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Abstract

Sequencing is a fundamental component in the life science research. Sanger method known as first-generation
sequencing technologies (FGSTs) was the first successful sequencing method introduced in 1977. Considering time and
financial advantage, second-generation technology was introduced in 2005 which is also called as next-generation
sequencing technologies (NGSTs). These technologies have significantly high throughput compared with FGSTs, and
make break through revolution in the study of genomics and molecular biology. To overcome the mandatory sample
amplification regarding the read length and the bias of the NGSTSs, third-generation sequencing technologies (TGSTSs)
were introduced. Third-generation long-range sequencing and mapping approaches are making a renaissance in high-
quality genome sequencing. The recent developments of the fourth generation sequencing methods hold great promises
and expect to offer most important contribution in these key areas. Currently, NGSTs use most of the genomics field,
third-, and fourth-generation approaches make a significant solution in the genomics era. Wheat is one the major crop
species which is closely related with the development of agriculture and straighten of societies. The demands of wheat
are increasing day by day which necessitate improvement of wheat genomics and functional genomics. Wheat yield has
been accelerated by the advances of NGSTs that focused genome sequencing, genomic polymorphism, genes cloning and
development of technical platforms. This review discussed about the development of sequencing technologies, wheat
development through NGSTs and future outlook. This review is mostly targeted for the beginners (new students/
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researchers) who have intended to work with NGSTSs.
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Introduction

The declaration of “central dogma” about genes
mechanism by Crick (1958), help us to understand
potentiality of the Omic technologies to know about the
extreme complexity of simplest living cell. This
approach allowed great number of data that made
understanding of genotype—phenotype interaction after
completion of Human Genome Project (HGP) in 2003.
Before the genomics emergence, gene mapping methods
needed likelihood statistics to find out locations and
identifications of the genes. Omic technology was used
mostly for genome sequencing and development in
molecular genetics technologies. Being development of
algorithms helped to investigate the great amount of
data. Bioinformatics have also played an important role
for high throughput DNA sequencing. Next generation
sequencing technologies (NGSTs) were introduced in
2005 after completion of a human genome project.
These technologies not only reduced time and costs of
sequencing but also enhanced data generation capacity.
Each of NGST follows different protocols for DNA
template, short DNAs, image capturing, alignment,
assembly, and variant detection. Each of the sequencing
technologies has specific advantages and disadvantages.
NGSTs are widely used in whole genome sequencing,
exome  sequencing,  transcriptome,  methylome,
metagenomics, small RNA, de novo, ChIP (chromatin
immune precipitation sequencing) and resequencing
(Egan et al., 2012; Ari & Arikan, 2016). The success of
these NGSTs depends on development in nanofluidics,
signal detection and progress in computational power
tools (Mardis, 2013). NGSTs have been applied for

transcriptome analysis which is known as RNA
sequencing (RNA-Seq), has instantly revolutionized in
the field. Transcriptome sequencing is practically
applicable to any organism and allows transcript
discovery.

Wheat is an important cereal crop, widely cultivated
in the world for being a staple food. The world
population is increasing day by day and it will be nine
billion by 2050. Wheat is not only important cereal crop
but also a model for study of an allopolyploid plant with
a large, highly repetitive genome, hexaploid composition,
and low regeneration following genetic transformation
which lagged behind other cereal crops in the progress
of genetic engineering and biotechnology. Wheat yield
needs significant increase which can be assisted by
advances of next-generation sequencing technologies.
NGSTs will rapidly accelerate wheat genomics and
wheat functional genomics.

In this review, we briefly discussed about
development of NGS technologies with their advantages
and disadvantages, role of NGSTs for wheat improvement,
and future look, respectively.

