SEASONAL AND DIURNAL VARIATION OF ATMOSPHERIC FUNGAL SPORE CONCENTRATIONS IN HYDERABAD; TANDOJAM-SINDH AND THE EFFECTS OF CLIMATIC CONDITIONS

MUNEEBA KHAN, ANJUM PERVEEN^{*} AND MUHAMMAD QAISER

Centre for Plant Conservation, University of Karachi, Karachi, 75270, Pakistan *Corresponding author's email: anjum_tahir@hotmail.com

Abstract

Airborne biological particles are present in every type of environment. Different types of geographical localities have different type of airspora, which affect human health. The current study is conducted for the first time to identify the airborne fungal spores from Hyderabad: Tando-Jam, Sindh. For this purpose, Burkard's 7-Days recording volumetric spore trap was used for a period of one year. A total of 68,183 spores/m³ were recorded throughout the study period, belonging to 41 fungal spores types. The presented data revealed that Deuteromycetes spore type was predominant. *Cladosporium* sp. spores were detected in the highest concentration i.e., 50.83%, which was followed by *Aspergillus* sp. (18.63%) and *Alternaria* sp. (11.04%). The highest spore count was captured in the month of September-2008 (17,294 spores/m³), while lowest spore count was found in the month of June-2009. Diurnal patterns of individual fungal spore types was observed to be mid-day to evening maxima for various species. Spearman rank correlation coefficient "r" was determined for correlation of fungal spore counts with climatic factors by using IBM software SPSS ver. 20. Results of the current study revealed that fungal spore oncentration was increased in high humid weather while low count was found in hot and windy climate that was also confirmed by statistical analysis. The presented work demonstrated that various types of allergenic and phytopathogenic fungal spores were present in the atmosphere of Hyderabad: Tando-Jam. It was also observed that meteorological conditions had a significant impact on dispersal and concentration of fungal spores.

Key words: Airborne spores, Spore count, Sindh, Allergy, Asthma, Fungal spores, Aeromycology, Aerobiology.

Introduction

Aerobiology is an important filed of palynology. It is a well-known fact that the pollen and spores are present in the air that affect human beings (Nair, 1964). These biological particles cause bronchial asthma and allergies in human. Air current also carries pathogens, which can harm human, plants, and animals (Waqar *et al.*, 2010).

Fungal spores varies in shape, size, and color. These are released by a variety of ways (Ingold, 1971). This variation in dispersal of fungal spores is necessary for them to flee into the turbulent wind (Gregory, 1973). The quantity, and types of fungal spores changes with respect to area, day timings, month of the year, and geographical location. For this reason, the sampling period must be carefully decided.

Various airborne fungal spores, Actinomycetes, and bacteria are able to cause several diseases in human beings and animals by infecting the living tissues, by toxicoses, or by allergies and asthma. Respiratory allergy in human can show symptoms immediately as in the case of hay fever or allergic rhinitis, or its delayed symptoms may appear as in Farmer's Lung. Airborne spores are found in different materials either in stored products that include straw, hay, food grains, wood chips, organic compost, and many others (Lacey & Jonathan, 2006).

In addition to airway irritations, few aerial microorganisms (excluding microbes causing colds, pneumonia, and influenza) may cause respirational contagions (Samson *et al.*, 2001). *Aspergillus fumigatus*, a saprophytic fungus, can harm human respiratory tract by causing *Bronchopulmonary aspergillosis*. It sometimes produces colony showing infection in lungs. Serious problems may appear in people having hypersensitive immune systems (Campbell *et al.*, 1996).

Introduction to the study area

Tando-Jam is a town of Hyderabad city, Sindh, Pakistan. It is situated at 25°25'60N 68°31'60E. Hyderabad is the second largest city of the Sindh province. According to demographic reports, it has a population of over 2 million people. 60.07% of the total population is urban which makes it the second most urbanized city of Sindh after Karachi. Hyderabad is situated on the bank of the river Indus.

Material and Methods

Collection of airborne biological particles

Fungal spores were captured by using Seven Day Burkard volumetric spore trap. The trap was installed on the roof department of plant protection, Agriculture University, Tando-Jam. The trap was placed 10 meters above the ground level. It sucked sample of 10 liters of air per minute, through a narrow horizontal orifice which was present on the front side of trap. Behind the slit, rotating drum was present on which a sticky tape was wrapped, so that the particles present in the air adhere to the tape. The drum was rotating with a speed of 2mm per hour. Every week the exposed drum was replaced by new drum. Then the tape, having impacts of aerobiological data, was removed from the drum and divided into seven sections of 48 mm length each section represented 24 hour/day.

