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Abstract 

 

Stripe rust disease caused by Puccinia striiformis is one of the utmost destructive foliar diseases of wheat all around the 

world. The most effective strategy to control this disease is to develop and grow resistant varieties. To identify the genomic 

regions responsible for resistance, 294 Pakistani hexaploid wheat accessions were subjected to genome-wide association 

studies (GWAS). These lines were characterized phenotypically for stripe rust response at seedling stage in controlled 

conditions in Pakistan and in fields near Mount Vernon and Pullman in Washington, United States. A targeted amplicon 

sequencing approach was used to genotype the wheat germplasm with 787 of SNP markers. Twenty-four genotypes showed 

resistance to stripe rust in controlled conditions in Pakistan. In Washington, 193 and 97 genotypes showed resistance at 

Mount Vernon and Pullman, respectively. GWAS results showed that seven and three loci were associated with resistance 

observed at the seedling stage under controlled and field conditions, respectively, and only one locus on chromosome 7A 

was significantly associated with adult plant resistance. This study identified resistance loci in Pakistani wheat germplasm 

that can be used in breeding resistant wheat varieties. 
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Introduction 

 

Wheat is an extensively cultivated crop all over the 

world, especially in Asia. Worldwide nearly 215m ha of 

the land is cultivated for hexaploid (Triticum aestivum L.) 

and tetraploid (T. turgidum L. subsp. durum) wheat. A 

total of 95 mha that comprise 44% of the world is used for 

cultivation in Asia. The main contributors are Pakistan, 

China, and India. China alone holds 62 mha out of 95mha 

for wheat growers. Wheat is considered a staple food that 

feeds almost 40% of the total world population (Waqar et 

al., 2018). The anticipated global wheat requirement for 

9.6 billion individuals in 2050 is forecasted to be met by 

increasing wheat production by 60% from 2000-2050. 

The world wheat production in 2000 and 2018 was 583 

and 733 million metric tons, respectively. Concurrently, 

wheat suffers from three devastating fungal diseases, 

including stripe (yellow), stem (black), and leaf (brown) 

rust, resulting in huge yield lost. 

Being the fifth largest country for wheat production 

25.7 million metric tons in 2019-2020 (www.fao.org) 

where this crop is cultivated everywhere in the country. 

Yellow or stripe rust (produced by Puccinia striiformis), 

is a globally significant disease of wheat (Waqar et al., 

2018). Puccinia striiformis Westend. f. sp. tritici Eriks. 

(Pst) is known to cause stripe rust disease, which is a 

significant foliar disease. The severity of stripe rust are 

visible in Pakistan's northern areas, upland, and foothills 

of Baluchistan. The disease has historically jeopardized 

wheat production when epidemics occurred at various 

times in 1947-48, 1953-54, 1958-59, 1977-78, and 1992-

93. Stripe rust decreases the mass and quality of the seed 

and fodder. Cost is also reduced for seeds yield that is 

struck by rust as they have low vigor and poor 

germination rate along with shriveled grains. The losses 

can go up to or nearly cent percent depending upon the 

variety whether resistant or not, early, or late maturity 

rate of infection and development and favorable 

environment and period duration of rust disease (Chen, 

2005). Pakistani wheat is heavily grown but nearly 70% 

of the total production is affected by rust with decrease 

yield and cost for farmers. 

Long-term fertility building requires a combined 

methodology instead of a short-range approach and 

targeted way out instead of conventional agriculture 

approaches (Rehman et al., 2020). Therefore combined 

efforts of agriculture scientists, especially plant breeders 

and geneticists are required to overcome loss inflicted 

by a lethal disease. In the past wheat breeding, has relied 

on the successful development of rust resistant wheat 

varieties. However, the continued emergence of new 

virulent races often shortens the life of the deployed 

varieties and keeps the breeding for stripe rust resistance 

a tough challenge and needs long term planning. 

Genetically, resistance is characterized into seedling 

resistance and adult plant resistance (APR). The seedling 

resistance is mostly controlled by few major race 

specific genes which expresses throughout all growth 

stages. Most of the varieties containing seedling 

resistance have become susceptible because new 

pathogen that is more virulent, are emerging. 

Conversely, APR is quantitatively controlled by single or 

multiple genes with relatively slight effects are usually 

race non-specific and expresses only or more effectively 
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at the post seedling stage. More than 80 stripe rust 

resistance genes have been permanently named Yr 

(yellow rust) genes. There are nearly 300 genes/QTL 

maps have been reported with provisional names (Wang 

& Chen, 2017). The majority of the Yr genes are race-

specific, but still, many genes are not race-specific, for 

example, Yr18, Yr29, Yr30, and Yr46. The mentioned 

genes unaccompanied are inadequate, but they can 

provide decent levels of resistance when used in 

combination. Yr29 which is closely linked with Lr46 for 

leaf rust resistance confers a moderate level of APR to 

stripe disease (William et al., 2003). Merging the all-

stage resistance and APR genes in wheat varieties would 

be the most effective strategy to provide high-level 

protection and mitigation of the damage caused by new 

races. Hence, it is important to detect more resistance 

sources to avoid future stripe-rust epidemics in Pakistan 

where year-round inoculum is present. 