Development of sequencing technologies: DNA
sequencing technologies have made remarkable progress
in the last thirty five years, and have generated large
number of genomic data which have been used wide
range of newly research areas and various applications.
Here we discussed about the history of development of
sequencing technologies with their advantages and
disadvantages (Table 1), and various applications of
NGSTs as listed (Table 2). We also briefly described
about the sequencing technologies in below:


https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/sequencing
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Table 2. Applications of next-generation sequencing technologies adapted from Mutz et al., 2013.

Basis for
- Reference
sequencing

NGS technology

Sequencing principle?

Applications

Classification

Margulies et al., 2005.
Wheeler et al., 2008

DNA
DNA
R

454
454

Pyrosequencing
Sequencing-by-Ligation

Pyrosequencing

Whole-genome or targeted resequencing, detection of SNPs, indels, CNVs

Gene expression profiling, SNP, alternative splicing

de novo genome sequencing
SNP discovery

Genome

Cloonan et al.,2008

NA

SoLiD
454

Barbazuk et al.,2007

RNA
RNA

Pyrosequencing
RNA-Seq

Transcriptome

Mortazavi et al., 2008
Lietal.,2010
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Wheeler et al., 2008
Chiu et al.,2010
Wu et al.,2011

NA
NA
NA

D
D
R

SOLID
SOLID
SOLID

Sequencing-by-ligation

Genetic diseases

Sequencing-by-ligation

Prenatal diagnostics

Cancer detection
Note: * Abbreviations: RNA-Seq (RNA sequencing), ChlP-Seq (chromatin immune precipitation sequencing), MeDIP-Seq (methylated DNA immune precipitation sequencing)

Diagnostics

Sequencing-by-ligation

First generation: Sanger sequencing: After discovering
DNA double helix shape by Watson and Crick (1953),
scientists had to face various difficulties in DNA
sequencing till introduction of the Sanger method (Sanger
et al., 1977). Short sequences were the main constraint for
today’s sequencing technologies. Some approaches were
already improved to obtain short sequences though having
limitation of finding them in chains (Sanger, 1988). To
overcome difficulties of DNA Sequencing, a new method
was introduced by Sanger & Coulson, known as “plus and
minus method” (Sanger & Coulson, 1975).This approach
assembled some developments to DNA sequencing. In mid
1980s, automated DNA sequencing system was starteded.
These new techniques of DNA sequencing also made a
significant progress in quality and data generation. ABI
Prism 310 was the first commercial automated DNA
Sequencer declared by PE Biosystems in 1996. After two
years later in 1998, GE Healthcare MegaBACE 1000 and
PE Biosystems ABI Prism 3700 entered the sequencing
market as commercial platforms. Sanger sequencing
gradually decreased total costs as new technologies and
modifications has been done. The HGP were successfully
completed through the Automated DNA Sequencer which
decreased both time and cost of the project. Sanger
sequencing (known as a first generation technology)
allowed significant role in development of biological
science and advanced the understanding about nucleic acids.
This technology improved our knowledge about molecular
and cellular mechanism. Limitations of these methods such
as data production, speed, sequence quality, laborious and
difficulties in answering about the application genomics
were basic problem of the first generation technologies
(FGSTs).Innovation of technology and concept about
biological science, sequencing technology is new
possibility in each branch of biological science to solve
their numerous problems.

Second generation: Next Generation Sequencing
Technologies: The Roche/454 FLX, the Illumina/ Solexa
Genome Analyzer, the Applied Biosystem (ABI) Solid
Analyzer and HeliScope sequencing platform of the
NGSTs are commercially available in the market. New
technologies ideally are low cost, high speed and time
saving. The methodologies of NGSTs are discussed
briefly below:

Roche GS-FLX 454 analyzer: The Roche GS-FLX 454
sequencer is known as the analyzer, was first developed
method launched in 2005 and completed the second
genome sequencing of an individual. This analyzer
applies  sequencing-by-synthesis  (SBS)  principle,
recognized as pyrosequencing that is capable to identify
of sequence variation rapidly and accurately. Emulsion
PCR is the basic process in this platform. Firstly the 454
platform can produce 100 bp read length, but now it can
generate 400 bp read length. The maximum capacity of
454 analyzer has~600 bp. Among the NGS platforms, 454
analyzer can produce longest short reads (600 bp). This
platform can produce ~400-600 Mb reads/run and base
accuracy of raw is over 99 % (Wheeler et al., 2008).
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Illumina/Solexa sequencer: Currently, Illumina/Solexa
sequencer is the most widely used platform applies
sequencing-by-synthesis principle on an eight channel
flow cell to generate 10 million reads per flow cell with
read length 100 bp. This sequencer is the most congenial
and has a simple approach and has been applied in this
sequencing platform. This platform is capable to produce
super quality data and proper read lengths which made the
platform a choice for many project. lllumina HiSeq 2000,
a recent sequencer can produce 2 x 100 bp read length
(pair-end reads) and generate about 200 Gb sequence per
run, up to 25 Gb per day, two billion paired-end reads per
run. The accuracy of the raw bases is greater than 99.5%.
Illumina has already developed several systems such as
the HiSeq 2500, HiSeq 1500, HiSeq 2000, HiSeq 3000, or
HiSeq 4000 (Ari & Arikan, 2016).

ABI SOLID platform: The ABI SOLID analyzer is a
platform of next-generation sequencing technology
developed by Life technology (now Thermo fisher) and
introduced in 2006. It uses unique sequencing-by-ligation
principle and applies an emulsion PCR approach with
small magnetic beads to amplify DNA fragments for
sequencing. A 5500 Solid analyzer produce short reads up
to 90 Gb per run, 2 x 60 bp reads, up to 10-15 Gb per day
at 1.4 billion paired-end reads (700 million beads)/run.
The 5500xI is latest model as the solid system, produce
up to 180 Gb per run, 2 x 60 bp reads, up to 20-30 Gb per
day at 2.8 billion paired-end reads (1.4 billion beads)/run
and base accuracy is 99.94% (Liu et al., 2012; Ari &
Avrikan, 2016).

Heli scope sequencing platform: Heli Scope platform is
the first method to use the principle of single molecule
fluorescent sequencing that uses high sensitive fluorescence
detection system to directly detect each nucleotide. It is
also known as Single-Molecule Real Time (SMRT) DNA
sequencing. Library preparation is known as a crucial
drawback for NGSTs. It eliminates difficulties for library
preparation. Heli Scope sequencer can generate 35 Gb data

per run, includes 35 bp short reads with base accuracy 99%.

This platform decreased higher error rates but repetitive
sequencing increased cost per application. The main
disadvantage of this platform is shot reads. Though, it has
some benefits to use as a single-molecule DNA sequencing
technology but Heli Scope platform could not be much
utilized for sequencing and was produced no longer (Ari &
Arikan, 2016).

Third generation: Next Generation Sequencing
Technologies: The demands of low-cost sequencing
platforms are increasing day by day. The third generation
sequencing platform is differentiated by new chemistry,
less operation time, desktop design, and lower operation

cost. We discussed briefly about the technologies in below:

SMRT sequencing: Single molecule real time
sequencing (SMRT) was launched by Pacific
Biosciences (PacBio) in 2009 as a third generation
sequencing technologies (Eid et al., 2009). SMRT
sequencing applies sequencing by synthesis approach
and real-time detection. In this method, there is no need

MD SHAHEENUZZAMN ET AL.,

of library preparation step until single DNA molecules
are available (Schadt et al., 2010). SMRT technology
differs in many features with some NGSTs. It can
generate considerably longer and highly accurate DNA
sequences of an individual. PacBio RS Il is the latest
technology of Pacific Bioscience which makes over
14,000 bp read length and 400 Mb per run. Base
modification and RNA-based research are the main
benefit of this technology. It also allows of assemble
method of de novo genomes sequencing. As a result,
SMRT having some benefit to its features which make it
a substitute to NGST (Schadt et al., 2010).

