ECOSYSTEM SERVICES AND STRUCTURE OF WESTERN HIMALAYAN TEMPERATE FORESTS STANDS IN NEELUM VALLEY, PAKISTAN

HAMAYUN SHAHEEN*, SHAMSHAD AZIZ AND MUHAMMAD EJAZ UL ISLAM DAR

Department of Botany, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan. *Corresponding author's email: hamayunmaldial@yahoo.com

Abstract

Forest ecosystem provide valuable services and livelihood support to the rural mountain communities of the Himalayas. Present research was conducted to assess the forest ecosystem services and vegetation structure of Neelum valley in Kashmir, Pakistan. A total of 56 plants species belonging to 32 familes were recorded from the studied forest stands. The dominant species were *Pinus wallichiana, Abies pindrow, Cedrus deodara, Vibrunum grandiflorum, Indigofera haterantha,* and *Agrostris gigantica.* The recorded value of species diversity was found to be 2.35; richness as 1.61; species evenness as 0.75; and maturity index as 49.34%. Thirty two plants species were reported having ethnomedicinal usage. Fourty two percent respondents were using wild vegetables whereas 23% were involved in mushroom collection. Population showed an average family size of 8.80; herd size of 5.26; land holding as 1.59 acres; and grazing area of 0.302 acre/grazing unit. Annual fuel wood consumption of 3.11 kg/ capita/ day was recorded. Forest stands showed an average tree density of 344/ha. An average stem/stump value of 2.01 indicated high tree felling intensity. Regeneration pattern was represented with an average of 85 seedlings/ha. A continuous grazing pressure along with moderate erosion effects was observed. Vegetation structure showed significant disturbance due to deforestation, overgrazing, trampling and environmental changes. Conservation policy should be applied at local and regional levels by authorities for conservation and maintenance of forest services.

Key words: Forest Ecosystem Services, Fuelwood, Wild vegetables, Himalayas, Kashmir.

Introduction

Ecosystem services are the outcome of ecosystem functions and transformations of natural assets into products that benefits to the communities (Anon., 2005). Forest ecosystem is the primary aid to the sustainable livelihood of Himalayan mountain populations. Forest ecosystem services are classified into four main categories including regulating (Boyd & Banzhaf, 2007); provisioning (Kremen, 2005); supporting and cultural categories (Naidoo et al., 2008). Forest ecosystem provides valuable services including air quality regulation, waste treatment, water purification, regulation of water flows (Hein et al., 2006); soil erosion prevention, climate regulation, maintenance of soil fertility (Klein et al., 2007); pollination, seed dispersal, pest and disease regulation (Gallai et al., 2009); maintenances of life cycles of migratory species, nutrient recycling, spiritual, religious and esthetic values, cultural diversity, recreation, ecotourism and educational values and carbon sequestration (De Groot et al., 2002). About 10% of the world's population depends directly whereas an estimated 40% depends indirectly on mountain forest resources for their livelihood (Schild, 2016).

Sustainable management of forest structure is of most important for the survival of local inhabitants as well as existing climatic conditions (Cronin & Pandya, 2009). More than 60% of the Himalayan forests Ecosystem has been distructed during last century (Pokhriyal *et al.*, 2010). Poor economic conditions, population explosion and lack of awareness in local inhabitants of forest surrounding areas are the main threats for the depletion of forest diversity (Gairola *et al.*, 2008). Local forests of are facing severe biotic pressure including deforestation, over grazing, trampling, soil erosion, over exploitation, overuse, unscientific collection having deteriorating impacts on forest structure and services (Costanza *et al.*, 1997). Current study was designed for the assessment of forest services; analyzing the impacts of anthropogenic pressure on forest reserves; and prioritization of forest services based on people perspective and market values.

Materials and Methods

Study area: The investagted area is situatied in District Neelum, Azad Jammu & Kashmir, Pakistan within 32° 23" to 32° 87" North latitude and 74° 10" to 74° 81" east longitude at an altitudinal range of 1400m in south to 5200m in north (Fig. 1). The highest temperature is 38.33°C and lowest is -2.58°C, recorded in June and January respectively. Maximum humidity is recorded as 85 percent whereas lowest is 31.44 percent recorded in December and May respectively. Maximum rain fall is 288.03mm in of July and lowest 36.21mm in October (Pak-Met, 2012; Shaheen *et al.*, 2012).

Forest ecosystem services assessment: Five different sites including Ashkot, Salkhalah, Athamaquam Town area, Athai Lalla and Nagder were selected for the assessment of forest ecosystem services. A total of 400 Questionnaires were distributed at each site (80/site) to record the data about forst ecosystem services. The survey focused on parameters including Occupation, Family size, Income, Current status, benefits, threats and conservation management of forests Ecosystem (Raymond et al., 2009); Quantity of fuel wood consumed, Preferred fuel wood, edible and palatable and medicinal species (Acharya et al., 2011); herd size, grazing area, wild vegetables, mushroom and timber wood extraction (Butt, 2006). Quantity of fuel wood consumption was measured over a period of 24 hrs, using a weight survey method (Bhatt et al., 1994).