On each day, hourly data wasrecorded for 24 hours during the study period of one year. Quantification of spore count was done according to the guidelines of British Aerobiology Federation (BAF, 1995). Fungal spores were identified by using reference slides as well as literature survey (Smith, 1990).

Meteorological Data

Meteorological data from August-2008 to July-2009 were received from the meteorological department, Hyderabad: Tando-Jam, Sindh, which included daily temperature, humidity, and wind speed. Spearman rank correlation coefficient "r" was determined for the correlation between spore counts and the environmental parameters by using IBM software SPSS ver. 20.

Results

Quantification and identification of airborne fungal data from Tando-Jam was carried out by using Burkard's seven day recording spore trap. The data was collected for the year of August-2008 to July-2009. During the study period a total of 68,183 spores/m3 were captured belonging to 41 fungal genera (Table 1). Spores were mostly identified at generic level. Out of 41 types about 17 belonged to Ascomycetes (A), 13 belonged to Deuteromycetes / imperfect fungi (I), 10 belonged to Basidiomycets (B), and 01 belonged to Oomycetes (O). Current study revealed that the highest concentration of fungal spores was contributed by fungi species belonging to Deutromycete. Cladosporium sp. (33598 conidia/m³), Aspergillus sp. (12312 spores/m³), Alternaria sp. (7294 conidia/m³), Periconia sp. (5208 spores/m³), *Bipolaris* sp. (2065 conidia/m³) were predominant that constituted almost 91.5% of total airspora.

During the study period of one year, the maximum count of fungal spores was recorded in the month of September-2008 with a fungal spore count of 17,294 spores/m³. Major contributors in the month of September-2008 were *Cladosporium* sp. $(10022 \text{ spores/m}^3)$, Aspergillus (920 spores/m³), Alternaria sp. (1627 spores/m³), Periconia sp. (937 spores/m³), Bipolaris sp. (765 spores/m³), Coprinus sp. (535 spores/m³), Myxomycetes spp. (336 spores/m³), Agaricus sp. (354 spores/m³), Curvularia sp. (279 spores/m³), and Ganoderma sp. (283 spores/m³). The second highest concentration of fungal spores was detected in the month of December-2008 i.e. 9850spores/m³. This count was contributed by *Cladosporium* sp. (6768 spores/m³), Aspergillus (1039 spores/m³), Alternaria sp. (172 spores/m³), Periconiasp. (973s pores/m³), Bipolaris sp. (239 spores/m³), and *Coprinus* sp. (186 spores/m³), Sporomiella sp. (155 spores/m³). Lowest fungal spores count was observed in the month of June-2009 (Fig. 1).

Captured fungal spores were divided into two groups i.e. major group (fungal spore concentration more than 3%) and minor group (fungal spore concentration less than 3%). The data revealed that in major group highest concentration of fungal spores was contributed by the 05 members of Deuteromycota or imperfect fungi viz., *Cladosporium* sp. (50.83%), *Aspergillus* (18.63%), *Alternaria* sp. (11.04%), *Periconia* sp. (7.88%), and *Bipolaris* sp. (3.12%). Minor group included all of the 17 members of Ascomycota, 09 members of Deuteromycota fungi, 08 members of Basidiomycota, and 01 member of Oomycota (Table 2).

Seasonal periodicity of fungal spores deals with the appearance pattern of different fungal spores in various months of the year. September-2008 was found to be the most important month as the highest concentration of spores (17,294 spores/m³) was recorded during this month. *Cladosporium* sp. having a 10022 spores/m³ was most the dominant fungal spore type of this month. Furthermore, data also revealed that the highest number of fungal spore types was also recorded in the month of September-2008. 33 types, out of 41 fungal spore types, were present in that month. Second highest peak (9850 spore/m³) of fungal spores was detected in December-2008, contributed by 17 fungal spore types. This highest count was due to 6768 spore/m³ of *Cladosporium* sp. Other important fungal spores were Aspergillus sp., Periconia sp., Bipolaris sp., Alternaria sp., and Coprinus sp. Higher concentration of Alternaria sp. and Cladosporium sp. is detected in autumn season due to decay of organic material. The month of September is also suggested to be an important month for the fungal spore catch. Major fungal spore types are prevalent throughout the year viz. Alternariasp., Aspergillus sp., and Cladosporium sp., while Bipolaris sp. and Periconia sp. spores that appeared for 11 and 10 months. Second highest concentration of fungal spores from Tando-Jam was recorded in the month of December-2008.