Semiconductor sequencing: Toumazou and his
colleagues developed semiconductor sequencing platform
in 2006 which was based on sequencing by synthesis
approach. This platform is time saving technologies
which directly compute pH changes in the
microenvironment, and save time by using a special
camera through removing the time-consuming imaging
step. This technology also consists of amplification step
before sequencing. It is known as third-generation
sequencing technology due to its exceptional and new
sequencing protocol (Ari & Arikan, 2016). This sequencer
follows similar approach as like as FLX 454 system. The
error rate of semiconductor sequencing methods is more
or less 1% and average read length is 400 bp. Ion Torrent
systems Inc. (Life Technology) launched lon PGM and
lon Torrent Proton in 2010 and 2012, respectively, and
average read length were 400 bp and 200 bp, respectively.
Both of them uses semiconductor sequencing technology
(Rothberg et al., 2011).

Nanopore sequencing: Nanopore sequencing is known
as a third generation sequencing technology which uses
the  sequencing of  biopolymer  particularly,
polynucleotide in the form of DNA or RNA
(Niedringhaus et al., 2011). This technology can
sequence a single molecule of DNA or RNA without
PCR amplification or any chemical labeling. This
sequencing technology provides us the potential offer to
comparatively low cost and time. This technology is
used for identification of viral pathogen (Greninger et al.,
2015), monitoring ebola (Nick Loman, 2015), human
genome sequencing, plant genome sequencing,
environmental monitoring, food safety monitoring,
monitoring of antibiotic resistance (Cao et al., 2016),
haplotyping (Ammar et al., 2015) and other applications.
Oxford Nanopore Technologies are electronics-based
DNA/RNA sequencing technology, is being used in
more than 80 countries, for a range of biological
research applications including human genomics, cancer,
microbiology, plant science and environmental research.
Minion was first product and introduced in 2014 and
made commercially available in 2015. The scaled-up
GridION was commercially launched in 2017 and
PromethlON in 2018. Flongle is scheduled to release in
2018. Smidglon, a mobile-phone-compatible, low cost,
portable sample preparation Ubikis underdeveloped, and
can be used by any user and anywhere.


https://link.springer.com/chapter/10.1007%2F978-3-319-31703-8_5#CR16
https://link.springer.com/chapter/10.1007%2F978-3-319-31703-8_5#CR67
https://link.springer.com/chapter/10.1007%2F978-3-319-31703-8_5#CR67
https://link.springer.com/chapter/10.1007%2F978-3-319-31703-8_5#CR61
https://en.wikipedia.org/wiki/Nanopore_sequencing#cite_note-3
https://en.wikipedia.org/wiki/Antimicrobial_resistance
https://en.wikipedia.org/wiki/Nanopore_sequencing#cite_note-7
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Fourth generation sequencing technology: In situ
sequencing (ISS) is known as the fourth generation
sequencing technology, hold the great opportunities to
perform trnascriptomics by sequencing nucleic acid
directly in cell and tissue (Ke et al., 2013; Lee et al.,
2014). This technology follows the previously described
NGSTs chemistries and allows detection even of single-
nucleotide. This technology would become a standard
method for the sequencing of tissue but needs further
development of the technology to overcome the obstacles
(Crosetto et al., 2015).

New sequencing and assembling technologies: BioNano
genome mapping and linked reads sequencing-
10xGenomics were developed for new sequencing and
assembling. These two sequencing technologies are being
used for genome sequencing and high quality assemblies
(Moll et al., 2017; Chen et al., 2017; Coombe et al., 2017,
Rasekh et al., 2017). Moreover, an approach known as Hi-
C is able to find out three-dimensional of architecture of
chromosome, provided genome assemble and scaffold
order on chromosomes (Lieberman-Aiden et al., 2009). In
China, the combined new technologies have been applied
to generate high quality assemblies of Triticum urartu using
BAC-by-BAC strategy combined with the SMRT
sequencing technology and BioNano genome mapping and
linked reads sequencing-10x Genomics technologies. This
combined technology completed the genome sequencing
which enhanced the scaffold length and accuracy as
evaluate to the first version of the A genome sequence. The
earlier determined a genome size was 4.94 Gb, allowed
98.4% assemblies of the Triticum urartu genome by the
combined new technology (Shi & Ling, 2018).