Traditionally, bi-parental QTL mapping has been 

successfully used to identify linked genetic markers for stripe 

resistance in genotypes (William et al., 2003). In present 

years, GWAS based on linkage disequilibrium (Goldstein & 

Weale, 2001) has become popular as it is an alternative 

method with several improvements by analysis based 

mapping over normal conventional linkages. Eliminating the 

need to make crosses and generate mapping populations, 

GWAS is the most effective approach that utilizes natural 

variation provides broader allele coverage, and exploits the 

higher number of meiotic events that happened throughout 

the evolutionary history of the germplasm. This has 

permitted in a faster decay of linkage disequilibrium (LD) 

and mapping of the associated loci with the target traits to a 

much smaller genomic region RIL (recombinant inbred 

lines) or DH (doubled haploid) populations (Rafalski, 2010; 

Nordborg & Weigel, 2008). The term LD is referred to 

historically as an increase (dis-equilibrium) of specific rust 

alleles at different loci and the stages of LD extent can be 

measured statistically. GWAS is also helpful in terms of the 

possibility of using historically characterizing data 

phenotypically (Kraakman, 2006). GWAS has been 

successfully used to identify marker-trait associations for the 

resistance of stripe rust in wild emmer wheat (Sela et al., 

2014), synthetic hexaploid wheat (Zegeye, 2014), emmer 

wheat (Liu et al., 2017), winter wheat (Bulli, 2016), spring 

wheat (Godoy et al., 2018; Tadesse et al., 2015) and other 

wheat diseases (Kollers et al., 2013). However, the 

utilization of an association mapping panel to dissect the 

genetic basis of stripe rust resistance in Pakistani wheat 

germplasm has not been demonstrated yet. 

The current study aimed at conducting GWAS for 

stripe rust in Pakistani Triticum aestivum collection of 294 

genotypes comprised of advanced breeding lines, 

candidate lines, commercial wheat varieties, and local 

landraces of Pakistan. The objectives of present study 

were: 1) to evaluate Pakistani wheat germplasm for their 

resistance to prevailing races of stripe rust across three 

environments and conditions, 2) to assess the population 

structure of this germplasm based on SNP markers, and 3) 

to conduct GWAS for genetic markers associated with 

loci governing resistance against stripe rust. 

Materials and Methods 
 

Germplasm: A hexaploid wheat collection of 294 

genotypes obtained from National Agricultural Research 

Centre (NARC), Islamabad and Plant Genetic Resources 

Institute (PGRI) were selected for this study. The 

collection consisted of advanced breeding lines, candidate 

lines, commercial wheat varieties, and local landraces of 

Pakistan including 49 National Uniform Wheat Yield 

Trial lines of Pakistan. Morocco was used as the 

susceptible spreader of PST inoculum in the study. 

 
Greenhouse and field experiments at Pakistan: Seedling 
stage experiment was conducted by testing the 294 wheat 
genotypes with four Pakistani Pst isolates representing four 
predominant races (Table 1). The seedling test was 
conducted in the greenhouse at Crop Disease Research 
Institute, Murree. The experiment was conducted in 
augmented design with replicates performed in the year 
2016-17. For each genotype, 10-15 seeds were planted in 
one pot containing Sunshine mix #1 growing medium 
placed in plastic trays (5 pots/tray). At 12 days after 
sowing, urediniospores suspended in mineral and 
petroleum ether (30:70 concentration) were sprayed onto 
plants and then allowed to air dry, and the inoculated 
seedlings were incubated in a dew chamber for 48 hours 
with 100% relative humidity at 9°C with 18 hours daily 
photoperiod. Afterward, these plant seedlings were 
transferred to a screen house, with the controlled 
temperature at 12-18°C. Different types of infection were 
noted after 15 days of inoculation (Line & Qayoum, 1992). 

The wheat panel was also evaluated in fields at Crop 

Diseases Research Institute, NARC, Islamabad, Pakistan 

(33°40'13.5"N, 73°07'33.6"E) and Cereal Crops Research 

Institute (CCRI), Pirsabak, Nowshera, Pakistan 

(34°01'02.0"N, 72°02'59.3"E). Stripe rust evaluations were 

conducted under artificial epidemics during the wheat 

cropping season in the years 2015 and 2016. Thus, four year-

location combinations were conducted. Each of the 

genotypes was planted in two rows adjacent to each other as 

1 m long head rows followed by every third row of Morocco 

following the local recommended agronomic management 

practices. These rows were planted in augmented design 

where all the genotypes were distributed in six blocks and 

each block consisted of 50 genotypes in addition to 

Morocco. Morocco was also planted in the surroundings for 

inoculum dispersal for uniform disease development for the 

study. A spore suspension containing multiple diverse races 

that were preserved at the CDRI department was sprayed in 

Morocco. The mixed inoculum had virulence to all resistance 

genes in the 18 Yr single-gene differentials, except Yr5, 

Yr10, Yr15, and YrSP (Wan et al., 2016). Inoculations were 

done twice – first with "mineral oil" along with petroleum 

ether and second with normal water by addition of some 

spores and Tween 20 (2-3 drops) of at booting / tillering and 

stages respectively. Data collection on all the genotypes 

started as soon as susceptible Morocco developed 60-70 

percent rust severity while data was collected twice and the 

average was used for performing GWAS analysis. IT was 

scored based on the 0-to-9 scale similar to seedling 

evaluation as mentioned above, and SEV was documented 

visually as percent infection (for rust) on the individual plant 

using a modification of Cobb's gauge (Peterson et al., 2011). 
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Table 1. Avirulence/virulence profiles of Pakistani races of Puccinia striiformis f. sp. tritici (Pst) used in this study. 