Diurnal pattern of fungal spores

Mean yearly concentration of fungal spore types were calculated for 24 hours. Data revealed some fungal spores possessed very sharp peak concentration at specific time of a day while other fungal spore types had homogenous pattern of spores distribution throughout the 24-hours' time scale. Agaricus sp. showed peak count at 6 pm (48 spores/m³; Fig. 2). Alternaria sp. did not show any sharp peak of fungal spores (Fig. 3). Arthrinium sp. showed an early morning peak count at 7 am (33 spores/m³; Fig. 4). Aspergillus sp. showed a very sharp maximum concentration at 8 pm (1764 spores/m³; Fig. 5). Bipolaris sp. data also showed higher concentration in afternoon at 4 pm (81 spores/m³; Fig. 6). Lower concentration of *Cladosporium* sp. fungal spores were detected in from 01 am to 12 pm and then there was gradual increase in fungal spore count after 12 pm that reaches to maximum level at 11 pm (1398 spores/m³; Fig. 7). Coprinus sp. fungal spores showed late evening maxima at 7 pm (79 spores/m³; Fig. 8). In case of *Curvularia* sp., a higher count was observed during mid-day timings (Fig. 9). Ganoderma sp. showed an interesting diurnal pattern of fungal spore count. It showed three peaks of higher concentrations first at early morning timings at 7 am (93 spores/m³), second at 5 pm (36 spores/m³) and third at 7 pm (36 spores/m³; Fig. 10).

Statistical analysis of spore count with meteorological conditions

Spearman rank correlation coefficient "r" was calculated to determine the correlation between important fungal spores count and climatic factors by using statistics software SPSS, ver. 20. Mean monthly fungal spores concentrations were correlated with mean monthly values of temperature, humidity, and wind velocity.

Our data revealed that *Alternaria* sp. spores count was significantly negatively correlated with humidity. *Arthrinium* sp. spore count were negatively correlated with wind speed (**Table** 3). Over all most of the fungal spore types were negatively correlated with the temperature and wind speed while positive correlation with humidity was observed.