As mentioned above, the DenovoMAGIC2 assembler
was developed by the NRGene (NesZiona, Isreal)
company for huge, repetitive and complicated genome
such as wheat. Illumina short reads able to enlarge N50 up
to several Mb scaffolds (Avni et al., 2017). Wheat cultivar

9204 was sequenced and assembled by using this software.

Prof. Jizeng Jia and his colleagues of CAAS produced
simultaneously high qualities and large amount of
assemblies comprising scaffold with N50 size of 14.1 Mb
in Aegilops tauschii genome (Zhao et al., 2017; Shi &
Ling, 2018).

Wheat development through NGSTs: Common wheat
(Triticum aestivum L.) is the most important cereal crop,
used by more than 30 % people in the world (IWGSC,
2014). Wheat annual production is more than 620
million metric tons. The largest wheat producer and
consumer is China where produced 100 million tons of
annual wheat (Ling, 2016). To meet the food demand of
the peoples, wheat production needs to be continuously
increased. Next-generation  sequencing (NSG)
technologies have made enormous progressed in wheat
genomics and functional genomics. Wheat is a huge
complex, repetitive, polyploid genome and large genome
about to 17.0 Gband was unassailable in the past. Due to
progress of NGST platforms, is now catching up wheat.
In China, the National High-tech R&D Program (863
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Program) was introduced the wheat functional genomics
program in the era of NGSTs in 2005. Wheat researcher
made multitudinous development and progress in wheat
functional genomics. Number of main successes getting
in wheat genomics and functional genomics is discussed
briefly here:

Wheat genome sequencing: In 2005, the International
Wheat Genome Sequencing Consortium (IWGSC)
initiated with a group of scientist and breeders to
overcome the wheat genome complexities to simplify for
wheat molecular breeding. Currently, IWGSC projects
were selected for all chromosomes of Chinese Spring and
built their physical maps (http://www.wheatgenome.org/
Projects/IWGSC-Bread-Wheat-Projects), have  made
available sequence of many chromosomes such as 1AS,
1BS, 3DS, 5DS, 7DS, 1AL, 1BL, 4A, 5A, 6A, 6B, and 7B
(Holusova et al., 2017; Shi and Ling, 2018). In 2012, Hall
and his colleagues also made sequencing of Chinese
Spring wheat using whole genome shotgun (WGS)
approach with 454 pyro-sequencing (Synthesis by
sequencing principle) methods, and coverage expanded
five-fold of Chinese Spring genome sequence. They
produced 5.42 Gb assemblies, expected 94,000 to 96,000
genes, and allocated two-thirds of genes to the wheat
subgenomes (A, B, and D).Whole genome shotgun was
less cost and time effective as compared with clone to
clone approaches. In 2017, Clavijo et al., (2017) used
mate-pair libraries and an optimized algorithm to develop
an improved Chinese Spring wheat genome sequence.
They created a new assembly which represented more
than 78% of the genome, much higher than the scaffold
proportion (~49%) produced by IWGSC previously. It
was a more accurate assembly of wheat genome (Zimin et
al., 2017). The final Chinese Spring wheat genome
sequencing was done with a combination of next-
generation (short reads, Illumina) and third-generation
(long reads, Pacific Bioscience) approaches. This genome
size was greater than 15 Gb representing assembly more
than 90% of the Chinese Spring wheat genome was
performed by mixing two set of sequences assembled
using the MaSuRCA (Zimin et al., 2013) and FALCON
(Chin et al., 2016) assemblers. It will be most completed
genome of Chinese Spring wheat and will be published
very soon (Shi & Ling, 2018). However, recently, IWGSC
declared the genome sequence of Chinese Spring wheat
(IWGSC v1.0) and open for publicly accessed
(http://www.wheatgenome. org/News/Latest-
news/RefSeq-v1.0-URGI). In July 2017, the tetraploid
wheat wild emmer was sequenced besides of Chinese
spring wheat and chromosome arms (Avni et al., 2017).
DenovoMAGIC2 (NRGene, NesZiona), a software
package was used to assembly of the Illumina short reads,
is capable to complete difficult assemblies within days.
Wild emmer 10 Gb genome sequence was obtained by
using whole genome shotgun sequencing. The assembly
of the wild emmer should be further validated by genetic
data and three-dimensional architecture of chromosome
(Hi-C) data (Shi & Ling, 2018). The wild emmer genome
sequence will help us for development of common wheat.