Pst Racea 
Octal code 

Yr genes 
Virulence 

Isolate Name Avirulence 

 PSTv-101 161266 Yr1,Yr5,Yr9,Yr10,Yr15,Yr24,Yr32,YrSP,Yr76 Yr6,Yr7,Yr8,Yr17,Yr27,Yr43,Yr44,YrTr1,YrExp2 

 PSTv-76 571262 Yr5,Yr10,Yr15,Yr24,Yr32,YrSP,YrTr1,Yr76 Yr1,Yr6,Yr7,Yr8,Yr9,Yr17,Yr27,Yr43,Yr44,YrExp2 

 PSTv-220 541760 Yr5,Yr8,Yr9,Yr10,Yr15,YrSP,YrTr1,YrExp2,Yr76 Yr1,Yr6,Yr7,Yr17,Yr24,Yr27,Yr32,Yr43,Yr44 

 PSTv-221 561242 Yr5,Yr9,Yr10,Yr15,Yr24,Yr32,Yr44,YrSP,YrTr1,Yr76 Yr1,Yr6,Yr7,Yr8,Yr17,Yr27,Yr43,YrExp2 

(Add the isolates) 
a Names and octal codes of Pst races followed Wan et al. (2016) 

 

Field evaluation in Washington State: The wheat 

genotypes were also evaluated for stripe rust response in 

the fields near Pullman (46°45'30.0"N, 117°11'35.4"W) and 

Mount Vernon (48°26'24.0"N, 122°23'14.9"W), 

Washington in the year of 2018. The Mount Vernon site 

was planted on April 26 and the Pullman site on May 10.  

For each entry, about 5-gram seeds were grown in almost 

50 cm row and spaced nearly 20 cm apart, with the 

susceptible check Avocet S (AvS) planted every 20 rows 

and surrounding all nurseries. Stripe rust IT and Sev data 

were collected on June 7 and June 27 when plants were at 

middle jointing (Zadoks GS 31) and flowering (Zadoks GS 

60) (Zadoks et al., 1974), respectively at Mount Vernon.  At 

Pullman, stripe rust IT and SEV data were recorded on July 

17, when plants were flowering (Zadoks GS 60). 

 

Targeted amplicon sequencing for SNP genotyping: 

Genomic DNA from each genotype was extracted from fresh 

leaf tissues using the Cetyl Trimethyl Ammonium Bromide 

(CTAB) method (Doyle & Doyle, 1987). Extracted DNA 

was subjected to targeted amplicon sequencing (TAS) as 

mentioned by Bernardo et al., (2015) along with slight 

modifications as described in Pupo et al., (2019). Two 

rounds of PCR were performed to amplify the target regions. 

In the first round of PCR, 1K locus-specific primers were 

used and in the second round of PCR, the normal Ion An 

adapter followed by a unique barcode specific for each 

genotype was added at the 5' end of each amplicon. These 

amplicons were then purified using the QIA quick PCR 

purification kit (Qiagen, Germany) and filtered using the 

Agencourt AM Pure XP beads (Beckman Coulter, USA). 

Following this, two size selections were performed. In the 

first selection, fragments ranging from 100–350 base-pair 

length were selected, extracted from a 4% Size Select E-Gel 

(Life Technologies, USA), and purified using the QIA quick 

Gel Extraction Kit. In the second selection, fragments of 

length ∼300 base pairs were selected on a 2% Size Select E-

Gel, purified using the QIA quick purification kit, and 

quantified through the Qubit dsDNA HS assay kit (Life 

Technologies, USA). Sequencing was performed on an Ion 

Torrent Proton Sequencer (Thermo Fisher Scientific, USA) 

at the USDA-ARS Genotyping Laboratory in Pullman, WA. 

The sequenced data was done as mentioned by an in-house 

pipeline (Skinner et al. unpublished) and a total of 940 SNP 

markers were obtained. To identify the polymorphic markers, 

filtering was done to remove monomorphic markers, 

markers with a minor allele frequency (MAF) <0.05, and 

markers with 20% or more missing data. Filtered SNPs were 

then used in statistical analysis for GWAS. 

 

Population linkage and structure dis-equilibrium 

estimation: The population structure based on filtered SNP 

markers was analyzed in STRUCTURE V2.3.3 (Pritchard et 

al., 2000). To assign the individuals into sub-populations (K), 

the admixture model of population structure was applied. 

Following an initial burn-in of 20,000 iterations, the number 

of hypothetical subpopulations (K) was set from 1 to 10, 

with 50,000 Monte Carlo Markov Chain (MCMC) 

replicates. For each K, five independent runs were 

performed, and the most optimal number of subpopulations 

(K) were determined using the method elaborated by Evanno 

et al., (2005). The linkage disequilibrium (LD) was observed 

employing the filtered loci in TASSEL 5.0 software 

(Bradbury et al., 2007). The LD decay rate was analyzed 

individually for each chromosome. 

