ELLipticalness INDEX – A SIMPLE MEASURE OF THE COMPLEXITY OF OVAL LEAF SHAPE

YUPING LI¹², BRADY K. QUINN², ÜLO NIINEMETS²*, JULIAN SCHRADER²³, JOHAN GIELIS⁴, MENGDI LIU⁵ and PEIJIAN SHI⁶

¹College of Horticulture, Jinling Institute of Technology, Nanjing 210038, China
²Bamboo Research Institute, College of Science, Nanjing Forestry University, Nanjing 210037, China
³Fisheries and Oceans Canada, St. Andrews, NB E5B 0E4 Canada
⁴Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
⁵Estonian Academy of Sciences, 10130 Tallinn, Estonia
⁶School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
⁷Biodiversity, Macroecology and Biogeography, University of Göttingen, 37077 Göttingen, Germany
⁸Department of Biosciences Engineering, University of Antwerp, B-2020 Antwerp, Belgium

*Corresponding author’s email: pjshi@njfu.edu.cn

Abstract

Plants have diverse leaf shapes that have evolved to adapt to the environments they have experienced over their evolutionary history. Leaf shape and leaf size can greatly influence the growth rate, competitive ability, and productivity of plants. However, researchers have long struggled to decide how to properly quantify the complexity of leaf shape. Prior studies recommended the leaf roundness index (RI = 4πA/Pl²) or dissection index (DI = P / 2√πA), where P is leaf perimeter and A is leaf area. However, these two indices merely measure the extent of the deviation of leaf shape from a circle, which is usually invalid as leaves are seldom circular. In this study, we proposed a simple measure, named the ellipticalness index (EI), for quantifying the complexity of leaf shape based on the hypothesis that the shape of any oval leaf can be regarded as a variation from a standard ellipse. Oval leaves of nine species of Magnoliaceae were sampled to check the validity of the EI. We also tested the validity of the Montgomery equation (ME), which assumes a proportional relationship between leaf area and the product of leaf length and width, because the EI actually comes from the proportionality coefficient of the ME. We also compared the ME with five other models of leaf area. The ME was found to be the best model for calculating leaf area based on consideration of the trade-off between model fit vs. complexity, which strongly supported the robustness of the EI for describing oval leaf shape. The new index can account for both leaf shape and size, and we conclude that it is a promising method for quantifying and comparing oval leaf shapes across species in future studies.

Key words: Magnoliaceae; Leaf area; Leaf length; Leaf roundness index; Leaf width.

Introduction

Leaf area is an important plant functional trait, which has attracted much attention in botany and ecology because plants can adjust the sizes of their individual leaves as an adaptation to climate change (Wright et al., 2017; Baird et al., 2021). Leaf shape is another important functional trait that can affect the photosynthetic efficiency of plants in the growing season and alter plant investment into structural support for different leaf areas (Royer & Wilf, 2006; Niinemets et al., 2007). Although leaf shape is highly variable across different plant species, it can be represented by the ratio of leaf area width (W) to length (L) for many broad-leaved plants, especially those with oval-shaped leaves (Shi et al., 2021b). The leaf W/L ratio has been demonstrated to be associated with leaf relative water content and the scaling exponent of the leaf dry mass vs. leaf area relationship (Lin et al., 2020). In addition to the aforementioned importance of the quotient of W and L in describing leaf shape, the product of L and W has been found to be proportional to leaf area (A) (Montgomery, 1911; Kemp, 1960; Jani & Misra, 1966; Verwijst & Wen, 1996; Shi et al., 2019a, 2021a; Yu et al., 2020; Schrader et al., 2021). The Montgomery equation (ME) is a function that describes this proportional relationship between A and LW, and the proportionality coefficient within this function is referred to as the correction factor or the Montgomery parameter (MP). The ME has been demonstrated to apply to a large number of flat- and broad-leaved plants, regardless of the complexity of their leaf shape, and most empirical values of the MP range from 1/2 to π/4 (Shi et al., 2019a; Yu et al., 2020; Schrader et al., 2021). The MP is thought to be closely related to leaf shape. For instance, the herb Persicaria perfoliata (L.) H. Gross, with triangular leaves, has an MP value of approximately 1/2 (Shi et al., 2019b). However, the MP values of plants with non-standard oval leaves are usually smaller than π/4 (Shi et al., 2019a).