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111608/#humu23051-bib-0021
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111608/#humu23051-bib-0026
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111608/#humu23051-bib-0007
http://www.wheatgenome.org/%20Projects/
http://www.wheatgenome.org/%20Projects/
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Wheat genome editing for transformation: Genome
editing is a key tool for crop improvement (Khurshid et
al., 2018; Shinwari et al., 2018). In addition, it is a new
discovery and promising tools for transformation in wheat
biotechnology. Common wheat is a major food crop for
human beingswhich is very large, complex, repetitive,
hexaploid genome and low generation in genetic
transformation. Wheat transformation made this crop
lagged behind to other cereal crops. Transgenic wheat is
not still commercialized in the market where traditional

breeding is costly and time consuming (Wang et al., 2018).

Several approaches were used for wheat transformation
previously such biolistic particle bombardment and
Agrobacterium species. But both of the approaches were
low transformation efficiency. Japanese scientists, Japan
Tobacco Company, (Ishida et al., 2014) used recently a
new approach known as Pure Wheat, which made
distinguished improvement to wheat transformation. This
technology permits genome editing technology for
application and development to common wheat. Wang et
al., (2018) reported that genome editing might be great
ascension for the progress in wheat transformation and a
breakthrough in genetic engineering of wheat. It will be
also helpful to other platforms such as exon sequenced
TILLING libraries to identify the important agronomic
traits in future. It is also speculated that Genome editing
technology will be enabled to modify more genes through
wheat genetic engineering and also provided transgenic-
free wheat varieties for commercialization.

Understanding molecular mechanism of wheat
response to abiotic stresses: NGSTs have made major
breakthrough improvements to sequence and dissect the
plant genomes including bread wheat and its progenitors
and also revealed their differential expression patterns
during development stages and influence to stress
conditions (Budak et al., 2014). The improvement of
next-generation sequencing technologies (NGSTs) have
made progress in the discovery and functional
characterization of microRNA (miRNA). It has been
identified to play essential roles in various stresses
conditions in wheat (Alptekin et al., 2016) including
abiotic stresses such as salt (Lu et al., 2011: Pandey et al.,
2014), drought (Pandey et al., 2014:Akpinar et al., 2015),
dehydration (Ma et al., 2015), phosphorus (Zhao et al.,
2013), heat (Xin et al., 2010). Ni et al., (2015) reviewed
the mechanism of the heat tolerance and related genetic
improvement of wheat. Heat-tolerance QTLs were
identified on different chromosomes and using genome-
wide analysis to find out heat responsive genes/proteins in
wheat. Salinity is increasing day by day due to climate
change and expanding saline land all over the world
(Narusaka et al., 2003; Jan et al., 2016; Jan et al., 2017).
Studies about molecular mechanism of wheat salt
tolerance and breeding will be able to develop wheat salt
tolerant varieties for the use of saline prone areas. Wang
& Xia (2018) reviewed salt tolerance physiological
process and associated genes and reported that high-
affinity potassium transporter (HKT) genes enhanced salt
tolerance in wheat. They made a link with reactive
oxygen species (ROS) homeostasis and salt tolerance in
their introgression line of wheat.
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Understanding mechanisms of wheat underlying
disease resistance: Fusarium head blight (FHB) is
known as scab, caused by Fusarium graminearum, is
one of the most devastating fungal diseases of wheat
hampering to wheat production in China and all over
the world. The NGS technology was used to discover
the responsive genes, pathways and QTLs to FHB for
resistance breeding by using high-throughput RNA-Seq
in wheat (Xiao et al., 2013). NGSTs have increased the
traceability of the expression and co-expression of
genes regulating FHB with the coupled advanced of the
tools of gene expression analysis such as transcriptome,
proteome and metabolomics approaches (Dweba et al.,
2017). Dr. Zhengqgiang Ma’s laboratory at Nanjing
Agricultural University worked for twenty years to
understand the mechanism of FHB and resistance to
FHB in Wangshuibai wheat variety. They progressed in
resistant QTLs identification, discover candidate genes
and resistant FHB varieties, and also cloned one of a
FHB resistance gene (Rawat et al., 2016). The
molecular mechanism of FHB disease is still
argumentative and need further research to entirely
understand (Jia et al., 2018).