 

ANOVA and heritability: Analysis of variance 

(ANOVA) was conducted on infection types and severity 

using the PROC MIXED procedure including genotype, 

location, year, genotype by location interaction as random 

effects. The overall average was considered as a fixed 

effect. Different variance components were computed 

using the REML method. For each location, the model 

used is listed below: 

 

Yij = Gi + Ej + GEij + eij 

 

where Gi the effect of the genotype, Ej is the year effect, 

GEij is the interaction between the genotype and year, and 

eij is the residual. Across all locations, the following 

model was used. 

 

Yijl = Gi + EKjl + GEKijl + eijl 

 

where Gi the effect of the genotype, EKjl is the effect of 

the interaction of year and location, GEKijl is the 

interaction between the genotype and year and location, 

and eijl is the residual. The broad-sense heritability (H2) 

estimates for each trait was calculated for each location 

and across all locations as. 

 

H2 = (2G)/(2G + (2E/y) + (2GE/y) + (e2/y)) 

 

“where 2G is the genotypic variance, 2E is the 

environmental variance, 2GE is the genotype * 

environment variance and e2 is the residual variance and 

y corresponds to the number of years for each location 

and the number of years multiplied by the number of 

locations across locations”. Descriptive statistics and 

Pearson correlation coefficients for locations and years 

were calculated for IT and SEV values using the SAS 

PROC UNIVARIATE and PROC CORR procedures. The 

BLUPs for IT and SEV across locations and years were 

computed using the PROC MIXED. 
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GWAS analyses for stripe rust resistance: GWAS for 
loci associate with IT and SEV response at seedling and 
adult plant stages were conducted on 287 genotypes using a 
total of 787 high-quality SNP markers. Different general 
linear (GLM) and mixed linear (MLM) association models 
were compared to select the best model for marker-trait 
association using the GAPIT and Farm CPU software 
implemented in R (Liu et al., 2016). They tested six models 
included a fixed general linear model containing kinship 
only (K GLM), a fixed general linear model containing 
kinship and population structure using the first three 
principal components (PC3) (K+Q GLM), a compressed 
mixed linear model containing kinship only (K CMLM), a 
compressed mixed linear model containing kinship and 
population structure using the first three principal 
components (K+Q CMLM), and two Farm CPU models– 
one without correction for population structure and one 
containing PC3 as a correction for population structure 
(Lipka et al., 2012). The population structure (Q matrix) 
was determined through principal component analysis and 
family relatedness (K matrix) using the method of Van 
Raden in GAPIT (Vanraden, 2008). The Q and K matrices 
were fitted as fixed and random effects into the model to 
ensure the detection of only genetically significant 
associations. Models were compared based on the deviation 
of observed probability from expected distribution in the Q-
Q plot. Association analysis was carried out by estimating 
the marker-wise threshold (p≤0.005), based on the 
Bonferroni correction (α = 0.10), and the p-value threshold 
recommended by Farm CPU for each trait for each 
environment (location year) separately and the BLUPs 
across environments for the adult-plant responses under 
both artificially inoculated and natural infections. 
 
Results 

 
Phenotypic responses: A total of 294 genotypes were 
evaluated for IT to four Pakistani Pst races at the seedling 
stage. The avirulence /virulence formulae of the four races 
are provided in Table 1. The IT responses of the genotypes 
varied greatly among Pst races (Fig. 1). The widest range (1-
9) was observed among genotypes for the response to race 
PSTv-101 whereas relatively narrow ranges were observed 
in tests with races PSTv-220 (2-8) and PSTv-221 (1-7). The 
genotypes showed the highest median IT response (6.5) for 
PSTv-76 whereas the lowest median response (4.0) was 

observed for Pst-IV. For artificial epidemics in Pakistan 
environments, the lowest IT score of 2 and a median score of 
6 was observed across all environments (Fig. 2A; Table 2). 
The distribution of genotype responses was almost similar 
(C2015, C2016, N2015) except for N2016. The distribution 
of genotype responses for SEV was more variable than IT 
under artificial epidemics (Fig. 2B). C2015, N2015, and 
N2016 showed a similar median SEV score of 40 while a 
median score of 30 was observed for C2016 (Table 2). 
Combining the data over two years for each of the locations 
indicated the NARC site to be fairly more symmetrical than 
the CCRI location for IT based on the computed skewness 
whereas CCRI showed more symmetrical distribution for 
SEV (Table 2). Under natural conditions in Washington 
State, the U.S.A, a median IT score of 2 was observed for 
both the Mount Vernon and Pullman locations despite the 
wide range (2-8) of IT distribution, whereas the IT variation 
was wider for the Pullman location (Fig. 2C). For SEV 
scores under natural conditions, similar distributions were 
found at the two locations although Mount Vernon showed a 
higher median SEV score (15%) than Pullman (5%) (Fig. 
2D). However, both locations showed a highly skewed 
distribution (1.22 – 2.21) for both phenotype traits (Table 3). 
With an exception of IT at Pullman, the computed kurtosis 
indicated tailed distributions for IT and SEV under the 
Washington natural disease conditions (Table 3). 

