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Abstract

Ascorbic acid (AsA) concentration was determined in Actinidia chinensis var. chinensis ‘Jinyang’ and ‘Hort16A’
during fruit development. AsAconcentration was higher at early stage of fruit development, and then declined with fruit
development. The expressions of L-Galactose pathway genes were detected and the results showed GDP-D-mannose
pyrophosphorylase 1(GMP1), GDP-D-mannose-3, 5-epimerase 1(GME1) and L-galactose dehydrogenase 1(GDH1) genes
transcripts were declined with fruit development. Statistically significant correlations analysis results showed that there were
significant positive correlation for GMP1, GME1 and GDH1 expressions with AsA concentration, and the expression level
relations between each pair of GMP1, GME1, GDHL1 are significant positive correlationin these two species, suggesting that
GMP1, GMEL1 and GDHL1 in L-Galactose pathway play important roles in AsA accumulation in A. chinensis var. chinensis.
The trend of L-ascorbate oxidase 1 (AO1) gene transcript was corresponding with the AsA concentration, and there was a
significant positive correlation between AO1 expression and AsAconcentrationin these two species. The expression of four
Monodehydroascorbate reductase (MDHAR) genes and one Dehydroascorbate reductase (DHAR) gene were different
between two A. chinensis var. chinensis varieties, predicting that DHAR or MDHAR genes might not key genes for AsA

biosynthesis in A. chinensis var. chinensis.
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Introduction

Ascorbic acid (AsA) also known as vitamin C, is
synthesized in plant. Fruit and vegetables, which contain
relatively high AsA, are the main dietary sources of AsA
for humans. AsA is an enzyme cofactor in
photosynthesis, and is vital for cleaning the free radicals
(Bulley et al., 2009). Previous reporter showed that AsA
controls cell division and affects cell expansion
(Smirnoff & Wheeler, 2000).AsAcontents not only act to
regulate defense and survival but also act via
phytohormones to modulate plant growth under optimal
conditions (Pastori, 2003). Furthermore, AsA is not only
essential for fruit ripening in climacteric fruit (Green &
Prof, 2005; Moori & Eisvand, 2017), but also play a key
role in plant fight against various biotic and abiotic
stresses (Venkatesh & Park, 2014).

The AsA biosynthetic pathways include L-
galactose, D-galacturonate, L-glucose, and myo-
inositol pathway in plants (Bulley et al., 2009).The L-
galactose pathway has been suggested to be the chief
AsA biosynthetic route in many plant species
(Valpuesta & Botella, 2004). L-galactose-1-phosphate-
phosphatase (GPP), GDP mannose-3, 5-epimerase
(GME) and GDP-L-galactosephosphorylase (GGP) in
the L-galactose pathway are key regulators of AsA
accumulation in fruits (Bulley et al., 2009; Gilbert et
al., 2009; loannidi et al., 2009; Mellidou et al., 2012).
Furthermore, the AsA recycling pathway also plays an
important role in the regulation of AsA accumulation
in plants (Chen et al., 2003). Kiwifruit contain high
concentration of AsA (Bulley & Laing, 2016).
However, little research about AsA biosynthetic was
done in kiwifruit, and the AsA biosynthetic mechanism
was not yet clear.

Actinidia chinensis var. chinensis‘Hort16A’ and
‘Jinyan’ are the major cultivated varieties in the world.
‘Hort16A’, introduced into New Zealand from China by
the Department of Scientific and Industrial Research, was
bred from germplasm (Huang, 2016). ‘Jinyang’ is a
superior, yellowed-fleshed kiwifruit cultivar selected from
F1 seedlings resulting from interspecific hybridization
between A. eriantha and A. chinensis var. chinensis. In this
study, the AsA concentration was determined with fruit
development in ‘Hortl6A” and ‘Jinyang’. The expressions
of corresponding L-Galactose pathway and recycling
pathway genes were performed to investigate the AsA
biosynthetic mechanism in A. chinensis var. chinensis.