In the investigation of leaf shape, the leaf roundness index (RI = 4πA/Pl²) and leaf dissection index (DI = P / 2√πA), where P is the leaf perimeter, are usually proposed and used as measures of leaf shape complexity (Kincaid & Schneider, 1983; Thomas & Bazzaz, 1996; Niinemets, 1998; Santiago & Kim, 2009; Peppe et al., 2011). However, the leaf RI only measures the deviation of a leaf’s shape from a standard circle. If one attempts to compare leaf shapes across species that do not have approximately round leaves, the leaf RI has no meaning, aside from the possibility that the degree of roundness might influence leaf economics or physiology. In general, a reticulate leaf venation network with a star-shaped topology (e.g., the aquatic herb Hydrocotyle vulgaris L.) is likely to produce an approximately round leaf shape (Shi et al., 2019b). However, dendritic hierarchical reticulate venation patterns can generate more complex leaf shapes in which there can be large...
variation in the distance of the leaf margin from the midrib along the axis from the leaf base to the apex, including the occurrence of leaf marginal teeth, serrations, dissections, and lobes (Runions et al., 2017). In fact, a circle actually represents a special case of an ellipse with both foci located at the same point, and thus an index of leaf shape based on an ellipse rather than a standard circle may have broader applicability.

In the present study, we developed a simple leaf shape index for quantifying the complexity of oval leaf shape relative to a standard ellipse. In addition, we attempted to further relate this new index to the calculation of leaf size. The leaves of four Magnolia species and five Michelia species (Magnoliaceae) were used to test the validity of the newly developed leaf shape index, as well as that of related leaf area models.

Materials and Methods

Tree species and leaf collection: The leaves of nine species of Magnoliaceae with oval-shaped leaves were chosen as study materials. The trees sampled were grown in two adjacent sites in Nanjing, Jiangsu Province, China. The two sites are 3.4 km apart, and there is no strong spatial heterogeneity between them. We sampled 130 to 380 leaves from the middle canopy of 3–5 trees of each species from July to September in 2019 and 2020. Detailed leaf sampling information is listed in Table 1. As soon as leaves were collected from trees, they were wrapped in wet newspaper, enclosed in transparent self-sealing plastic bags (28 cm × 20 cm), and taken to the laboratory to be scanned. Strips of each pair of the nine species studied. The trees sampled were chosen as study materials. The trees sampled were grown in two adjacent sites in Nanjing, Jiangsu Province, China. The two sites are 3.4 km apart, and there is no strong spatial heterogeneity between them. We sampled 130 to 380 leaves from the middle canopy of 3–5 trees of each species from July to September in 2019 and 2020. Detailed leaf sampling information is listed in Table 1. As soon as leaves were collected from trees, they were wrapped in wet newspaper, enclosed in transparent self-sealing plastic bags (28 cm × 20 cm), and taken to the laboratory to be scanned. Strictly speaking, a complete tree leaf includes both the leaf petiole and lamina. However, in the present study, we did not consider the leaf petiole, and referred to the lamina as the leaf for simplicity. To clearly exhibit leaf shape and its possible link to leaf venation network type, we chemically remove epidermal and mesophyll tissues to obtain leaf venation network images (Fig. 1). The detailed steps of the method of extracting leaf vein images used can be found in Yu & Liu (2021).