The percentages of wheat genotypes with resistance 
to races PSTv-101, PSTv-76, and PSTv-220 were 
relatively low (22-25%) compared to race PSTv-221 
(42%) (Fig. 3). The IT scores for PSTv-101, PSTv-76, 
and PSTv-221 showed a bimodal distribution. For PSTv-
220, the IT scores had a close to normal distribution. The 
genotypes that showed susceptibility to PSTv-101, PSTv-
76, PSTv-220, and PSTv-221 were 49%, 50%, 21%, and 
25%, respectively. The stripe rust responses of all 
genotypes are provided in (Table 1). Further, 24 
genotypes were found resistant to all-important races 
(four) at the seedling stage (Table 2 and Supplementary 
Fig. 1). When genotypes were tested under artificially 
inoculated field conditions in Pakistan, none of the 
genotypes revealed resistance to stripe rust in all of the 
four environments. In the U.S. under natural Pst infection, 
97 genotypes were resistant at the middle jointing stage 
(Zadoks GS 31) whereas 193 genotypes had resistance at 
the adult-plant stage for both locations, indicating that 96 
of the 193 genotypes had adult-plant resistance. 

 
Table 2. Descriptive statistics and estimated heritability of wheat genotypes in different field environments in Pakistan 

Statistic 
CCRI NARC Across environments 

ITa SEVb ITa SEVb ITa SEVb 

Number 574 574 574 574 1148 1148 

Minimum 2 5 0 0 0 0 

Maximum 9 90 9 90 9 90 

Mean 6.21 33.28 6.20 39.45 6.20 36.36 

Median 6 30 6 40 6 30 

St. Dev. 1.28 16.8 1.50 23.54 1.40 20.68 

Skewness -0.10 0.29 0.03 0.43 -0.02 0.54 

Kurtosis -0.22 -0.72 0.17 -0.83 0.11 -0.40 

𝜎�2g 0.35** 51.22* 1.70** 428.12** 0.74** 177.89** 

𝜎�2e 0.00 0.00 0.04ns 0.00 0.01ns 12.00ns 

𝜎�2ge 0.69** 230.14** 0.00 125.84** 0.43** 240.01** 

𝜎�2res 0.60 0.99 0.54** 1.00 0.77 0.99 

H2 0.35 0.31 0.85 0.87 0.71 0.74 
a= IT and b = SEV. Asterisks * and ** indicate p<0.05 and p<0.001 
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Table 3. Descriptive statistics and estimated heritability of wheat genotypes in different field environments in US. 

Statistic 
Pullman Mount Vernon Across locations 

ITa SEVb ITa SEVb ITa SEVb 

Number 282 282 277 277 559 559 

Minimum 2 0 2 2 2 0 

Maximum 8 100 8 100 8 100 

Mean 3.48 18.01 2.89 20.77 3.19 19.38 

Median 2 5 2 15 2 10 

St. Dev. 2.24 29.23 1.60 18.16 1.97 24.40 

Skewness 1.22 2.00 2.08 2.21 1.59 2.10 

Kurtosis -0.10 2.49 3.59 5.38 1.17 3.65 

𝜎�2g - - - - 2.47** 406.48** 

𝜎�2e - - - - 0.17ns 2.91ns 

𝜎�2ge - - - - 0.02ns 185.52** 

𝜎�2res - - - - 1.29 0.99 

H2 - - - - 0.77 0.81 
a = IT and b = SEV 

 

 
 

Fig. 1. Box plot distribution of IT in response to four stripe rust 

pathogen races at seedling stage in controlled conditions. 

 
Table 4. Pearson's correlation coefficients for IT and SEV 

response of wheat genotypes grown in Pakistan. 

Environment C2015 C2016 N2015 N2016 

IT vs. IT     

C2015 1 - - - 

C2016 0.21** 1 - - 

N2015 0.43** 0.19* 1 - 

N2016 0.38** 0.26** 0.76** 1 

SEV vs. SEV     

C2015 1 - - - 

C2016 0.18* 1 - - 

N2015 0.59** 0.16* 1 - 

N2016 0.56** 0.19** 0.77** 1 

IT↓ vs. SEV→     

C2015 0.58** 0.11ns 0.36** 0.33** 

C2016 0.14* 0.60** 0.10ns 0.16** 

N2015 0.31** 0.15* 0.66** 0.63** 

N2016 0.34** 0.19** 0.55** 0.74** 

Asterisks * p<0.05 and ** p<0.001 

 

Genotype adjusted means were also calculated based 

on BLUPs. The IT and SEV BLUPs computed for 

Pakistani artificial field conditions were normally 

distributed. However, the distribution of BLUPs for both 

IT and SEV under the U.S. natural infections showed a 

skewed distribution (Supplementary Fig. 2) similar to 

that of combined data (Table 3). 

Trait correlation and estimates of heritability: For the 

field tests in Pakistan under artificial inoculation, the 

Pearson correlation coefficients (r) stripe rust IT and SEV 

were highly significant (p<0.001) (Table 4). The highest 

correlation was found for the growing season of 2015 

between NARC and CCRI averaged 0.43 and 0.59 for the 

IT and SEV data, respectively. Average correlations 

within locations were higher for the NARC location with 

correlation coefficients of 0.76 and 0.77 for IT and SEV, 

respectively. When IT and SEV were compared to each 

other across different locations and years, correlations at 

the NARC location (0.55–0.74) were usually higher and 

more significant than the CCRI location (0.11–0.60). For 

the tests in the Washington States under natural infections, 

the correlation coefficients for IT and SEV were also 

significant (p<0.001) for the Pullman and Mount Vernon 

locations with r values of 0.69 and 0.77, respectively 

(Table 5). Correlations between IT and SEV within 

Pullman and Mount Vernon were relatively higher than 

the correlation between IT and SEV between the two 

locations. The respective correlation coefficients within 

Pullman and Mt. Vernon were 0.87 and 0.91 and between 

Pullman and Mount Vernon were 0.74 and 0.69. 