Materials and Methods

Plant material and harvest dates: A. chinensis var.
chinensis ‘Jinyang’ and ‘Hortl6A’ vines were grown at
Institute of Botany, Jiangsu Province and Chinese
Academy of Sciences (32° 18’ N 118°52’ E). Fruits were
collected starting from 19 May 2016 (20 Days after
anthesis for ‘Jinyang’ and 30 DAA for ‘Hort16A”) with
three fruits from each of ten vines sampled about
biweekly intervals during 2016. Fruits were matured and
harvested at 14 Sep. (138DAA) for ‘Jinyang’ and 7 Sep.
(141 DAA) for ‘Hortl6A’. For postharvest treatments,
fruits from 10 vines were stored at a container with the
temperature of 23 + 2°C. Samples were collected 7 days
when fruit was softened and edible. Kiwifruit fruit flesh
of each sample was separated from ten fruits, snap frozen
in liquid nitrogen and stored -80°C for later experiments.

Fruit firmness, soluble solids content and AsA
concentration measurement: Fruit firmness was
assessed on a 1-mm thick slice of skin and on the outer
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pericarp (OP) at two locations, 90° to the fruit equator,
using a Fruit Texture Analyser (GY-4, China), with a 7.9-
mm probe, operating at 20 mm s*. A refractometer
(WYT-4, China) was used to determine the soluble solids
content in juice taken from both ends of the fruit.

AsA concentration was detected using HPLC
technique according to Krupa et al., (2011). 10 g sample
of fruits was used to extract AsA with the mixture of 3%
(w/v) meta-phosphoric (20 mL). A sample achieved from
the extraction was purified with the Schoot’s filter. AsA
was determined by PerkinElmer series 200 HPLC with
Diode Array Detector (UV-DAD), and the mobile phase
was a 0.1% meta-phosphoric acid. AsA was of HPLC
grade and purchased at Sigma. The AsAwas identified on
the basis of a standard and expressed in mg/100 g FW.
The values of AsA content were calculated using the data
from three independent measurements.

Quantitative real time PCR (qRT-PCR): Total RNA
was isolated from kiwifruit samples using the
cetyltrimethylammonium ammonium bromide (CTAB)
method (Tong et al., 2012). The cDNA was synthesized
with 1 pg total RNA using PrimeScript™ RT reagent Kit
with gDNA Eraser (Perfect Real Time) (TaKaRa, Code
No. RRO047A, Daliang, China) according to the
manufacturer’s instructions.

The AsA biosynthesis genes sequences were
download  from  Kiwifruit Genome  Database
(http://bioinfo.bti.cornell.edu/cgi-bin/kiwi/home.cqi)
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according to the report by Huang et al., (2013). Gene
primers were designed for each gene using the Beacon
Designer (Table 1). A single PCR fragment of the
expected size was amplified, suggesting that the primers
were suitable for qRT-PCR analyses. The resulting PCR
product was cloned and sequenced to confirm the
expected fragment of the target gene. All samples were
harvested, and three biological replicates were run
independently. The gRT-PCR was carried out on an
Applied Biosystems 7300 Real Time PCR System with
SYBRPremix Ex Taq (Perfect Real Time) (TaKaRa Code:
DRRO041A) according to the method descripted by Zhang
et al., (2012). Kiwifruit actin was used as the
housekeeping gene to monitor cDNA abundance (Yin et
al., 2012). All samples were examined in triplicate. The
relative levels of genes to control Actin mRNAs were
analysed using the 7300 system software and the 2-24¢
method (Livak & Schmittgen, 2001).

Statistical analysis: Experimental datas were evaluated
using analysis of variance (ANOVA) and significant
differences among the means of three replicates (p<0.05)
were determined by Duncan’s multiple range tests using
the “SPSS 16.0 for Windows” (Chicago, IL, USA). A
Pearson’s correlation coefficient, r, test was carried out on
all the qRT-PCR data to find statistically significant
correlations  between gene expression and total
chlorophyll, carotenoid or AsA content using the “SPSS
16.0 for Windows”.

Table 1. Primers used for the paper.