Tune							Months						Total
	Aug-08	Sep-08	Oct-08	Nov-08	Dec-08	Jan-09	Feb-09	March-09	April-09	May-09	June-09	July-09	10141
Agaricus sp. (B)	0	354	99	93	13	0	0	106	53	6	4	6	707
Agrocybe sp. (B)	0	4	0	0	6	0	0	0	0	0	0	0	13
Alternaria sp. (I)	31	1627	588	561	172	508	822	1388	1454	75	35	31	7294
Amphisphaeria sp. (A)	0	35	0	13	13	0	0	57	0	0	0	0	119
Arthrinium sp. (I)	0	168	0	18	18	4	6	40	4	0	0	0	261
Accobolity Structure (A)	0	53	0	44	-	. 0	0	2.0	. 0	0	ò		106
Accounting (I)	> ç	000	CF0	120	1020	22.47	224	202	1010	> ç	2 2	<u>°</u>	17217
Aspergutus (1)	77	076	747	00/	601	2400	407	202	4019	77	CI :	10	71071
Bipolaris sp. (I)	0	765	305	407	239	57	44	115	102	13	13	4	2065
<i>Cerebella</i> sp. (A)	0	137	4	0	0	0	0	0	0	0	0	0	141
Chaetomium sp. (A)	0	4	0	0	22	0	0	0	0	4	0	0	31
Chlorophyllum molyhdites (B)	0	53	0	0	0	0	0	0	0	0	0	C	5
Curdomonium more and	27	1000	5151	0000	0727	1027	1105	1050	064	5	> :	> ;	27500
Cladosporum sp. (1)	8	77001	7676	6070	0/00	7075	C011	0061	404	17	ci ,	10	06000
Comoclathris sp. (A)	0	0	0	4	0		0	0	0	0	0	0	4
Coprimus sp. (B)	6	535	146	119	186	40	31	99	137	0	0	0	1269
Curvularia sp. (I)	0	279	62	35	18	4	6	6	0	0	0	0	416
Ganadarma en (B)		282	57	18	13	0	v	0	0				303
Junuar mu sp. (D)	~	C07	5	10	CI «		+ <		0	• •	0	0	
<i>Inocybe</i> sp. (B)	0	0	0	6	0	0	0	0	0	0	0	0	6
<i>Leptosphaeria</i> sp. (A)	0	13	4	0	0	0	4	0	0	0	0	0	22
Lophiostoma sp. (A)	0	6	4	4	0	0	0	6	0	0	0	0	27
Massaria spp. (A)	0	4	0	0	0	0	0	0	0	0	0	0	4
Monodictys sp. (A)	0	35	0	0	0	0	0	0	0	0	0	0	35
Myzomycetes snn (I)	0	336	159	195	88	4	44	13	0	6	0	C	849
Panaoolus sn (R)	0	119	6	0	4	. c	: 0	0	0		0		155
Dominantia cm (I)		03.7	1221	004	0.72	224	247	527	, c 1	20		, r	5005
rericonia sp. (1)	•		1001	07+	<u> </u>	+04	Ì	770	177	6		4	0070
Peronospora sp. (U)	0	11	0	0	0	0	0	0	0	0	0	0	11
<i>Phae osphaeria</i> sp. (A)	0	4	0	0	0	0	0	0	0	0	0	0	4
Pithomyces sp. (I)	0	18	13	0	0	4	0	0	0	0	0	0	35
Pleospora sp. (A)	0	0	0	6	0		0	0	0	0	0	0	6
Pseudocercospora sp. (A)	0	4	0	6	0	0	0	0	0	0	0	0	13
Puccinia sp. (B)	0	0	4	0	0	0	4	22	44	0	0	0	75
Rust (B)	4	62	57	0	0	6	6	0	27	0	4	0	172
Saccobolus sp. (A)	0	44	31	18	0	0	0	6	0	0	0	0	102
Sordaria sp. (A)	0	0	27	0	0	0	0	0	0	0	0	0	27
Spegazzinia sp. (I)	22	0	0	0	0		0	0	0	0	0	0	22
Spondvlocladiella botrvtiodes (A)	0	6	0	0	0	0	0	0	0	0	0	0	6
Sporomiella sp. (A)	0	0	0	0	155	0	0	0	0	0	0	0	155
Stemphylium St. (I)	c	6	4	6	40	40	31	0	88	4	4	6	239
Tetranloa su (I)	0	.[]	· c	4	2 0	. 4	c	0	0	. 0	. 0	0	2
Tilletia sn (B)	0	c	0	· 7	0		0	0	0	0	0		4
Torula sn (I)	0 0	, <mark>8</mark> 1	0 0	· c	ò	0	0	0	ò	0	ò	• c	- 81
Xvlariaceae (A)		4		0	0	0	0	0	0		0		4
		340	010	2	00	2	2		1104	> 2			100
		040 1	010		80	77	55 2010	44 	1104	2 j	D ü	D i	2012
lotal	155	17294	9599	C010	0086	8316	2913	4562	9098	2/4	88	128	68185

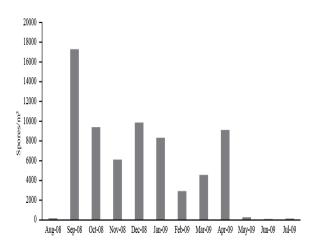
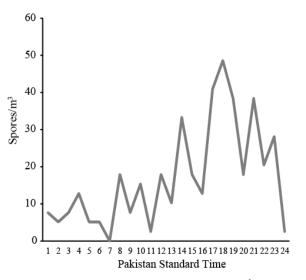
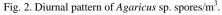




Fig. 1. Total monthly fungal spores count.

Table 2. Percentage of the captured fungal spore types from Hyderabad: Tando-Jam, Sindh (August 2008-July 2009).