Image processing and data acquisition: Firstly, we scanned the leaves with an Epson scanner (V550, Epson, Batam, Indonesia) at 600 dpi resolution. Secondly, we used Photoshop (version 9.0) to generate black and white images of leaf edges. Thirdly, we used MATLAB (version ≥ 2009a) to extract the planar coordinates of the leaf edge for each image based on the procedure developed by Shi et al., (2018). Fourthly, we used R (version 4.0.2; R Core Team, 2020) to calculate leaf area, perimeter, length, and width using the planar coordinates extracted in the previous step on the basis of the R script developed by Shi et al., (2018) and Su et al., (2020).

Models and statistical analysis: We proposed a new leaf shape index, named the ellipticalness index (EI), as follows:

$$EI = \frac{A}{\pi/4 LW}$$

where A, L, and W represent leaf area, length, and width, respectively.

We also calculated the value of the leaf roundness index (RI) for each leaf for comparison with EI values. Tukey’s honestly significant difference (HSD) test (Hsu, 1996) was used to test whether the values of either leaf shape index differed significantly ($p<0.05$) between each pair of the nine species studied.

<table>
<thead>
<tr>
<th>Species code</th>
<th>Latin name</th>
<th>Leaf growth type</th>
<th>Location</th>
<th>Coordinates</th>
<th>Sampling time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Magnolia amoena Cheng</td>
<td>Deciduous</td>
<td>NBG-MSYS</td>
<td>32°3'27" N, 118°49'56" E</td>
<td>9 Sep. 2019</td>
</tr>
<tr>
<td>2</td>
<td>Magnolia denuidata Desr.</td>
<td>Deciduous</td>
<td>NFU Campus</td>
<td>32°4'43" N, 118°48'33" E</td>
<td>13 Sep. 2019</td>
</tr>
<tr>
<td>3</td>
<td>Magnolia soulangeana Soul.-Bod.</td>
<td>Deciduous</td>
<td>NBG-MSYS</td>
<td>32°3'29" N, 118°49'55" E</td>
<td>30 Jul. 2019</td>
</tr>
<tr>
<td>5</td>
<td>Michelia cavaleriei var.platypetala (Hand.-Mazz.) N. H. Xia</td>
<td>Evergreen</td>
<td>NFU Campus</td>
<td>32°4'48" N, 118°48'30" E</td>
<td>26 Aug. 2020</td>
</tr>
<tr>
<td>6</td>
<td>Michelia chapensis Dandy</td>
<td>Evergreen</td>
<td>NBG-MSYS</td>
<td>32°3'28" N, 118°49'55" E</td>
<td>25 Jul. 2020</td>
</tr>
<tr>
<td>8</td>
<td>Michelia figo (Lour.) Spreng.</td>
<td>Evergreen</td>
<td>NFU Campus</td>
<td>32°4'46" N, 118°48'28" E</td>
<td>13 Sep. 2019</td>
</tr>
<tr>
<td>9</td>
<td>Michelia maudiae Dunn</td>
<td>Evergreen</td>
<td>NFU Campus</td>
<td>32°4'45" N, 118°48'25" E</td>
<td>31 Jul. 2020</td>
</tr>
</tbody>
</table>

Note: NBG-MSYS represents Nanjing Botanical Garden Mem. Sun Yat-sen. NFU Campus represents Nanjing Forestry University Campus.
Fig. 1. Examples of chemically cleared leaves of the nine studied species of *Magnolia* and *Michelia*. The leaf veins were stained with 5% safranin solution for visualization (see Yu & Liu (2021) for details). The numbers before the species’ Latin names are used as species codes hereinafter.

We also compared the Montgomery equation (ME), which predicts A as a proportional function of LW, with five other models of leaf area (Table 2; Shi et al., 2019a). We did this because the Montgomery parameter (MP), which is the proportionality coefficient of the ME (i.e., $A = MP \times LW$), is closely associated with the EI in theory as follows:

$$EI = \frac{4}{\pi} MP$$

To compare goodness of fit among the six leaf area models (Table 2), the root-mean-square error (RMSE) was used:

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (A_i - \hat{A}_i)^2}$$

where n represents the number of leaves of a species examined, the subscript i represents the i-th leaf, and \hat{A} represents the leaf area predicted by a model.