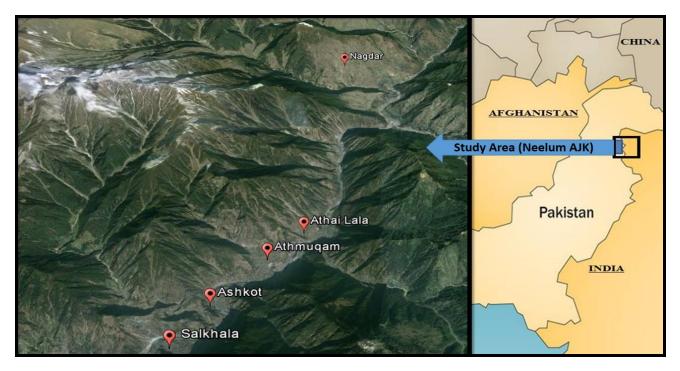


Fig. 1. Location of the study area and satellite imagery of study sites.

Phytosociological analysis: Density, frequency, canopy cover, relative values, and important value index were measured by using standard phytosociological methods (Ahmed & Shaukat, 2012). Quadrats of 20m X 20m for trees, 5m X 5m for shrubs, 1m X 1m for herbs were used. Indices of Diversity were calculated after Simpson, (1949); and Shannon and Weaver, (1959). Species richness was calculated after Menhinick, (1964) whereas evenness was calculated after Pielou, (1975). Community maturity was calculated after Pichi-Sermolli, (1948). Regeneration capacity was determined by counting the number of seedlings in the sampled plots. Stem to stump value was calculated to indicate the deforestation intensity (Shaheen et al., 2015). Erosion and grazing intensity were assessed at the sites by using visual parameters like trampling, browsed vegetation and hoof marks (Khan et al., 2013).

Results

Local forest flora comprised of 56 plant species belonging to 32 families including 13 trees, 9 shrubs and 34 herbaceous species (Table 3). Dominant plant species included *Cedrus deodara* with an IVI %age of 29.8 followed by *Pinus wallichiana* (26.12), *Agrostris gigantica* (19.82), *Abies pindrow* (14.74), *Chrysopogon echinulatus* (13.26), *Viburnum grandiflorum* (12.5), and *Dryopteris stewartii* (12.09). Vegetation was dominated by Therophytes comprising 32% followed by Magaphanerophytes (27.42%), Hemicryptophytes and Nanophanerophytes (16% each); and Geophytes (8%). Mesophylls (41%) were the dominant leaf spectrum followed by Microphylls (30.35%), Nanophylls (17.85 %) and Leptophylls (10.71 %) (Table 3).

Four forest communities were identified at the selected sites including *Abies-Lonicera-Viburnum*, *Pinus-Cedrus-Indigofera*, *Agorostis-Cedrus-Dryopteris* and *Cedrus-Agrostis-Pinus* community. The identified plant communities showed an average species diversity

(Shannon's) of 2.35. Highest diversity value of 2.53 was recorded in *Cedrus-Agrostis-Pinus* community where as *Abies-Lonicera-Viburnum* community showed least value of 2.2 (Table 1). The recorded average value of species richness was 1.62 whereas evenness value was 0.76. Communities showed an immature succession stage represented by low maturity index values in the range of 43-54. The average number of species per site was 22.25 with a Beta diversity value of 03. Forest stands showed an average tree density of 344/ha. Highest tree density of 422/ha was recorded in Ashkot forest followed by 366/ha in Athai Lalla, and 349/ha in Nagdar. Salkhala site showed lowest tree density value of 258/ha (Table 3).

Fifty seven percent of the respondents were found to use the local medicinal herbs in the area. Old age group (>40 years) showed higher association with the use of ethnomedicine as compared to younger age group. Fifty four percent of recorded species, including 38 plants belonging to 23 families exhibited medicinal properties. Different plant parts used due to cure diseases included Roots/rhizome (60.62%), leaves (26.31%), whole plant (21.05%), Arial parts (10.52%), stem (7.89%), bark (7.89%) and seeds (5.26%) (Table 4). Major diseases treated by using Medicinal herbs included asthma, stomachache, toothache, hepatitis, piles, dysentery, diabetes, joint pain, cough backache, constipation, fever, cold, and fracture. Forty two percent respondents were found using wild edible vegetables from the local forest. Recorded vegetables used by the locals included species of Dryopteris, Taraxacum, Polygonum, Epilobium, Mentha, Allium, Osmunda, Plantago and Phytolacca. These vegetables were used fresh as well as dried and stored for winter use. Twenty three percent respondents were found involved in mushroom collection for food and market sale. The preferred mushroom collected for market sale was Morchella esculenta.

		tosociolog	icui utti ibutt	5 of the luci	unica plane	communitie	. 0•	
Sr. no.	Forest communities	Species number	Altitude (m)	Simpson diversity	Shannon diversity	Species richness	Evenness	Maturity index %
1.	Abies-Lonicera-Viburnum	21	3000-3280	0.12	2.22	1.3	0.73	47.61
2.	Pinus-Cidrus-Indigofera	22	2020-2280	0.06	2.42	1.72	0.78	54.54
3.	Agorostis-Cedrus-Dryopteris	20	1680-1920	0.08	2.24	1.53	0.74	51.66
4.	Cidrus-Agrostis-Pinus	26	1620-1920	0.06	2.53	1.92	0.77	43.58

Table 1. Phytosociological attributes of the identified plant communities.

