu and B.K. Cui. 2022. Taxonomy, phylogeny and divergence times of Polyporus (Basidiomycota) and related genera. *Mycosphere*, 13(1): 1-52. https://doi:10.5943/mycosphere/13/1/1. doi: 10.5943/mycosphere/13/1/1.
- Julich, W. 1981. Higher taxa of basidiomycetes. Vaduz, Germany: Biblio. Mycol., 85.
- Justo, A. and D.S. Hibbett. 2011. Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset. *Taxon*, 60(6): 1567-83. https://doi:10.1002/tax.606003.
- Justo, A., O. Miettinen, D. Floudas, B. Ortiz-Santana, E. Sjökvist, D. Lindner, K. Nakasone, T. Niemelä, K.H. Larsson, L. Ryvarden, and D.S. Hibbett. 2017. A revised family-level classification of the Polyporales (Basidiomycota). *Fungal Biol.*, 121(9): 798-824. doi: 10.1016/j.funbio.2017.05.010, Pubmed:28800851.
- Katoh, K., J. Rozewicki and K.D. Yamada. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. *Briefings in Bioinformatics* 20(4): 1160-6. https://doi:10.1093/bib/bbx108. doi: 10.1093/bib/ bbx108. Pubmed:28968734.
- Kirk, P., P. Cannon, D. Minter and J. Stalpers. 2008. Dictionary of the fungi 396. Wallingford: CABI Publishing.
- Lee, C.J, C.S. Jhune, J.C. Cheong, W.S. Kong and J.S. Suh. 2012. Phylogenetic relationships of genera Grifola on the basis of ITS region sequences. *J. Mushroom*, 10(2): 93-9.
- Lindner, D.L. and M.T. Banik. 2011. Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and inflates estimates of operational taxonomic units in genus Laetiporus. *Mycologia*, 103(4): 731-40. https://doi:10.3852/10-331.
- Liu, S., Y.Y. Chen, Y.F. Sun, X.L. He, C.G. Song, J. Si, D.M. Liu, G. Gates and B.K. Cui. 2023. Systematic classification and phylogenetic relationships of the brown-rot fungi within the Polyporales. *Fungal Divers*, 118(1): 1-94.
- Martin, K.J. and R.L. Gilbertson. 1976. Cultural and other morphological studies of *Sparassis radicata* and related species. *Mycologia*, 68(3): 622-39. doi: 10.1080/00275514.1976.12019947.
- Murray, M.G. and W.F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. *Nucleic Acids Research*, 8(19): 4321-5. doi: 10.1093/nar/8.19.4321, Pubmed:7433111.
- Murrill, W.A. 1904. The Polyporaceae of north America-VII. The genera Hexagona, Grifola, Romellia, Coltricia and Coltriciella. Bulletin of the Torrey Botanical Club 31(6): 325-48. https://doi.org/10.2307/2478798

12 SHAHID HUSSAIN ETAL.,

Nguyen, L.T., H.A. Schmidt, A. Von Haeseler and B.Q. Minh 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol. Evol.*, 32(1): 268-74. doi: 10.1093/molbev/msu300, Pubmed:25371430.

- Nilsson, R.H., L. Tedersoo, K. Abarenkov, M. Ryberg, E. Kristiansson, M. Hartmann, C.L. Schoch, J.A. Nylander, J. Bergsten, T.M. Porter and A. Jumpponen, 2012. Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. *MycoKeys*, 4: 37-63. https://doi:10.3897/mycokeys.4.3606.
- Ortiz-Santana, B., D.L. Lindner, O. Miettinen, A. Justo and D.S. Hibbett. 2013. A phylogenetic overview of the Antrodia clade (Basidiomycota, Polyporales). *Mycologia*, 105(6): 1391-411. doi: 10.3852/13-051, Pubmed:23935025.
- Park, H., B.H. Lee, D.S. Oh, K.H. Ka, W.C. Bak and H.J. Lee. 2005. Cultivation of cauliflower mushroom (*Sparassis crispa*) using coniferous sawdust-based media with barley flours. *Journal of Korea Foresty Energy*, 24: 31-6.
- Petersen, J.H. 1996. Farvekort. The Danish mycological society's colour-chart. Greve: Foreningen til Svampekundskabens Fremme Greve 6.
- Petersen, R.H., J. Borovička, A.R. Segovia and K.W. Hughes. 2015. Transatlantic disjunction in fleshy fungi. II. The Sparassis spathulata–S. brevipes complex. *Mycol. Prog.*, 14(6): 1-18. doi: 10.1007/s11557-015-1049-8.
- Pouzar, Z. 1966. Studies in the taxonomy of the Polypores II. *Folia Geobotanica et Phytotaxonomica* 1(1): 356-75. doi: 10.1007/BF02854587.
- Rajchenberg, M. and A. Greslebin. 1995. Cultural characters, compatibility tests and taxonomic remarks of selected polypores of the Patagonian Andes forests of Argentina. Mycotaxon USA.
- Ronquist, F. and J.P. Huelsenbeck. 2003. MrBayes 3: bayesian phylogenetic inference under mixed models. *Bioinformatics*, 19(12): 1572-4. https://doi:10.1093/bioinformatics/btg180. doi: 10.1093/bioinformatics/btg180, Pubmed:12912839.
- Rugolo, M., C. Barroetaveña, M.D. Barrett, G. Mata, I.A. Hood, M. Rajchenberg and M.B. Pildain. 2023. Phylogenetic relationships and taxonomy of Grifola (Polyporales). *Mycol. Prog.*, 22(1): 7. doi: 10.1007/s11557-022-01857-2.
- Ryoo, R., H.D. Sou, K.H. Ka and H. Park. 2013. Phylogenetic relationships of Korean Sparassis latifolia based on morphological and ITS rDNA characteristics. *J. Microbiol.*, 51(1): 43-8. doi: 10.1007/s12275-013-2503-4, Pubmed: 23456711.
- Ryu, S.R., K.H. Ka, H. Park, W.C. Bak and B.H. Lee. 2009. Cultivation characteristics of *Sparassis crispa* strains using sawdust medium of Larix kaempferi. *Kor. J. Mycol.*, 37(1): 49-54. doi: 10.4489/KJM.2009.37.1.049.
- Schoch, C.L., B. Robbertse, V. Robert, D. Vu, G. Cardinali, L. Irinyi, W. Meyer, R.H. Nilsson, K. Hughes, A.N. Miller and P.M. Kirk. 2014. Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi. Database (Oxford) 2014, bau061. https://doi:10.1093/database/bau061.
- Shen, Q. 2001. Molecular phylogenetic analysis of *Grifola frondosa* (Maitake) and related species and the influence of selected nutrient supplements on mushroom yield. Thesis, The Pennsylvania State University.
- Shen, Q., D.M. Geiser and D.J. Royse. 2002. Molecular phylogenetic analysis of *Grifola frondosa* (maitake) reveals a species partition separating eastern North American and Asian isolates. *Mycologia*, 94(3): 472-82. doi: 10.1080/ 15572536. 2003.11833212, Pubmed: 21156518.