Gene name Kiwifruit ID Forward primer sequence 5°-3° Reverse primer sequence 5’-3’

PGI1 Achn087691 AACCTGTTGAACCATTGACACTTG TTGATGCTACGAGGCGAACC

PGI2 Achn197361 CTCTTATCTGTGACACGGAGCAATG GTGAGTAATCCAATAGCATCCCATCG
PMI1 Achn330131 TTCACCGAACTCATGTCTGCTAG CTTATCCGTCAACTGCCTCACC
PMM1 Achn302501 TCACAGGCAGGTCCAGTCTC AAGTGTAGGCAGCAGCAATCTC
GMP1 Achn055281 GGTGGATGAGACCGCAACAATC GGTTGAGTGCCAGCCGATAATG
GME1 Achn030021 TGGAAAGGTGGAAGGGAGAAAGC ATGAAGGTGAAAGATCGGGTTTGC
GGP1 Achn155031 GAGGGTGAAAGAGGTTGTTGGTG CGCAAGCAGTGACATCGTAGC
GGP2 Achn339231 AACAGAGCAACGATAGCAAATCCC GAGGCAAGCAGTCAAGAACACG
GPP1 Achn262331 CTCAGAGTTCCTCGCCATTGC GCCCTTATGCTCCACATGCTTG
GPP2 Achn341581 ACTGAACCTTTGTGGGATTGC CGCTGATGTCAAATTCTTTACCG
GDH1 Achn334011 GCTTTGATTTCAGTGCCGAGAGAG GGGAGTCCTGTAATACCAATAAACCG
GalLDH1 Achn136491 TTAGGCTGGAGTGATGAGATTCTGG TCATACTGGGCTTTGTTAAGGTTCC
AO1 Achn228031 ACGACTTCTGGGTGTTGGGATAC AGGCTCTATGTGGCAGTGGAATG
AO2 Achn230561 AATGCCAACACAATGAATCCCAAC CTCATAGCAGTCCAGCCGTAGG
APX1 Achn315041 CTCCGCTTATGCTCCGTCTC ACCTCCAGTCTTTGTCGTCAC

APX2 Achn289741 GCTCTCATCTCCACCAAGAATTGC TGACCTCAACTGCCACAACACC
APX3 Achn207061 GAACTTCTGAATGAGTCGGAGGAG ACAAGAGGACGATGGAGTGAACC
DHAR1 Achn224231 ACCTTTGGTAACACCGCCTGAG ATGCTTGCTCTGTTCCATTGCTG
MDHAR1 Achn005611 GTGGTTGGTGGTGGTTACATTGG TCGGCGAGGGAAGGAGTAAAC
MDHAR2 Achn132811 AGTGGTGGTGGTTGGTGGTG GGCGAGGGAAGGAGTAAACAATC
MDHAR3 Achn075231 GGAGGAGGATACATCGGTCTTGAG GCGTTAAACCCAACAGCCACAG
MDHAR4 Achn297231 AGTCAGGAACCAGAACCAGAACC CCGATGCTGCCACAATAACACC

Actin

TGCATGAGCGATCAAGTTTCAAG

TGTCCCATGTCTGGTTGATGACT
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Fig. 1. Changes of firmness (A) and soluble solids content (B) in
A. chinensis var. chinensis ‘Jinyang’ and ‘Hortl6A’ during fruit
development. Each value is presented as the mean * standard
deviation (n=10). Experimental data were evaluated using analysis
of variance (ANOVA) and significant differences among the
means of three replicates (p<0.05) were determined by Duncan’s
multiple range tests, using the “SPSS 16.0 for Windows”. The *
indicate the significant difference at 0. 05 level.
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Fig. 2. Change of ascorbic acid (AsA) concentration during A.
chinensis var. chinensis ‘Jinyang’ and ‘Hortl6A’ fruit
development. Each values is presented as mean + standard
deviation (n=10). Experimental data were evaluated using
analysis of variance (ANOVA) and significant differences
among the means of three replicates (p<0.05) were determined
by Duncan’s multiple range tests, using the “SPSS 16.0 for
Windows”.The different small letters in the same variety
indicate the significant difference at 0. 05 level.