Estimates of variance components indicated 

significant (p<0.001 and 0.05) differences for IT and 

SEV among the genotypes across the CCRI and NARC 

locations (Table 2). Likewise, significant differences 

were found for both IT and SEV when ANOVA was 

performed across all environments. Genotype 

environment interactions were also significant for both 

traits, locations, and across environments except IT at the 

NARC location. Estimation of broad-sense heritability 

using the REML method indicated high H2 estimates for 

the NARC location and across environments, ranging 

from 0.85 to 0.71 for IT and 0.87 to 0.74 for SEV. For the 

field tests under natural infections in Washington State, 

only across environments, ANOVA was performed as 

only one-year data were recorded within each location. 

Genotypes were highly significant for both IT and SEV 

whereas genotype * environment interactions were 

significant only for SEV. As compared to artificial 

inoculation tests in Pakistan, greater heritability estimates 

(0.77 and 0.81 for IT and SEV) were observed in the 

Washington tests when broad-sense heritability was 

computed across environments (Tables 2 and 3). 
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Fig 2. Box plots showing IT and SEV distributions. (A) IT distributions across location  year Pakistan environments under artificial 

epidemics in CCRI 2015 (C2015), CCRI 2016 (C2016), NARC 2015 (N2015), and NARC 2016 (N2016). (B) SEV distributions 

across four locationyear Pakistan environments. (C) IT distributions across two US locations under natural infections in Mount 

Vernon 2018 (M2018) and Pullman 2018 (P2018). (D) SEV distributions across two US locations. 

 

Structure of population used in the present study: The 

analysis was done by using 787 high-quality SNP markers 

distributed across 21 wheat chromosomes (Supplementary 

Fig. 3) after filtering for MAF > 0.05 and missing data < 

20%. According to the STRUCTURE analysis, the 287 

genotypes can be subdivided into six subgroups based on 

the highest k value observed at 6 (Fig. 4A). The clustering 

of the genotypes into six subgroups is shown in (Fig. 4B). 

Moderate levels of genetic relatedness among the 

genotypes were identified as depicted by the heat map of 

the kinship matrix of the 287 genotypes (Fig. 4C). Principal 

component analysis (PCA) also grouped population into 

size groups (supplementary Fig 4). Results clearly depicted 

broad genetic basae of the population as 6 clear distinct 

groups were observed. 

 

Association analysis of SNP markers to stripe rust 

response: Six models comprising the GLM, CMLM, 

and the FarmCPU model implemented in the R package, 

were compared by testing the association of the 

phenotypic traits in the present study. The quantile-

quantile (QQ) plot was used to determine the spurious 

associations. Large deviance of the detected values of P 

from the expected values of P for the GWAS results 

under the null hypothesis of no association between SNP 

markers and the corresponding traits imply spurious 

associations whereas deviation of only a few SNP 

markers for the observed and expected P values supports 

the GWAS model. Overall, both the GLM models 

showed large deviations for the observed and expected P 

values for IT and SEV in field tests of both Pakistan and 

the U.S.  Investigation of the QQ plots revealed that the 

Farm CPU model containing PC3 as a correction for 

population structure performed better than the rest of the 

models and was utilized further to find SNP associations 

with stripe rust IT and SEV. 

Genome-wide association analyses performed on the 

IT and SEV data measured in response to different Pst 

races, field tests under artificial inoculation in Pakistani 

and natural infection in Washington State, and 

corresponding BLUPs at seedling and adult-plant stage 

revealed 78 (IT) and 49 (SEV) significant SNP markers at 

minimal probability (p<0.005). Implementation of FDR 

adjusted value of (p<0.1) reduced the number of 
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significant markers to seven and four for IT and SEV, 

respectively. Further, all seven significant SNP markers 

were able to pass the Farm CPU generated p-value 

threshold for IT , however, only two SNP markers were 

able to pass the Farm CPU generated p-value threshold 

for SEV (Table 4). Of the seven associated SNP markers 

for IT, the marker-trait associations were detected only for 

the reaction of the genotypes to races PSTv-101 and 

PSTv-76 in the seedling tests. No associations were found 

for the IT data of the field tests under artificial inoculation 

in Pakistan and the IT data of the later stage in 

Washington based on the Farm CPU model used for 

GWAS. For SEV, a significant marker-trait association 

was found at the seedling plant stage at the Mount Vernon 

location and the adult plant stage at the NARC location in 

2015. The highest number of associations (six) were 

detected for IT response to race PSTv-101 at seedling 

followed by three associations for SEV response under 

field conditions at the earlier stage at the Mount Vernon 

location (Fig. 5, Table 6). Six IT response SNP 

associations were distributed on chromosomes 1A, 2A, 

2D, 5A, and 5B and the three SEV response–SNP 

associations were distributed on 2A, 6B, and 7B. Out of 

all markers one marker was significant that is present on 

5A was linked with IT race response (PSTv-76). 