Table 2. Fuel wood consumption level, grazing area and herd size at investgated sites.

No.	Site name	Altitude Family (m) size	Family	No. of Fuel wood consumption kg/day/capi			kg/day/capita	Grazing	Herd
INO.			size	respondents	Summer	Winter	Annual	area (Acres)	size
1.	Nagder	1700-2500	9	360	1.38	7.96	4.10	0.15	8.67
2.	Athi lalla	1600-1780	9.77	391	1.14	5.30	2.54	0.00	6.62
3.	Athmuqam	1600-1650	7.45	298	1.01	6.06	2.67	0.22	2.25
4.	Salkhalla	1500	8.85	354	1.36	6.20	2.95	0.12	4.12
5.	Ashkot	1420-1900	8.95	358	1.49	7.03	3.31	0.25	4.65
	Average		8.80	352.2	1.27	6.51	3.11	0.15	5.26

The average annual fuel wood consumption in the area was calculated as 10.045 tons. Daily per capita fuelwood consumption was found to be 3.11 kg with a maximum of 4.1 Kg at Nagdar and 2.54 Kg at Athai Lalla (Table 2). The preferred fuel wood species in the area included *Pinus wallichiana, Cedrus deodara, Abies pindrow, Aesculus indica, Picea smithiana, Taxus baccata, Quercus dilatata, and Acer caesium.* Results revealed that study area exhibited an average herd size of 5.26 cattle per family. The local populations had an average land holding of 1.59 acres whereas available grazing area per unit was calculated to be 0.302 acres (Table 2).

The total variance explained by PCA was more than 90 percent with 1st component explaining 45% verifying the vegetation pattern. The community B lying on southern aspect exhibited differences in vegetation structure from the other sites was separated and shown on Y-axis (Fig. 2). The rest of three sites located in moderate elevation exhibited similar vegetation structure were shown along X-axis closely spaced from each other. Paired group agglomerative clustering validated the vegetation structure determined by field data. The very first cluster was formed of dominant conifers including Abies pindrow, Pinus wallichiana, Picea smithiana, Cedrus deodara having maximum IVI values in data matrix (Fig. 3). The second cluster comprised of forest understory species including Thymus linearis, Poa attenuatta, Daphnae oleides and Isodon rogusus. Sarcococca saligna, Osmunda regalis, Dichanthium and Quercus dilatata having strong affiliation with North facing slopes constituted next cluster. The last cluster comprised of Picea smithiana, Lonicera govaniana, Vibernum grandiflorum and Sambucus wightiana indicating disturbed forest stands due to absence of dominant conifers.

Discussion

Local forest stands represented immature community structure due to prevailing disturbances caused by immense pressure on forest ecosystem. The present study revealed a daily per capita fuelwood consumption of 3.11 kg, which is considerably higher than reported values of 2.9 kg for Kashmir Himalayas (Shaheen et al., 2011); 1.5 kg for the tribal communities of the Indian Himalayas (Bhatt et al., 1994); 1.7-2.5 kg for South-East Asian countries (Donovan, 1981); 1.9-2.2 kg for Southern India (Hegde, 1984); and 1.23 kg for Himalayan range of Nepal (Mahat et al., 1987). An increasing trend in fuelwood consumption levels was revealed with increasing altitude. Higher altitudes characterized by harsh climatic conditions, unavailability of alternate fuels, easy access to the forest stands, absence of forest monitoring and low living standards are basic reason for high fuelwood consumption (Osei, 1993). High fuelwood extraction has resulted in deteriorated forest structure having tree density values in the range of 200-300/ha. These values are lower than the recorded values for 540/ha in Indian Himalayas (Saxena & Singh, 1984); 490/ha in coniferous forests of Romania (Bindiu, 1973); and 545/ha in Canadian coniferous forests (Kimmins & Krumlik, 1973).

Grazing is among the prominent disturbances having deteriorating impacts on forest flora (Kremen, 2005). Investigated area exhibits an available grazing area of 0.302 acres/grazing unit which is extremely low for the average herd size of 5.26; almost 28 times less than the recommended value of 8.5 acres/grazing unit for western Himalayan pastures (Singh *et al.*, 1984). Due to low available grazing area, pressure is shifting towards the surrounding forest lands (Negi, 2009). Seedlings and saplings are most vulnerable segment of forest structure to grazing which is adding in the anthropogenic pressure on conifers in the form of tree felling and lumbering (Foley *et al.*, 2007). This fact is evident from a low seedling count of 85/ha in the study area.