(August 2008-July 2009).				
Types	Spores/m ³	Percentage		
Major group				
Cladosporium sp. (I)	33598	50.83		
Aspergillussp. (I)	12312	18.63		
Alternaria sp. (I)	7294	11.04		
Periconia sp. (I)	5208	7.88		
Bipolaris sp. (I)	2065	3.12		
Minor group				
Myxomycetes spp. (I)	849	1.28		
Coprinus sp. (B)	1269	1.92		
Agaricus sp. (B)	707	1.07		
Arthrinium sp. (I)	261	<1%		
Stemphylium sp. (I)	239	<1%		
Rust (B)	172	<1%		
Panaeolus sp. (B)	155	<1%		
Sporomiella sp. (A)	155	<1%		
<i>Cerebella</i> sp. (A)	141	<1%		
Amphisphaeria sp. (A)	119	<1%		
Ascobolus sp. (A)	106	<1%		
Saccobolus sp. (A)	102	<1%		
Puccinia sp. (B)	75	<1%		
Peronospora sp. (O)	71	<1%		
Chlorophyllum molybdites (B)	53	<1%		
Monodictys sp. (A)	35	<1%		
Pithomyces sp. (I)	35	<1%		
Chaetomium sp. (A)	31	<1%		
Sordariasp. (A)	27	<1%		
Lophiostoma sp. (A)	27	<1%		
Spegazzinia sp. (I)	22	<1%		
Leptosphaeria sp. (A)	22	<1%		
<i>Tetraploa</i> sp. (I)	22	<1%		
Torula sp. (I)	18	<1%		
Agrocybe sp. (B)	13	<1%		
Pseudocercospora sp. (A)	13	<1%		
<i>Inocybe</i> sp. (B)	9	<1%		
Pleospora sp. (A)	9	<1%		
Spondylocladiellabotrytiodes (A)	9	<1%		
Comoclathris sp. (A)	4	<1%		
Massaria spp. (A)	4	<1%		
Phaeosphaeria sp. (A)	4	<1%		
<i>Tilletia</i> sp. (B)	4	<1%		
Xylariaceae (A)	4	<1%		
	·			

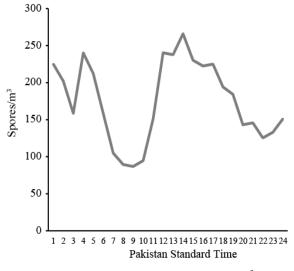


Fig. 3. Diurnal pattern of Alternaria sp. spores/m³.

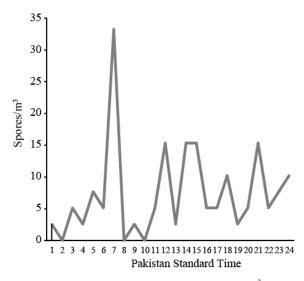


Fig. 4. Diurnal pattern of Arthrinium sp. spores/m³.

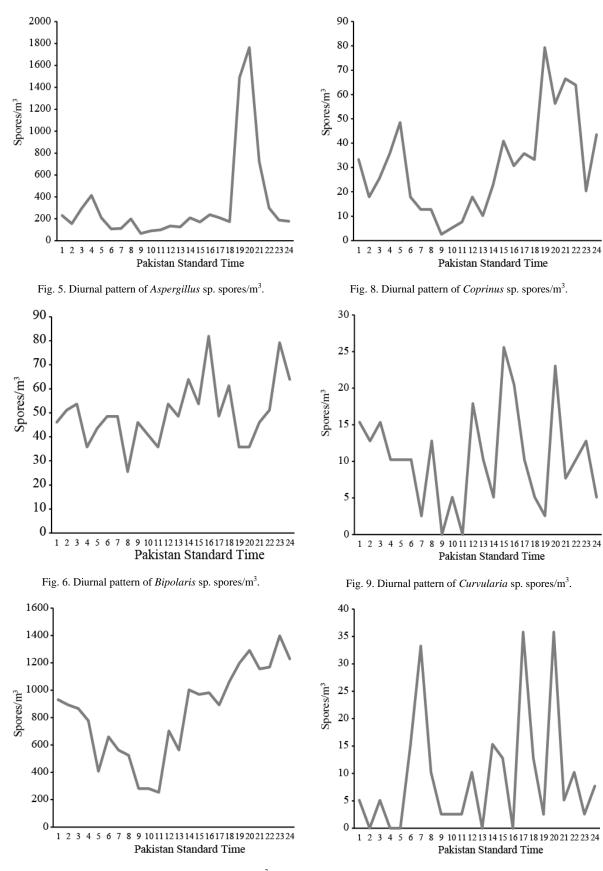


Fig. 7. Diurnal pattern of *Cladosporium* sp. spores/m³.

Fig. 10. Diurnal pattern of Ganoderma sp. spores/m.