Biotrophic pathogens in wheat: Wheat is a major
cereal crop whose production is hampered by fungal
diseases. Two groups of biotrophic fungi belonging to
Basidiomycetes and Ascomycetes cause rust and
powdery mildew disease in wheat, respectively. The
major rust pathogen disease such as stripe rust caused
by Puccinia striiformis f. sp. tritici (Pst), stem rust
caused by Puccinia graminis f. sp. tritici (Pgt), and leaf
rust caused by Puccinia triticina (Pt), and powdery
mildew caused by Blumeria graminis f. sp. tritici (Bgt)
in wheat. In China as well as the world, the rust and
powdery mildew diseases of wheat are major biotic
limitations for the production of wheat. Genomic
sequences of wheat biotrophic fungi Pst, Pgt, Pt, and
Bgt were made available through the high throughput
next-generation technology and also have made
progressed in cloning of avirulence gene, discovery of
pathogen effectors, and pathogenomics. Professor
Zhengshen and his team at Northwest Agriculture and
Forestry University have made great contributions to
develop pathogenomics studies to wheat biotrophic
fungal disease improvement in the world (Tang et al.,
2018). The development of wheat biotrophic
pathogenomics will accelerate in wheat resistant
breeding and help to control of the cereal rusts and
powdery mildew with sustainable manners.

Wheat grain qualities development: Wheat grain
quality (WGQ) is most important condition to accept
by the consumer and added values to wheat cultivars.
Wheat genomic analysis and genome editing might be
future effort to develop wheat grain quality (WGQ)
traits. In China, scientists have made enormous effort
to develop the wheat grain quality and their results on
end-use properties. Genomic analysis will help to find
out the genes as related to WGQ and genome editing
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allows preciously transformations for wheat breeding
(Zong et al.,, 2017). These will help to improve
functional genes into appropriate varietal background.
This will make elite cultivars with good adaptability,
high yield potential and desirable WGQ traits (Wang et
al., 2018). The combination effort of the scientist will
be achieved with the rich genetic resources. China has
made considerable progress in WGQ research due to
having available genomics information and genome
engineering tools.