Table 3. Species composition, IVI %age, and biological spectrum of local forest flora.

Botanical name	Family	Habit	Life form	Leaf spectra	IVI % age
Abies pindrow (Royle ex. D.Don) Royle	Pinaceae	Tree	Мр	L	14.74
Agrostris gigantica Roth	Poaceae	Herb	Th	Ν	19.82
Ailanthus altissima (Mill.) Swingle	Simarubaceae	Tree	Мр	Me	1.93
Ajuga brateosa (Wall. Ex Benth)	Lamiaceae	Herb	Th	Mi	1.03
Angelica glauca (Sichold & Zucc.) Kitag	Apiaceae	Herb	Th	Me	0.96
Artimesia vulgare L.	Asteraceae	Herb	Н	Ν	0.94
Aesculus indica Hook (Wall. ex Cambess) Hook	Hippocastinaceae	Tree	Мр	Me	4.52
Atropa baladona L.	Solanaceae	Herb	Th	Me	2.87
Berberis lycium Royle.	Berberidaceae	Shrub	Np	Ν	8.05
Breberis aristata DC.	Berberidaceae	Shrub	Np	Ν	2.39
Cannabis sativa L.	Canabaceae	Herb	Th	Mi	1.26
Cedrus deodara (Rox. Ex D.Don) G. Don.	Pinaceae	Tree	Мр	L	29.89
Chrysopogon echinulatus Nees.W. Watson	Poaceae	Herb	Th	Ν	13.26
Daphne olioides Schreb	Thymelaeaceae	Shrub	Np	Mi	0.94
Dichanthium annulatum (Sw.) Roberty	Poaceae	Herb	Th	Ν	1.91
Diospyros lotus L.	Ebinaceae	Tree	Мр	Me	0.93
Dryopteris filix-mas (L.) Schott.	Dryopteridaceae	Herb	G	Me	3.28
Dryopteris stewartii D.Don	Dryopteridaceae	Herb	G	Me	12.09
Dryopteris sieboldii (T. Moore) Kuntze	Dryopteridaceae	Herb	Th	Me	6.14
Euphorbia heliscopia L.	Euphorbiaceae	Herb	Н	Mi	3.34
Fargaria nubicola (Lindle. Ex Kook f.) Lacaita	Rosaceae	Herb	Н	Mi	7.54
Geranium wallichianam (D.Don ex Sweet)	Ggeraniaceae	Herb	G	Me	1.17
Impatiens thomsonii Hook. f.	Balsimaceae	Herb	G	Me	1.33
Indigofera heterarantha Wall ex. Brandis	Papilionaqceae	Shrub	Np	Ν	13.3
Iris hookeriana Foster	Iridaceae	Herb	G	Ν	2.47
Isodon rugosus (Wall ex. Benth) Codd.	Lamiaceae	Shrub	Np	Me	1.19
Lonicera govaniana Wall ex. DC.	Caprifoliacaee	Shrub	Np	Mi	8.48
Mentha spicata L.	Lamiaceae	Herb	Н	Mi	2.49
Origanum vulgare L.	Lamiaceae	Herb	G	Mi	9.15
Osmunda regalis L.	Osmundaceae	Herb	G	Me	3.01
Parotiopsis jacquemontiana (Decne.) Rehder	Hamamelidiacea	Tree	Мр	Me	2.87
Persicaria nepalensis (Meisn.) Miyabe	Plygonaceae	Herb	Th	Mi	2.06
Phlaris minor Retz.	Poaceae	Herb	Th	Ν	8.86
Picea smithiana (Wall.) Bloss	Pinaceae	Tree	Мр	L	5.86
Pinus wallichiana A.B.Jackson	Pinaceae	Tree	Mp	L	26.12
Pistacia integerrima Stewart ex. Brandis	Anacardiaceae	Tree	Мр	Me	0.88
Plantago lanciolata L.	Plantginacee	Herb	Н	Mi	1.03
Poa attenuata Trin	Poaceae	Herb	G	L	1.73
Polygonum amplexicaule D.Don.	Polygonaceae	Herb	G	Me	0.97
Primula denticulata Smith	Primulaceae	Herb	G	Mi	0.97
Pseudomertensia moltkioides Royle ex. Benth	Boraginaceeae	Herb	Th	Mi	0.96
Quercus dilatata Royle	Fagaceae	Tree	Мр	Me	1.84
Quercus incana Bartram	Fagaceae	Tree	Mp	Me	6.86
~ Rostraria pumila (Desf.) Tzrelev.	Poaceae	Herb	Th	Ν	3.79
Rhus saxidinea D.C.	Anacardiaceae	Tree	Мр	Me	0.93
Rumex nepalenses Meisn.	Polygonaceae	Herb	G	Me	5.49
Salvia nubicola Wall ex. Sweet.	Lamiaceae	Herb	Th	Mi	2.71
Sambucus wightiana Wall ex Wigt & Arn	Sambucaceae	Herb	Ch	Me	6.76
Sarcococca saligna D.Don	Buxaceae	Shrub	Np	Mi	2.8
Sonchus asper (L.) Hill	Asteraceae	Herb	Th	Me	0.97
Sorbaria tomentosa (Lindl) Rehder	Rosaceae	Shrub	Np	Me	3.96
Themeda anathera (Nees ex Steud.) Hack	Poaceae	Herb	Th	N	5.9
Thymus linearis Benth.	Lamiaceae	Herb	Н	Mi	3.04
Trifolium repens L.	Trifoliaceae	Herb	Н	N	0.97
Viburnum grandiflorum Wall ex D.Don	Caprifoliaceae	Shrub	Np	Me	12.5
Viola canescens Wall	Violaceae	Herb	G	Mi	8.12