The absolute percent error (APE, in %) was calculated as follows:

$$APE_i = \left| \frac{RMSE_i - RMSE_{i+1}}{RMSE_i} \right| \times 100\%$$

and was used as a representation of the influence of an additional parameter on the goodness of fit achieved by a model (i.e., by how much increased model complexity improved model fit; Yu et al., 2020).
Ordinary least-squares regression was used to estimate the parameters of the six tested leaf area models (Table 2). Model–2 in Table 2 can reflect the scaling relationship between the area of the planar projection of a leaf and a rectangle with leaf length and width as its sides. Provided that a leaf’s surface is sufficiently flat, the numerical value of the scaling exponent of leaf projection area vs. the product of leaf length and width approximately equals unity (Shi et al., 2019a). For Model–1, -3, and -5 in Table 2, there are fixed slopes of 1, 2, and 2 on a log-log plot. Log-log plots were used because the distribution of leaf area is usually slightly skewed, and so log-transformation helps to normalize the data (Shi et al., 2019a; Yu et al., 2020; Guo et al., 2021). The bootstrap percentile method was used to calculate the 95% confidence interval (CI) of the difference in the estimated MP values between each pair of the nine studied species (Efron & Tibshirani, 1993; Sandhu et al., 2011). If the 95% CI includes 0, this means there is no significant difference between groups, whereas if the 95% CI does not include 0, this means there is a significant difference.

All calculations and statistical analyses described above in this section were performed using R (version 4.0.2; R Core Team, 2020).

Results

The EI values ranged from 0.7 to 1.0 for the nine studied species of Magnoliaceae (Fig. 2A). This indicated that the leaf shapes of these nine species did not conform to a standard ellipse shape with leaf length (L) and width (W) as the major and minor axes. Among the nine species studied, Magnolia tomentosa and Michelia maidae were found to have leaf shapes that most closely resembled a standard ellipse (Fig. 2A). However, their RI values were not the highest found, as Magnolia denudata had the roundest leaves (Fig. 2B). There was a significant correlation between EI and RI values (r = 0.29, n = 2220, p<0.05).

Among the six leaf area models tested, Model–2 had the lowest RMSE, and Model–1 (i.e., the ME) had approximately the same RMSE value as that of Model–2 for each species (Table 3). Although Model–1 has one more parameter than Model–2, the decrease in APE with Model–1 vs. -2 did not exceed 1.5% for any of the species of Magnoliaceae tested except Magnolia soulangeana (APE = 5.34%). This means that the additional parameter in Model–1 was apparently unnecessary for most species (8/9). The ME had a lower RMSE than those of the other four models that only include a linear leaf dimension (L or W). The estimated MPs ranged from 0.64 to 0.73 for all nine species, with RMSE values for the ME all being less than 0.05. In addition, the correlation coefficients between LW and A of the nine species as calculated on a log-log plot were all greater than 0.988 (Fig. 3). This showed that the ME achieved a good fit to the data of each tested species. The goodness of fit attained by the ME was still high even when the data of all nine species were pooled, resulting in an RMSE smaller than 0.05 and a high correlation coefficient of 0.9969 (Fig. 4). The estimated MP for the pooled data was 0.684, with the 95% CI encompassing values from 0.6827 to 0.6855. These results confirmed the validity of the ME for use in calculating leaf area. We carried out linear regressions of the estimated MP values vs. the mean EI values of the nine studied species, and the intercept was found to be non–significant (p>0.05). Therefore, we dropped the intercept term from the linear regression, and obtained a slope of 0.7850 (95% CI: 0.7848 to 0.7851) for the MP vs. EI relationship, which means that the MP is approximately equal to π/4 EI.