Results
The changes of fruit firmness, soluble solids content

and AsA concentration in ‘Jinyang’ and ‘Hortl6A’
during fruit development: Fruit flesh firmness
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measurements were started at 76 DAA for ‘Jinyang’ and
86 DAA for ‘Hort16A’. No change in flesh firmness was
observed before fruit harvest, and firmness decreased
rapidly at 7 d after harvest for these two species (Fig. 1A).
There was a significant increase in the soluble solids
content in the fruit as the fruit ripening (Fig. 1B).

AsAconcentrations were higher at early stage of fruit
development, 424.80 mg/100 g FW at 20 DAA in
‘Jinyang’ (Fig. 2) and 265.94 mg/100 g FW at 30 DAA in
‘Hort16A” (Fig. 2). AsAconcentration was declined
gradually until fruit ripening (138DAA, 142.10 mg/100 g
FW) and softening (145 DAA, 129.26.10 mg/100 g FW)
in ‘Jinyang’ (Fig. 2). However, ASA concentrationwas
declined rapidly until 58 DAA in ‘Hortl6A’ (83.91
mg/100 g FW), and then stable. AsA concentration was
68.87 mg/100 g FW at the edible period (153 DAA).
Although the concentrations of AsA were declined with
fruit development, the declined patterns were different
betweenthese two varieties (Fig. 2).

The expressions of L-Galactose pathway gene members
in A. chinensis var. chinensis: To study the AsA
biosynthesis mechanism, the highest point, middle point,
fruit mature point and fruit edible (soften) point were
selected according to the content of AsA with fruit
development. Twelve genes involving in L-Galactose
pathway of AsA biosynthesis were analyzed using gRT-
PCR in ‘Jinyang’ (Fig. 3) and Hort16A (Fig. 4). The
expressions of the GDP-D-mannose pyrophosphorylase 1
(GMP1), GMEL1, L-galactose dehydrogenase 1 (GDH1),
and L-galactono-1, 4-lactone dehydrogenasel (GalLDH1)
showed high similar patterns with high expression at early
stage of fruit development (20 DAA) but decreasing
rapidly in ‘Jinyang’ fruit (Fig. 3). The expression of
glucose-6-phosphate isomerase 1 (PGI1) did not change
obviously during fruit development. The expression of
PGI2, pectinesterase 1 (PMI1) and GGP2 were
upregulated at 76 DAA, and decreased up to fruit softening.
GPP1 and GPP2 transcripts were upregulated at 76 DAA,
and decreased at fruit mature, then not obvious change with
fruit softening. phosphomannomutase 1 (PMML1) and
GGP1 were decreased at 76 DAA, but increased at fruit
mature, then decreased with fruit softening (Fig. 3).

In ‘Hortl6A’, the expressions of the PMI1, PMML1,
GMP1, GME1 and GDH1 showed high similar patterns
with high expression at early stage of fruit development
(30 DAA) but decreased rapidly up to fruit ripening (148
DAA) and then stable (Fig. 4). GGP1 and GalLDH1
transcripts were declined until fruit mature and then
increased with fruit softening. PGI1 and GGP2 transcripts
were not obviously change during fruit maturing, but then
increased with fruit softening. The expression of PGI1
and GPP2 were not obviously change during fruit
development (Fig. 4).