No.	Plant species	Local name	Parts used	Ethnomedicinal utilization
1.	Allium humile	Mali Ka Piaz	WP	Condiment, stomachache, vegetable
2.	Angelica glauca	Chora	R,L	Acute abdominal pain, stomachache, rheumatism, hepatitis condiment
3.	Angelica cyclocarpa	Murchar	Rh	Cough, constipation and cure of asthma in animals
5.	Chaerophyllum reflexum	Hasbay ki Jar	Rh	Antifungal and anti-bacterial, paste given to cure typhoid fever an skin diseases
6.	Achillea millefolium	Dand jari	L,Rh	Stomachache, urinary complaints, toothache, antiseptic
7.	Sassurea costus	Kutth	Rh	Constipation, worm killing, joint pain, antiseptic, toothache, an backache
8.	Jurinea macrocephala	Gugal Dhoop	Rh	Digestion, backache, diarrhea, and joint pains
9.	Taraxacum officinale	Hand	L,R	Vegetable, Also used in cold, cough and diabetes
10.	Taraxacum spp.	Bhuti Hand	WP	Vegetable, diabetes
11.	Berberis aristata	Sunbal	R,B,F	Eye diseases, joint pains, skin diseases, jaundice, piles, stomach ulce backache, malaria, and fractures. Fruit is laxative and anti a scorbutic
12.	Rhodiola fastigiata	Bag Masti	Rh	Stomach diseases and headache
13.	Taxus baccata	Thoonri	L,B	Leaves sedative, antiseptic. Bark used for asthma, bronchitis, epilepsy
14.	Dryopteris filix-mas	Langroo	WP	Vegetable, rhizome is used for the treatment of cholera and dysentery
15.	Veronica gentianoides	Bhangri	R	Used to inhibit the pathogenic activity of yeast and to cure lecoria
16.	Geranium wallichianum	Ratan Jot	WP	Tonsillitis and toothache. Oil is astringent. Decoction is used for join pain, constipation, and digestion
17.	Mentha longifolia	Podeena	WP	Used fot digestion and diarrhea
18.	Ajuga bracteosa	Jan-e-adam	Wp	Decoction is used to cure skin diseases, diabetes, worms, blo purification
19.	Origanum vulgare	Ban Babri	WP	Cure skin diseases, fever, cough, rheumatism and intestinal worms
20.	Thymus linearis	Ban Ajwaen	L,Fl	Suppression of urine, constipation, shivering
21.	Malva parviflora	Dag Sounchil	WP	Vegetable, seeds are used as demulcent in cough and ulcers in t bladder
22.	Indigofera heterantha	Kenthi	R	Decoction used for cough. Root powder is applied externally for pain chest
23.	Bistorta amplexicaulis	Masloonr	Rh,F	Used for the treatment of diarrhea, dysentery and hemoptysis. Flow tea is used to treat stomach problem.
24.	Polygonum alpinum	Chikroon	Ar,R,Se,St	Arial parts used as vegetable. Seeds used for colic pain. Roots used astringent. Stalk used for ulcers, constipation
25.	Polygonum amplexicaule	Masloonr	Rh	Extract has antibacterial activity against pseudomonas aeruginosa.
26.	Rheum australe	Goal Chotial	L.Rh,S	Stem edible, root paste is applied for muscular injury, cuts. Stem us for stomachache dysentery, swelling of throats
27.	Rheum webbianum	Chipti Chotial	L,Rh,S	Stem edible. root paste is applied on wounds, mumps. Decoction us for headache, constipation, earache and blood purification
28.	Rumex nepalensis	Hola	L,Rh	Vegetable. Root paste is anti-lice
29.	Aconitum heterophyllum	Patrees	Rh	Paste is applied on chest to treat pneumonia, cold, fever
30.	Bergenia stracheyi	Bat Bhaiwa	Rh	Paste used on burns, piles. Decoction used for kidney stone, diabet ulcer dysentery, and obesity. Roots used for backache
31.	Picrorhiza kurrooa	Kor Katki	Rh	Used for bilious fever, asthma, cough, burning sensation, lucoderr jaundice and purifies the nurse's milk
32.	Trillium govanianum	Tre Patra	Rh,Ar	Extract has antifungal activity. Used in rheumatism and sexu potency
33.	Valeriana wallichii	Mushk-e-Bala	Rh	Hypotonic and insecticide. Mental disorders, pain in joints, eye, and hair
34.	Phytolacca acinosa	Lubber	Ar,R	Used for swellligs and inflammation in wounds. Oil used for jopains, chronic rheumatisim and weight loss. Treat cattle dysentery.
35.	Amaranthus viridis	Ganhiar	Ar,Se	Used for backache, joint pain and burning of stomachache
36.	Skimmia laureola	Nere	L	Decoction used for obesity, cough, and cattle dysentry. Insect repelled
37.	Abies pindrow	Rever	В	Bark used in fever, cough, and stomach pain
38.	Borago officinalis	Gow zuban	Rh	Joint pain, stomachache, fever, and ulcer