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Model expression</th>
<th>Log-transformation of model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model–1</td>
<td>A = c (LW)</td>
<td>ln(A) = a + ln (LW)</td>
</tr>
<tr>
<td>Model–2</td>
<td>A = c (LW)^b</td>
<td>ln(A) = a + b ln (LW)</td>
</tr>
<tr>
<td>Model–3</td>
<td>A = c L^2</td>
<td>ln(A) = a + 2 ln (L)</td>
</tr>
<tr>
<td>Model–4</td>
<td>A = c L^6</td>
<td>ln(A) = a + b ln(L)</td>
</tr>
<tr>
<td>Model–5</td>
<td>A = c^2 W^6</td>
<td>ln(A) = a + 2 ln(W)</td>
</tr>
<tr>
<td>Model–6</td>
<td>A = c^6 W^6</td>
<td>ln(A) = a + b ln(W)</td>
</tr>
</tbody>
</table>

Note: Model–1 is the Montgomery equation (ME), where c = exp(a). There are similar exponential relationships between the pre–exponential constants and the intercepts for the other models. Here, A denotes leaf area, L denotes leaf length, W denotes leaf width, and a and b (with different subscripts for different models) are constants to be estimated. In the actual fitting of data for each species, the log-transformed version of each model was used.

<table>
<thead>
<tr>
<th>Species code</th>
<th>RMSE_1</th>
<th>RMSE_2</th>
<th>RMSE_3</th>
<th>RMSE_4</th>
<th>RMSE_5</th>
<th>RMSE_6</th>
<th>RMSE_7</th>
<th>RMSE_8</th>
<th>RMSE_9</th>
<th>APE_1</th>
<th>APE_2</th>
<th>APE_3</th>
<th>APE_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0478</td>
<td>0.0477</td>
<td>0.1010</td>
<td>0.0964</td>
<td>0.0933</td>
<td>0.0933</td>
<td>0.028</td>
<td>4.62</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0384</td>
<td>0.0381</td>
<td>0.1028</td>
<td>0.0995</td>
<td>0.0679</td>
<td>0.0656</td>
<td>0.80</td>
<td>3.28</td>
<td>3.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.0298</td>
<td>0.0282</td>
<td>0.0706</td>
<td>0.0674</td>
<td>0.0646</td>
<td>0.0622</td>
<td>5.34</td>
<td>4.54</td>
<td>3.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0309</td>
<td>0.0309</td>
<td>0.0733</td>
<td>0.0702</td>
<td>0.0784</td>
<td>0.0781</td>
<td>0.000</td>
<td>4.26</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.0273</td>
<td>0.0273</td>
<td>0.1359</td>
<td>0.1178</td>
<td>0.1325</td>
<td>0.1259</td>
<td>0.07</td>
<td>13.37</td>
<td>4.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.0298</td>
<td>0.0296</td>
<td>0.0861</td>
<td>0.0826</td>
<td>0.0732</td>
<td>0.0732</td>
<td>0.71</td>
<td>4.11</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.0317</td>
<td>0.0317</td>
<td>0.0883</td>
<td>0.0801</td>
<td>0.0834</td>
<td>0.0830</td>
<td>0.15</td>
<td>9.19</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.0309</td>
<td>0.0305</td>
<td>0.0925</td>
<td>0.0799</td>
<td>0.0693</td>
<td>0.0680</td>
<td>1.36</td>
<td>13.69</td>
<td>1.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.0305</td>
<td>0.0304</td>
<td>0.1489</td>
<td>0.1294</td>
<td>0.1220</td>
<td>0.1218</td>
<td>0.62</td>
<td>13.07</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The subscripts 1–6 of RMSE and APE in the first row represent the six leaf area models listed in Table 2.
aves with many marginal teeth, and as a result \(RI < 1 \). The EI is a correction factor for obtaining different shapes from a rectangle, allowing one to obtain different shapes from a standard ellipse with leaf \(ME \). It is used to quantify the deviation of an oval leaf’s ellipticalness from a standard circle. In our results, eight out of nine species had mean RI values less than 0.8 (Fig. 2A). However, all species had mean EI values greater than 0.8 (Fig. 2A). When leaf \(L \) and \(W \) are the same, then in theory \(RI = EI \). However, for a leaf shape that deviates from a standard circle to a certain degree, the two indices are not the same (Figure 2A vs. 2B) because the bases of their calculation are different. For a standard circle, \(A = \pi r^2 \) and \(P = 2\pi r \), so it is easy to express \(A \) as a function of \(P \), or to express \(P \) as a function of \(A \). The leaf RI is based on the ratio of \(4\pi A \) to \(P \), so in theory it has a constant value of one for a standard circle. If a leaf shape deviates from a circle, the actual leaf \(P \) is usually larger than the perimeter of a circle, and as a result \(RI < 1 \). The EI is calculated based on the ratio of leaf area to the hypothesized area of an ellipse with comparable axes; the formula to calculate the area of an ellipse is well-known, \(A = \pi r^2 \), with \(r \) being the semi-major axis and \(\beta \) the semi-minor axis of the ellipse (related directly to \(W \) and \(L \) in the rectangle of the ME). It is difficult to analytically express leaf \(A \) or \(P \) as a function of one another (Almkvist & Berndt, 1988). Thus, it is impossible to provide a candidate ellipticalness index based on the ratio of leaf \(P^2 \) to \(A \). Nevertheless, it is still somewhat meaningful to use a leaf shape index based on these two leaf measures, such as the leaf \(P/A \) ratio or the leaf \(P^2/A \) ratio, to reflect the complexity of leaf shape regardless of the extent to which leaf shape deviates from a standard ellipse.