Similarly, one marker located on 7A was found associated 

with SEV in the field tests at the NARC location. Among 

all 11 significant marker-trait associations, IWB25202 

showed the highest significance (–log10 (p) = 8.23) for IT 

to race PSTv-76 and the lowest significance (–log10 (p) = 

3.86) was detected for SEV at the NARC location. The 

names of the SNP markers, mapped positions, favorable 

alleles, minor allele frequencies, and the threshold P 

values are provided in Table 6. IWB25202 was associated 

with the IT data from the tests to both races PSTv-101 and 

PSTv-76, though with varying significance. 
 

Table 5. Pearson's correlation coefficients for IT and SEV of Pakistani wheat genotypes grown in Washington, US. 

Environment 
IT vs. IT SEV vs. SEV IT↓ vs. SEV→ 

Pullman Mount vernon Pullman Mount vernon Pullman Mount vernon 

Pullman 1 0.69** 1 0.77** 0.87** 0.69** 

Mount Vernon 0.69** 1 0.77** 1 0.74** 0.91** 

Asterisks * and ** Indicate p<0.05 and p<0.001, respectively, and ns = Not significant 

 

  
 

  
 

Fig. 3. Frequency distribution of genotypes evaluated at seedling 

stage for four Puccinia striiformis f. sp. tritici races. Genotypes 

were scored on a scale of 0-9 and the genotypes with a score of 

 3 were considered resistant. 
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Fig. 4. Population structure and kinship analysis of Pakistani wheat germplasm. (A) Plot of delta K vs. K from 1 to 10 to estimate the 

best K, and the presence of peak at K=6 hints six subgroups (B) Partitioning of genotypes into six subpopulations based on 

STRUCTURE analysis. (C) A heat map of the Identity-by-decent kinship matrix illustrating intermediate to high levels of relatedness. 
 

Table 6. SNPs and the beneficial allele for stripe rust resistance at seedling and adult-plant stage as identified by GWAS. 

Trait Stage SNP marker Chr cM Allele 
Minor allele 

frequency 

-log10          

(P-value) 

FDR  P-

value 

Farm CPU 

P-value 
Effect 

IT (Pst-I) Seedling IWB11756 1A 70.1 A/G 0.16 5.82 0.00013 0.00012 -1.04 

IT (Pst-I) Seedling IWA5893 2A 97.5 A/G 0.17 4.20 0.00013 0.00012 1.12 

IT (Pst-I) Seedling IWA2640 2A 116.2 T/C 0.05 4.30 0.00013 0.00012 1.16 

IT (Pst-I) Seedling IWA1601 2D 5.9 A/C 0.05 5.13 0.00013 0.00012 2.08 

IT (Pst-I) Seedling IWB25202 5A 129.8 A/G 0.20 5.30 0.00013 0.00012 -1.14 

IT (Pst-I) Seedling IWB27386 5B 185.3 T/C 0.22 4.21 0.00013 0.00012 -0.99 

IT (Pst-II) Seedling IWB25202 5A 129.8 A/G 0.20 8.23 0.00013 0.000014 -0.99 

SEV (M2018) Seedling IWB11136 2A 9.4 T/G 0.40 3.90 0.00013 0.000049 3.84 

SEV (M2018) Seedling IWA8189 6B 64.7 A/G 0.24 4.44 0.00013 0.000049 -5.28 

SEV (M2018) Seedling IWA8570 7B 90.4 A/G 0.29 4.09 0.00013 0.000049 -4.11 

SEV (N2015) Adult-plant IWB7063 7A 49.1 A/G 0.15 3.86 0.00013 0.00029 8.70 
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Fig. 5. GWAS-derived Quantile-Quantile plots and Manhattan plots of the FarmCPU model with PC3 as covariate for traits with 

significant associations. (A) Q-Q plot and Manhattan plot for resistance to Pst-I. (B) Q-Q plot and Manhattan plot for resistance to Pst-

II. (C) Q-Q plot and Manhattan plot for SEV at seedling stage in the U.S. environment in 2018. (D) Q-Q plot and Manhattan plot for 

SEV at adult plant stage in one of Pakistani environments in 2015. 
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Supplementary Fig. 1. Distribution of genotypes resistant to the 

number of Pst races tested. All genotypes were screened for 

resistance to four races of Pst at seedling stage in the greenhouse. 
 

Discussion 
 

The limited availability of effective resistance sources 
for stripe rust has constrained the capacity of releasing new 
varieties with durable resistance. The present priority for 
stripe resistance requires continuous determination of the 
gene combination status for new resistance sources that 
must be incorporating into present-day breeding programs 
for cultivar development (Khattak et al., 2020). This study 
characterized the diverse set of 294 genotypes obtained 
from National Agricultural Research Centre (NARC), 
Islamabad for seedling and adult plant resistance against 

the prevailing population of 4 races of Pst in Pakistan and 
the Pacific Northwest of the USA. We observed a 
considerable amount of variation for seedling and APR in 
this germplasm. The avirulence/virulence of the four races 
is provided in Table 1. The responses of the genotypes 
varied greatly against the isolates, indicating that the 
resistance observed at the seedling stage is largely 
controlled by different genes that are race-specific. Out of 
294 genotypes, we observed 24 genotypes being resistant to 
rust races (all four) of Pst at the seedling plant stage which 
shows that must be containing some race-specific 
resistance genes which can be analyzed in GWAS. Among 
the 97 genotypes which showed APR indicated the rust 
resistance is likely conversed by APR genes/QTLs. In 
general, genotypes that originated from both the center of 
diversity and origin of wheat and Pst provide the 
coexistence of wheat and rust pathogen in a tough natural 
arm race results in the addition of diverse genes in wheat 
for resistance to rust (Ali et al., 2014).  