Sotome, K., T. Hattori, Y. Ota, C. To-Anun, B. Salleh and M. Kakishima. 2008. Phylogenetic relationships of Polyporus and morphologically allied genera. *MycologiaI*, 100(4): 603-15. doi: 10.3852/07-191R, Pubmed:18833753.

- Stalpers, J.A. 1978. Identification of wood-inhabiting fungi in pure culture. *Stud. Mycol.*, 16: 1-248.
- Stefanova, P., M. Brazkova and G. Angelova. 2022. Comparative study of DNA extraction methods for identification of medicinal mushrooms. BIO Web of Conferences Vol: 45, 02007. EDP Sciences, https://doi:10.1051/bioconf/20224502007.
- Stirling, D. 2003. DNA extraction from fungi, yeast, and bacteria. PCR protocols, 53-54. https://doi:10.1385/1-59259-384-4:53
- Swofford, D.L. 2002. PAUP*: phylogenetic analysis using parsimony (* and other methods). 4.0b10. Sunderland: Sinauer Associates, Inc, Massachusetts beta. http://paup. csit. fsu. edu/.
- Tsujikawa, K., T. Kanamori, Y. Iwata, Y. Ohmae, R. Sugita, H. Inoue and T. Kishi. 2003. Morphological and chemical analysis of magic mushrooms in Japan. *Forensic Sci. Int.*, 138(1): 85-90. https://doi:10.1016/j.forsciint.2003.08.009.
- Vilgalys, R. and M. Hester. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol., 172(8): 4238-46. https://doi:10.1128/jb.172.8.4238-4246.1990.
- Virginia, P.C. and T. Catalin. 2013. Description of the culture characteristics of some lignicolous basidiomycetes species grown on three synthetic media. *J. Plant Dev.*, 20.
- Wang Z., M. Binder, Y.C. Dai and D.S. Hibbett. 2004. Phylogenetic relationships of Sparassis inferred from nuclear and mitochondrial ribosomal DNA and RNA polymerase sequences. *Mycologia*, 95: 1008-12. doi: 10.1080/15572536. 2005. 11832902, Pubmed:21148923.
- White T.J., T. Bruns, S.J.W.T. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *PCR protocols: a guide to methods and applications*, 18(1): 315-22.
- Wu F., L.W. Zhou, Z.L. Yang, T. Bau, T.H. Li and Y.C. Dai. 2019. Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. *Fungal Divers.*, 98: 1-76.
- Wu, F., X.W. Man, A. Tohtirjap and Y.C. Dai. 2022. A comparison of polypore funga and species composition in forest ecosystems of China, North America, and Europe. *Forest Ecosystems* 9: 100051
- Wu, S.H., Z.H. Yu, Y.C. Dai, C.T. Chen, C.H. Su, L.C. Chen, W.C. Hsu and G.Y. Hwang. 2004. Taiwanofungus, a polypore new genus. *Fungal Sci.*, 19(3-4): 109-16.
- Xing, X., X. Ma, M.M. Hart, A. Wang, S. Guo. 2013. Genetic diversity and evolution of Chinese traditional medicinal fungus Polyporus umbellatus (Polyporales, Basidiomycota). PLoS ONE, 8(3):e58807. https://doi:10.1371/journal.pone.0058807.
- Yu, Z.H., S.H. Wu, D.M. Wang and C.T. Chen. 2010. Phylogenetic relationships of Antrodia species and related taxa based on analyses of nuclear large subunit ribosomal DNA sequences. Botanical Studies 51(1).
- Yuan, Y., Y.D. Wu, Y.R. Wang, M. Zhou, J.Z. Qiu, D.W. Li, J. Vlasák, H.G. Liu and Y.C. Dai. 2022. Two new forest pathogens in Phaeolus (Polyporales, Basidiomycota) on Chinese coniferous trees were confirmed by molecular phylogeny. Front. Microbiol. 13: 942603. doi: 10.3389/fmicb.2022.942603
- Zhao, Q., B. Feng, Z.L. Yang, Y.C. Dai, Z. Wang and B. Tolgor. 2013. New species and distinctive geographical divergences of the genus Sparassis (Basidiomycota): evidence from morphological and molecular data. *Mycol. Prog.*, 12(2): 445-54. doi: 10.1007/s11557-012-0853-7.