Table 4. Ethnomedicinal information recorded from the rural populations.

Key: WP: Whole plant, R: Root, L: Leaf, Rh: Rhizome, Se: Seed, S: Stem, B: Bark, St: Stalk, Fl: Flower, Re: Resin, Ar: Arial parts, F: Fruit

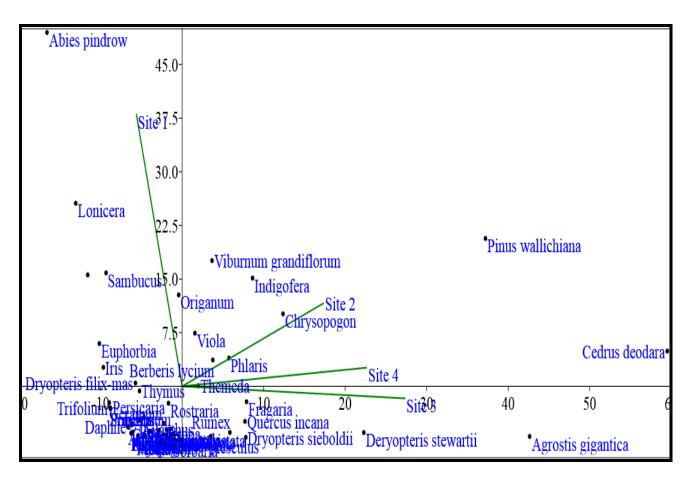


Fig. 2. Principal Component Analysis biplot of samples Vs. study sites.

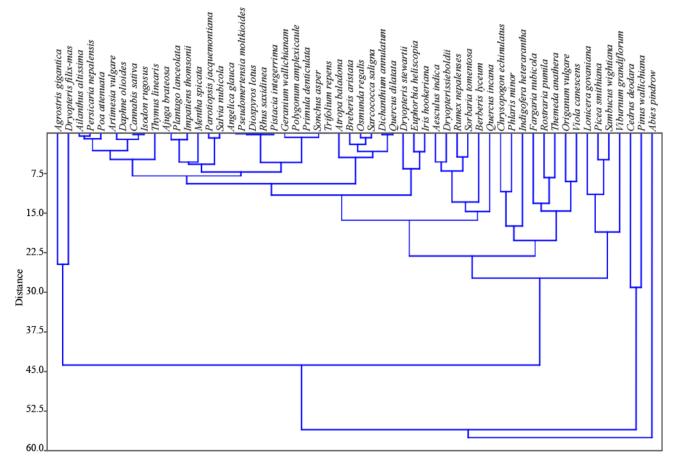


Fig. 3. Paired Group Agglomerative Cluster analysis dendrogram of species data set.

Among the interesting findings of the results is that few understory herbaceous species like Agrostris gigantica and Chrysopogon echinulatus have higher IVI values than the keystone species like Abies pindrow and *Ouercus* sp (Table 2). This indicates the prevailing lumbering pressure upsetting the natural equilibrium of these conifer dominated communities (Kelly & Goulden, Therophytic vegetation dominated 2008). the communities indicating the gazing and tree felling regimes in the area. Therophytes have specialized niches having greater adaptations for disturbed, semiarid and unhospitable habitats (Kumar & Bhatt, 2006; Sharma et al., 2009). Mesophylls and microphylls were the prominent leaf spectra which are characteristic of temperate Himalayan vegetation (Bhatt et al., 1994). An increasing trend of forest land encroachment was observed in the area. Locals with very little land holding (1.59 acres/family) and large herds use the forest land for cattle ranching, subsidence agriculture and construction as well (Sahu et al., 2008). Low values of maturity index also result due to heterogeneity in the species composition of stands (Ram et al., 2004).