Statistically significant correlations between gene
expression and total AsA concentration with fruit
development in ‘Jinyang’ (Table 2) and ‘Hort16A” (Table 3)
were analyzed, and the results showed that there were
significant positive correlation for GMP1, GME1 and
GDH1 expression with AsAconcentration, and the
expression level relations between each pair of GMP1,
GMEL1, GDH1 were significant positive correlationin these
two species (Table 2).
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Fig. 3. The expression of AsA biosynthesis and recycling pathway genes during fruit development in ‘Jinyang’. AO, L-ascorbate oxidase;
APX, L-ascorbate peroxidase; DAA, Days after anthesis; DHAR, dehydroascorbatereductase;GalLDH, L-galactono-1,4-lactone
dehydrogenase; GDH, L-galactose dehydrogenase; GGP, GDP-L-galactosephosphorylase; GME, GDP-D-mannose-3,5-epimerase; GMP,
GDP-D-mannose pyrophosphorylase; GPP, L-galactose-1-phosphate phosphatase; MDHAR, monodehydroascorbatereductase; PGl,
glucose-6-phosphate isomerase; PME, pectinesterase; PMI, mannose-6-phosphate isomerase;PMM, phosphomannomutase. Error bars
indicate standard error (n = 3). Experimental data were evaluated using analysis of variance (ANOVA) and significant differences among the
means of three replicates (p<0.05) were determined by Duncan’s multiple range tests, using the “SPSS 16.0 for Windows”. The different
small letters indicate the significant difference at 0. 05 level.

3 6

4 25 8 g
PGIT PGI2 b P11 PMMI GMPI
3 20 R ; .
2 4 b 15
a 2 o b 4
a
1 W 2 a N a . a a ) ) b a
) s a a a
0 T T 0 T T T « 0+ T T T « 0 T ™ ™ 0 T T
151 GMEL 31 ceri 1 Gep2 51 orel e ) Grrz
5w ‘ < S I S ;
— 4 (o h h b
= 4 2 2 b
u= 5 b
~ 2 \/ 24 a a a 1 v 1 W
g 0 0 0+ 1] 1]
- -
w 8 1 GoHI 3 1 GalLDHI 400 1 401 41 402 51 Apxi
@ w0 c 300 ¢ 3 N 4 ¢
T 2 C 3
a"-m 200 24 b b
% 1 b b 2
b a
20 a 100 1A a 1 a
.2." a a b a a
L 0 v v v 0 v v - + 0 v v - ] - - ™ 0
- . R
-g 41 Arx2 b : APX3 51 DHARI 31 MDHARI 31 MDHAR2 b
3 4 4 C
E 2 : 3 b >t b2 /
a a
l a R a 2 a 2 4 1 a‘\“/ 1 ; b
1 a a 1
0 0 0 0 0
1 MDHAR3 S 1 MDHAR4 30 58 148 153 30 58 148 153 30 58 148 153
8 4
b b
o 3
4 2 a
2 a a a 1 2 4
o 0
DAA 30 58 148 153 30 58 148 153

Fig. 4. The expression of AsA biosynthesis and recycling pathway genes during fruit development in ‘Hort16A’. Error bars indicate
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METABOLIC MECHANISM OF ASCORBIC ACID IN ACTINIDIA CHINENSIS

The expression of recycling pathway members in A.
chinensis var. chinensis: The expressions of two
ascorbate oxidase (AO) and three L- ascorbate peroxidase
(APX) genes were studied in ‘Jinyang’ (Fig. 3) and
‘Hort16A’ (Fig. 4) with fruit development. In ‘Jinyang’,
transcript of AO1 decreased significantly at 76 DAA and
then stable. But the AO2 expression levels was increased
obviously at 76 DAA and then decreased at 138 DAA and
145 DAA with fruit mature and softening (Fig. 3). The
expression of APX1 was decreased gradually up to fruit
softening. There was not obvious change of APX2 gene
expression. The transcript of PAX3 was declined
significantly at 76 DAA and then increased slightly.
Transcripts  of  monodehydroascorbatereductase 1
(MDHAR1), MDHAR2 and MDHAR4 peaked at 138 DAA
when fruit ripening and then decline with fruit softening.
MDHARS3 expression was increased gradually up to fruit
softening. The expression of dehydroascorbatereductase
1 (DHAR1) was decreased significantly at 76 DAA and
then stable (Fig. 3).