The leaf dissection index (DI; Kincaid & Schneider, 1983; Thomas & Bazzaz, 1996; Santiago & Kim, 2009) is used to describe the complexity of leaf shape, especially the influence of marginal teeth, serrations, dissections, and lobes on leaf perimeter. However, the leaf DI is actually the square root of the reciprocal of the leaf RI. The DI itself cannot completely qualify the extent to which marginal teeth, serrations, dissections, and lobes affect leaf shape. This is because the leaf \(WL \) ratio (deviating from an ideal 1:1 ratio of a hypothesized standard circle for complex leaf shapes) and the degree to which the leaf edge deviates from being a smooth line can both affect the DI value. Our EI also cannot describe the extent of leaf marginal dissection because the EI is based on an area: area ratio, without leaf perimeter being involved in its calculation. To reflect the extent of leaf marginal dissection (i.e., deviation from smoothness), we suggest first using a parametric or a non-parametric model to describe the leaf profile. Then, one could use the leaf \(P/A \) ratio to reflect leaf shape complexity, especially that resulting from leaf marginal teeth.
serrations, dissections, and lobes. For example, the simplified Gielis equation can describe many bilaterally symmetrical leaf shapes despite the fact that it does not accurately fit the leaf margins for some leaves (Gielis, 2003; Shi et al., 2015, 2018). If a leaf is exactly or approximately bilaterally symmetrical, but with some teeth, dissections, serrations, or lobes, then the P/A ratio is likely sufficient to reflect the extent of deviation of the leaf margin from smoothness. If a leaf slightly deviates from perfect bilateral symmetry, one can use a coordinate transformation based on the method proposed by Huang et al., (2020) to make the simplified Gielis equation reflect the deviation of the leaf edge from bilateral symmetry. Then, the P/A ratio could be used to quantify the deviation of the leaf margin from smoothness. Because a clear polar coordinate equation is available in this case, it is easy to calculate the perimeter and area of the curve generated by the polar coordinate equation. In this case, we could further quantify the extent of leaf margin deviation from smoothness for a leaf separately from the influence of leaf shape, especially that of the leaf W/L ratio and that of a skewed leaf marginal curve.