Local forest flora was found to have high medicinal importance used for the treatment of several ailments by the locals (Khan & Khatoon, 2004). Old age group (>40 yrs.) showed higher preference of ethnomedicine over modern allopathic treatment due to longer interaction with forest resources, traditional organic lifestyle and efficiency of ethnomedicine and firm belief (Ibrar *et al.*, 2007). Wild vegetables and mushroom cultivation from the forests contributes significantly in livelihood support of local populations. *Morchella esculenta* is the most favorite NTFP which is sold at reasonable market price (Prasad *et al.*, 2002). The average household annual collection ranged from 3-5kg dry weight of *Morchella* being sold at rates in rupees 50000-90000/kg (Hussain & Ghani, 2008).

Our reults reveal that forests contribute significantly to the local communities in terms of fuelwood, fodder, wild vegetables, medicinal plants and mushrooms. High anthropogenic pressure has resulted in degradation of local forest reserves. Area requires immediate attention for conservation management and sustainable utilization of forest services.

References

- Acharya, B.K., B. Chettri and L. Vijayan. 2011. Distribution pattern of trees along an elevation gradient of Eastern Himalaya, India. *Acta Oecologica*, 37(4): 329-336.
- Ahmed, M. and S. Shaukat. 2012. A Text book of Vegetation Ecology. Abrar Sons, Near New Urdu Bazar Karachi, Pakistan.
- Anonymous. 2005. Ecosystems and human well-being: synthesis Island, Washington, DC. Millennium Ecosystem Assessment, p. 215-367.
- Bhatt, B., A. Negi and N. Todaria. 1994. Fuelwood consumption pattern at different altitudes in Garhwal Himalaya. *Energy*, 19(4): 465-468.
- Bindiu, C. 1973. Unpublished Ph.D. thesis. Acadamic de stunte agricole si silvice, Bucharest Romania.
- Boyd, J. and S. Banzhaf. 2007. What are ecosystem services? The need for standardized environmental accounting units. *Ecol. Economics*, 63(2): 616-626.

- Butt, T.M. 2006. Sustainable forest management: A case study on machiara national park In district muzaffarabad, state of Azad jammu and kashmir, Pakistan. Norwegian University of science and technology, Norway.
- Costanza, R., R. dArge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, K., S. Naeem, R.V. Oneill, J. Paruelo, R.J. Raskin, P. Sutton and M. van den Belt. 1997. The value of the world's ecosystem services and natural capital. *Nature*, 387: 253-260.
- Cronin, R.P. and A. Pandya. 2009. Exploiting natural resources: growth, instability, and conflict in the Middle East and Asia. Henry L. Stimson Center.
- De Groot, R.S. M.A. Wilson and R.M. Boumans. 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services. *Ecol. Economics*, 41(3): 393-408.
- Donovan, D.G. 1981. Fuelwood: how much do we need. Newsletter DGD 14.
- Foley, J.A.G.P., M.H. Asner, M.T. Costa, R. Coe, H.K. DeFries, E.A. Gibbs, S. Howard, J.P. Olson and N. Ramankutty. 2007. Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. *Frontiers in Ecology and the Environment*, 5: 25-32.
- Gairola, S., R. Rawal and N. Todaria. 2008. Forest vegetation patterns along an altitudinal gradient in sub-alpine zone of west Himalaya, India. *Afr. J. Pl. Sci.*, 2(6): 42-48.
- Gallai, N., J.M. Salles, J. Settele and B.E. Vaissière. 2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. *Ecol. Economics*, 68(3): 810-821.
- Hegde, M. 1984. Fuel problem in villages: Challenges and opportunities. *Bull. of Sci.*, 8: 8-13.
- Hein, L., K. Van Koppen, R.S. De Groot and E.C. Van Ierland. 2006. Spatial scales, stakeholders and the valuation of ecosystem services. *Ecol. Economics*, 57(2): 209-228.
- Hussain, M. and A. Ghani. 2008. Herbal rmidies used for gastrointestinal disorders in Kaghan valley, NWFP, Pakistan. Pak. J. Weed Sci. Res., 14(3-4): 169-200.
- Ibrar, M., F. Hussain and A. Sultan. 2007. Ethnobotanical studies on plant resources of Ranyal hills, District Shangla, Pakistan. *Pak. J. Bot.*, 39(2): 329.
- Kelly, A.E. and M.L. Goulden. 2008. Rapid shifts in plant distribution with recent climate change. *Proc. Nat. Acad. Sci.*, 105(33): 11823-11826.
- Khan, S.M., S.E. Page, H. Ahmad and D.M. Harper. 2013. Sustainable utilization and conservation of plant biodiversity in montane ecosystems: the western Himalayas as a case study. *Ann. Bot.*, 12(3): 479-501.
- Khan, S. and S. Khatoon. 2004. Ethnobotanical studies in Haramosh and Bugrote valleys (Gilgit) Pakistan. Int. J. Biol. & Biotech., 1(4): 585-589.
- Kimmins, J. and G. Krumlik. 1973. Comparison of the biomass distribution and tree form of old virgin forests at medium and high elevations in the mountains of South Coastal British Columbia, Canada. International Union of Forest Research Organizations (IUFRO) Biomass Studies. IUFRO biomass studies Rome: IUFRO:315-335
- Klein, A.M., B.E. Vaissiere, J.H. Cane, I. Steffan-Dewenter, S.A. Cunningham, C. Kremen and T. Tscharntke. 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: *Biol. Sci.*, 274: 303-313.
- Kremen, C. 2005. Managing ecosystem services: what do we need to know about their ecology? *Ecol. Lett.*, 8(5): 468-479.
- Kumar, M. and V. Bhatt. 2006. Plant biodiversity and conservation of forests in foot hills of Garhwal Himalaya. *Lyonia*, 11(2): 43-59.