Previously PCA and SSR were used for identifying 
diversity at phenotypic and genetic level, thus providing a 
chance to plant breeders and geneticists to select desirable 
genotypes out of base population with unknown diversity 
or variability (Khattak et al., 2020). But still to identify 
the genomic regions responsible for rust resistance GWAS 
analysis is the ultimately source for taking out the genes 
for resistance in germplasm sources and integrating them 
into different breeding programs will ultimately increase 
the resistance of newly developed cultivars which will 
reduce the wheat losses due to this disease. 

 

 
 

Supplementary Fig. 2. Histograms illustrating frequency distributions IT and SEV BLUPs. (A) Distribution of IT BLUPs under 
artificial epidemics (CCRI and NARC). (B) Distribution of IT BLUPs under natural infection conditions (Pullman and Mt Vernon). 
(C) Distribution of SEV BLUPs under artificial epidemics (CCRI and NARC). (D) Distribution of SEV BLUPs under natural infection 
conditions (Pullman and Mt Vernon). 
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Supplementary Fig. 3. Chromosome-wise SNP markers 

distributed across 21 wheat chromosomes utilized in this study 

including SNPs with unknown (UN) chromosome location. 

 
 

Supplementary Fig. 4. Population structure of 287 genotypes 

identified through the first three principal components in GAPIT 

program. Six subgroups were inferred. 

 

Population structure: The analysis was performed to 

explain the genetic structure of the wheat germplasm used 

in the experiment. The structure analysis revelated the 

clustering of the panel of 287 wheat genotypes into six 

main sub-populations and revealed a significant 

arrangement of the pattern of subpopulations. The 

population structure was also performed by the principal 

component analysis which also groups the whole data set 

into six major groups. The first, second, and third PCs 

explained the 20, 14, and 9% of variation respectively. The 

first and second PCs consist of released wheat cultivars in 

Pakistan and lines from the National Uniform Wheat Yield 

Trial, respectively. Further, genotypes present in the first 

two clusters of PCs contain the majority of the genotypes 

conferring adult plant resistance. This interrelation among 

the population structure and resistance to stripe rust can be 

due to the significance of the difference between various 

regions of wheat growing concerning the widespread 

presence and prevalent pathogen population that is causing 

variation in genetic architecture of disease resistance. 
 

Identification of significant QTL by GWAS: We 

identified 11 loci, of which 7 were for IT and 4 were for 

SEV. No associations were found for the IT data for the 

artificial inoculation field tests in Pakistan and natural 

field conditions in the US at the adult plant stage based on 

the Farm CPU model used for GWAS. This could be due 

to several reasons. First, the relatively small number of 

useful markers (787) might leave large gaps for missing 

resistance QTL. Second, the use of mixtures of multiple 

races might eliminate genes for race-specific resistance. 

In other words, the tested Pakistani wheat germplasm may 

not contain genes for effective resistance against all races 

used in the mixture. Third, Pakistani wheat germplasm 

was mostly resistant with 247 (83%) genotypes having IT 

2-3 and 33 (11%) intermediate (IT 5), but only 17 (6%) 

susceptible (IT 8). The lack of an adequate number of 

susceptible genotypes in the second note-taking at the 

Mount Vernon location was the major reason for the 

failure to detect significant loci for the IT data. However, 

the resistance genes can be identified by crossing selected 

genotypes to a susceptible variety. 

For SEV, a significant marker-trait association was 

found at the middle jointing stage at the Mount Vernon 

location and the adult-plant stage at the NARC location in 

2015. The genetic map constructed by Maccaferri et al., 

(2015) was used to determine the prospective co-

localization of the resistance loci with previously mapped 

genes. The genomic regions associated with 7 loci 

associated with resistance to IT and 4 loci associated with 

SEV were very closely mapped to known stripe rust 

resistance genes and loci reported in the previous study. 

This study further validated the result provided in 

Maccaferri et al., (2015) and strengthen the argument that 

the resistance genes among these virulent types are even 

present in the germplasm being used in Pakistan. The 

identified loci can be used in breeding operations in 

Pakistan to develop some of the durable cultivars. 

 

Conclusion 

 

Our study well supported previous studies along with 

authentication of precision of present association analysis. 

This study also identified a new locus that was highly 

reliable as it was identified in wheat accessions with high 

yield potential. By combining this with other stripe rust 

resistance genes, durable resistance can be easily 

developed. The genotypes selected can be used by 

breeders for developing cultivars as they were having 

more resistance alleles against rust. Nevertheless, the 

panel was able to produce a decent and clear picture of 

the current genetic diversity against rust resistance genes 

in indigenous wheat germplasms. 
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