Fig. 3. Results of fitting the Montgomery equation to the data for individual species, represented as log-log plots of leaf area (A) vs. the product of leaf length (L) and width (W). Here, ‘ln’ represents the natural logarithm, RMSE represents the root-mean-square error of a linear fit, r represents the Pearson’s linear correlation coefficient calculated between A and LW on each log-log plot, n represents the sample size (i.e., the number of leaves examined for each species), exp(α) represents the estimated Montgomery parameter, and 95% CI represents the 95% confidence interval of each Montgomery parameter estimate. Panels (A–I) represent the fitted results for different species. In each panel, small open circles represent the raw data, and the red straight line represents the linear regression line (with slope = 1) calculated for these data based on the ordinary least-squares method.
In this study, we proposed a new leaf shape index (i.e., the ellipticalness index, EI) that can measure the extent to which an oval leaf shape deviates from a standard ellipse. This index is not an extension of the leaf roundness index (RI), because the bases of modelling the two leaf shape indices are different. The EI is based on the proportional relationship between leaf area (A) and the product of leaf length (L) and width (W), while the RI is based on the fact that the leaf perimeter (P) squared is proportional to leaf A. For the RI or its rewritten form, the leaf dissection index (DI), the influence of leaf shape (reflected by the leaf W/L ratio or by a skewed leaf marginal curve along the axis from the leaf base to the leaf apex) on the index value cannot be separated from those of leaf marginal teeth, serrations, dissections, and lobes. For instance, for oval leaves with dissections (e.g., some Rosaceae; Yu et al., 2019), the contribution of the W/L ratio or that of a skewed leaf marginal curve (from leaf base to leaf apex) to the RI might be larger than that of unsmooth leaf margins. Unlike the RI, the newly developed EI can be applied to both circular and oval leaves. We also checked whether the Montgomery equation (ME) holds true for nine species of Magnoliaceae. We found that the ME can fit the leaf area data well for each of these species (considering that all RMSEs were smaller than 0.05 and all correlation coefficients were greater than 0.988), and this demonstrated the validity of the ME’s use in describing the relationship between leaf A and LW. The formula for the area of an ellipse is $A = \pi a b$, where a and b are the semi-major and semi-minor axes of the ellipse, and these are one half each of a leaf’s L and W, respectively. Thus, whether the EI provides a robust fit to leaf shape data depends on whether the relationship between A and LW can be fit well by the ME. The EI is actually proportional to the proportionality coefficient in the ME (i.e., the Montgomery parameter, MP). However, the MP only calculates the proportion of the area of a rectangle with leaf L and W as its two side lengths represented by the actual leaf A, and does not intuitively reflect the deviation of a leaf’s shape from a standard ellipse. In addition, we also compared the ME with five other models of leaf area, and found that the ME was the best one based on consideration of the trade-off between the goodness of fit achieved and model complexity. This study provides a useful tool for quantifying and comparing the oval leaf shapes that render leaf hydraulic conductance to be homogeneous across the whole leaf surface.

Using the RI and EI, no instances are found where RI = 1 or EI = 1. This means that neither circles, nor true ellipses are found in nature, which is in accord with the findings in past studies of bamboo culms, tree rings, and leaves (Gielis et al., 2021). However, the RI and EI allow us to quantify deviations from ideal circles and ellipses, which forms a basis for using the language of mathematics to study some special natural shapes. Our results provide further qualitative and quantitative evidence that nature is inherently anisotropic, and new mathematical methods need to be developed to fully account for this, certainly in botany.

Acknowledgments

We thank Ms. Yirong Li and Rong Wang for their valuable work in leaf sampling and image processing.

References

(Received for publication 30 June 2021)