- Mahat, T., D. Griffin and K. Shepherd. 1987. Human impact on some forests of the middle hills of Nepal Part 4. A detailed study in southeast Sindhu Palchok and northeast Kabhre Palanchok. *Mount. Res. & Develop.*, 7(2): 111-133.
- Menhinick, E.F. 1964. A comparison of some speciesindividuals diversity indices applied to samples of field insects. *Ecology*, 45(4): 859-861.
- Naidoo, R., A. Balmford, R. Costanza, B. Fisher, R.E. Green, B. Lehner, T. Malcolm and T.H. Ricketts. 2008. Global mapping of ecosystem services and conservation priorities. *Proc.*. Nat. Acad. Sci., 105: 9495-9500.
- Negi, S.P. 2009. Forest cover in Indian Himalayan states-An overview. *Indian J. For.*, 32(1): 1-5.
- Osei, W.Y. 1993. Woodfuel and deforestation—answers for a sustainable environment. J. Envir. Manag., 37(1): 51-62.
- Pak-Met. 2012. The Normals of Climatic Data of Azad Jammu & Kashmir. Pakistan Mateorological Department.
- Pichi-Sermolli, R.E. 1948. An index for establishing the degree of maturity in plant communities. *The J. Ecol.*, 36(1): 85-90.
- Pielou, E.C. 1975. *Ecological diversity*. John Wiley and Sons. New York, pp. 165.
- Pokhriyal, P., P. Uniyal, D. Chauhan and N. Todaria. 2010. Regeneration status of tree species in forest of Phakot and Pathri Rao watersheds in Garhwal Himalaya. *Curr. Sci.* (Bangalore), 98(2): 171.
- Prasad, P., K. Chauhan, L. Kandari, R. Maikhuri, A. Purohit, R. Bhatt and K. Rao. 2002. Morchella esculenta (Guchhi): Need for scientific intervention for its cultivation in Central Himalaya. *Curr. Sci.* Bangalore, 82(9): 1098-1100.
- Ram, J., A. Kumar and J. Bhatt. 2004. Plant diversity in six forest types of Uttaranchal, Central Himalaya, India. *Curr. Sci.* Bangalore, 86(7): 975-977.
- Raymond, C.M., B.A. Bryan, D.H. MacDonald, A. Cast, S. Strathearn, A. Grandgirard and T. Kalivas. 2009. Mapping community values for natural capital and ecosystem services. *Ecol. Econ.*, 68(5): 1301-1315.

- Sahu, P., R. Sagar and J. Singh. 2008. Tropical forest structure and diversity in relation to altitude and disturbance in a Biosphere Reserve in central India. *Appl. Veg. Sci.*, 11(4): 461-470.
- Saxena, A. and J. Singh. 1984. Tree population structure of certain Himalayan forest associations and implications concerning their future composition. *Vegetatio*, 58(2): 61-69.
- Schild, A. 2016. The Himalayas as the providers of essential ecosystem services–Opportunities and challenges. 1: 111-119.
- Shaheen, H., R.A. Qureshi, Z. Ullah and T. Ahmad. 2011. Anthropogenic pressure on the western Himalayan moist temperate forests of Bagh, Azad Jammu & Kashmir. *Pak. J. Bot.*, 43(1): 695-703.
- Shaheen, H., R. Sarwar, S.S. Firdous, M.E.U.I. Dar, Z, Ullah and S.M. Khan. 2015. Distribution and Structure of Conifers with special emphasis on Taxus Baccata in Moist Temperate Forests of Kashmir Himalayas. *Pak. J. Bot.*, 47: 71-76.
- Shaheen, H., Z. Ullah, S.M. Khan and D.M. Harper. 2012. Species composition and community structure of western Himalayan moist temperate forests in Kashmir. *Forest Ecol. & Manag.*, 278: 138-145.
- Shannon, C.E. and W. Weaver. 1959. The mathematical theory of communication. University of Illinois Press.
- Sharma, E., N. Chettri, K. Tse-ring, A.B. Shrestha, P. Fang Jing, P. Mool and M. Eriksson. 2009. Climate change impacts and vulnerability in the Eastern Himalayas. Kathmandu: ICIMOD.
- Simpson, E.H. 1949. Measurement of diversity. *Nature*, 163: 688-688.
- Singh, J., U. Pandey and A. Tiwari. 1984. Man and forests: a central Himalayan case study. AMBIO: A J. Hum. Envir., 13(2): 80-87.

(Received for publication 15 January 2016)