Development of wheat SNP microarrays: Wheat
genome size is very large and complex is still working
with this genome very costly and tough in data
processing though decreasing NGSTs price. Thus, SNP
discovery was very important factor for wheat
researcher to achieve genome-wide knowledge for
different cultivars of wheat. Several powerful tools for
SNPs discovery have been developed which reveal
genomic diversity. SNP discovery will be helpful to
identify genetic variation between individuals and
marker-traits association mapping. Firstly, wheat SNP
microarray was constructed using nine cultivars and
3000 world-wide cultivars to develop improved
landraces and common wheat (Allen et al., 2013). The
9K | Select SNP chip was used for genotypic and
phenotypic characterization of 262 accessions of
Chinese wheat. Total 2420 SNPs from A genome
chromosome and 2396 SNPs from B genome
chromosome were found. Secondly, high density (90K)
wheat SNP chip was built from 19 bread wheat from
different origins (Wang et al.,, 2014).This chip
produces huge amount of SNPs allocated to common
wheat genome. Presently, 52,607 markers are
developed and mapped (Wen et al., 2017). Recently,
660K chip contained about 630,517 SNPs were
generated by 192 common wheat genres. This chip was
included 60worldwide modern wheat cultivars, 72
wheat landraces, 30 wild emmer accessions, and 30 Ae.
tauschii accessions (Cui et al., 2017). SNPs of Chinese
spring wheat were available (https://urgi.versailles.
inra.fr/download/iwgsc/IWGSCWGASequences/). 90K
and 820 K array were used to construct high quality
genetic map of wheat (unpublished).These arrays are
unique which have more diversity from wheat donor
accessions and wheat cultivar. Increasing numbers of
SNPs have been discovered in wheat with the
development of new sequencing technologies. Accurate
and reliable methods have been developed to perform
high-throughput genotyping based on SNPs.

RNA-Seq in wheat development: Researchers are
working on numerous ways to find out new methods
and applications of NGST in plant science. The next-
generation sequencing technologies (NGSTSs) have also
been successfully applied for research and
development in wheat and its closely related species
for several vyears. Next-generation transcriptome
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analyses have been applied to understand the biological
basis of agronomic characteristics in other plant
species. Therefore, it is expected that the application of
these technologies in wheat can accelerate wheat crop
improvement. Some extensive applications and studies
about transcriptome sequencing have been listed in last
5 years since 2013 to 2018 (Table 3). Among them,
more than half (53%) studies were conducted from
China for improvement of wheat. We understeand that
China is the most dominant country using RNA-Seq for
wheat improvement. Different RNA-Seq platforms
have been used for the wheat transcripts analysis.
Among RNA-Seq, Illumina (63%) were the most
applied platform using for improvement of wheat.
Cuticular waxes are also very important components
for the wheat establishment. RNA-Seq might be used
to identify cuticular waxes genes for further research.
The molecular mechanisms of wax biosynthesis and
export are still unknown.

Future outlook: The global NGSTs market size is
increasing day by day, was valued at USD 4.62 billion in
2015. It will be expected to significantly progress over the
next decades. More capable and fast genomic sequencing
technologies shall be expected to further make adoption
of NGS platforms. Automation in the pre-sequencing
protocols is expected to make improvement in the years to
come. Development of NGSTs for the personalized
medicine by medical analyses at genetic level is expected
to enhance demand for NGSTs over the forecast period.
Moreover, the researchers and drug developers are raising
interest about the NGSTs to achieve knowledge into the
genetic level of a large number of organisms. These will
raise demands to the NGSTs through to 2025.

Conclusion

Several platforms have been developed for
sequencing within very short time, and new approaches
are continuously being developed to generate long
reads and more reads per run. NGSTs are created to
appear as the dominant genomics technology due to
their much-recovered cost-effectiveness, assessed by
others sequencing methods and their many different
utilizes. Several computer tools and software have
improved to analysis the data from NGS technologies.
NGSTs have made significant progress in wheat
genomics and functional genomics including large-
scale genomic resources, transcripts and sequence data,
molecular markers, genetic and physical maps, cloning
of genes on agronomic importance and development of
technical platforms. NGS technologies are particularly
used to accelerate for the development of wheat. But
still have a research gap about cuticular wax studies.
Cuticular waxes are very important element for crop
establishment specially wheat. Using NGSTs and
bioinformatics combined will provide the drive ways
for wheat functional genomics. This is the time for
genomics-assisted wheat breeding.
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