The expression analyses of recycling pathway
members in ‘Hortl6A’ were as Fig. 4. The expression
pattern of AOL in ‘Hortl6A’ was similar with those of
AO1 in ‘Jinyang’. The expression pattern of AO2 was
fluctuant with fruit development. The expression pattern
of APX2, MDHAR2 and MDHAR3 were resemble with
not obvious change before fruit mature and then
increased with fruit softening. Transcripts of APX3 and
DHAR1 were decreased significantly with fruit
development. MDHAR4 expression was increased
obviously at 58 DAA and then decreased with fruit
mature. There were not obviously changes of APX3 and
MDHAR1 gene expression with fruit development.
There was a significant positive correlation for AO1
expression with AsA concentration in ‘Jinyang’ (Table 2)
and ‘Hort16A” (Table 3).

Discussion

Previous reported showed that kiwifruit contains
high AsA concentration, five or six times as much as a
banana, ten times as much as an apple (Ferguson &
Huang, 2007). AsA concentrations among Actinidia
species are considerable variation, A. henryi has low
values (4.4 mg/100 g FW), and A. latifolia has very high
(671-2140 mg/100 g FW) (Huang et al., 2004). AsA
concentration also has large variation within A.
chinensis var. chinensis or A.chinensis var. deliciosa
(Ferguson & Huang, 2007). There is range from 50 to
420 mg ascorbate/100 g FW in accessions of A.
chinensis var. chinensis (Huang et al., 2004). The AsA
content of ‘Jinyang’ and ‘Hortl6A” were 129.26.10 and
68.87 mg/100 g FW at the condition of edible in our
study, respectively. The concentration of AsA peaked
between 28 DAA and 42 DAA, before decreasing as the
fruit progressed toward maturation (Bulleyet al., 2009).
In our study, the concentrations of AsA were declined
with fruit development in our detected range, but
declined trends were different between these two species,
providing an excellent model to investigate gene factors
that regulate AsA.
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The MgGMP expression data was coinciding with
AsA contents of acerola (Malpighia glabra L.) during fruit
ripening (Badejo et al., 2007), and the AsA content of
transgenic tobacco plants overexpressing the MgGMP gene
including its promoter was about 2-fold higher than that of
the wild type (Badejo et al., 2008). The Solanum
lycopersicum ‘Money maker’ cultivar overexpression of
Yeast-derived GMP gene increased AsA levels of up to 70%
in leaves, 50% in green fruit, and 35% in red fruit (Cronje
et al., 2012). Overexpressing of tomato GMP gene in
tobacco plants could significantly increase the content of
AsA in the leaves (Wang et al., 2011). These results
showed that GMP plays a major role in the proposed AsA
biosynthetic pathway in plants. Transcripts of GME and
GGT were higher in A. eriantha than other genotypes (A.
chinensis and A. deliciosa) during the period of highest
increase in AsA concentration (Bulley et al., 2009). GGT
and GME gene expression increased at high light intensities
where AsA levels were also increased in Arabidopsis
(Laing et al., 2007). Transient expression experiments
showed that tobacco overexpression of GME alone has
little affect accumulation of AsA in leaf, overexpression of
GGT led to an approximate 3-fold increase in leaf AsA, but
co-expressed GME and GGT resulted in an 8~12- fold
increase in leaf AsA (Laing et al., 2007). The expression
patterns of GMP1, GME1 and GDH1 were corresponding
with the tendency of AsA concentration in two A. chinensis
varieties, and there were significant positive correlation for
GMP1, GME1 and GDH1 expression with AsA
concentration, and the expression level relations between
each pair of GMP1, GMEL, GDHL1 are significant positive
correlation in these two species, suggested that L-Galactose
pathway is one of important routes for AsA biosynthesis,
and GMP1, GME1, GDH1 genes play key roles in L-
Galactose pathway forAsA biosynthesis.

Transgenes plants overexpression of DHAR or
MDHAR gene does not affected the concentration of AsA.
None of studies were performed in kiwifruit (Bulley &
Laing, 2016). There are five MDHAR genes and three
DHAR genes in Arabidopsis. Four MDHAR genes and one
DHAR gene expressions were studied in Kiwifruit during
fruit development. The results showed that the expressions
of these genes were different between two A. chinensis
varieties, predicting that DHAR or MDHAR genes might
not key genes for AsA biosynthesis in kiwifruit.
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