Name of Species	Temperature (°C)	Relative Humidity (%)	Wind Speed (Km/Hr)
Cladosporium sp.	-0.348	0.212	-0.233
A <i>spergillus</i> sp.	-0.21	-0.496	-0.451
Alternaria sp.	-0.043	-0.557 ^a	-0.37
Periconia sp.	-0.0238	0.072	-0.335
Bipolaris sp.	-0.067	0.007	-0.037
Coprinus sp.	-0.024	0	-0.024
Myxomycetes spp.	-0.071	0.084	0.024
Agaricus sp.	0.122	-0.096	0.112
<i>Curvularia</i> sp.	0.062	0.12	0.209
Ganoderma sp.	0.072	0.128	0.106
Arthrinium sp.	0.02	0.058	-0.566 ^a
Stemphylium sp.	-0.224	-0.479	0.16
Rust	0.159	-0.076	0.25
Panaeolus sp.	0.097	0.124	-0.229
Amphisphaeria sp.	-0.055	-0.142	-0.342

Table 3. Correlation of various fungal spores count to weather conditions.

Note: Correlation is significant at 0.05 level (Two tailed test)

Discussion

The aerobiological survey of fungal flora at Tando-Jam was conducted for the first time. During the present study various pathogenic airborne fungal spores were recognized. Current study revealed that Cladosporium sp., Aspergillus sp., and Alternaria sp. constituted about 80% of total fungal spore count from Tando-Jam. The highest fungal spore concentration was contributed by Cladosporium sp. (50.83%). Cladosporium sp. was also the most common spore type that was reported in other aerobiological surveys (Al-Suwaine et al., 1999; Kalyoncu, 2010; Hussain et al., 2013). It is also recognized as an important aeroallergen (Denning et al., 2006; Waqar et al., 2009). Aspergillus sp. spores were recorded in second highest concentration followed by Alternaria sp. fungal spores. Both Aspergillus sp. and Alternaria sp. are characterized as bronchial allergy causing fungi (Hasnain et al., 1998; Peat et al., 2004; Hasnain et al., 2012). More than 100 types of fungi species have been characterized as aeroallergens throughout the world (Green et al., 2005). Severity of asthma attack is significantly correlated with the concentration of fungal spores in the air. According to the results of research conducted in Saudi Arabia, 31.3% of asthmatic individuals were sensitized with Cladosporium sp. (Hasnain et al., 1994). Fungal spores of Aspergillus sp. were also reported to elicit bronchial allergies and asthma (Leenders et al., 1999). Other important fungal spores types that have been recognized and reported as aeroallergens are Agaricus sp., Coprinus sp. (Santilli et al., 1985), Agrocybe sp. (Gioulekas et al., 2004), Bipolaris sp. (Schubert & Geotz, 1998), Chaetomium sp., Curvularia sp. (Smith, 1990), Ganoderma sp. (Tarlo et al., 1979; Cutten, 1988), Leptosphaeria sp., Puccinia sp., Stemphylium sp., Tetraploa sp., and Torula sp. (Gioulekas et al., 2004).

Our study also reported low fungal spores concentration in the months of May, June and July (Fig.

1) similar was the case in Kuwait, in which the lowest spore count were encountered in mid-summer month of July (Moustafa & Kamel, 1976).

Diurnal periodicities of fungal spores were analyzed in order to detect that at what time of the day concentration of suspended fungal spores were maximum. This knowledge would help the allergy suffering individuals to plan their daily outdoor activities. The data of Tando-Jam, various peaks of the fungal spore concentration were analyzed. Agaricus sp. showed peak count at 6 pm which is a late evening maxima. Alternaria sp. did not show any sharp peak of fungal spores which is similar to a study performed in Karachi, Pakistan (Hasnain et al., 2012). Arthrinium sp. showed an early morning peak count at 7 am. Aspergillus sp. showed a very sharp maximum concentration at 8 pm. Bipolaris sp. data also showed higher concentration in afternoon at 4 pm from Tando-Jam. An increase in the concentration of Bipolaris sp. in the afternoon time is reported in a similar kind of study from Karachi (Hasnain et al., 2012). Cladosporium sp., also showed a post morning maxima of spore concentrations which is similar to a study in which late evening peak of fungal spores was declared due to Cladosporium sp.(Carinanos et al., 1999). According to the aerobiological survey, high count of Curvularia sp. spores was observed during mid-day timings to late evening. Current study also showed higher mid-day Curvularia sp. fungal spores count. Periconia sp., Stemphylium sp., and Myxomycetes sp. did not show any clear pattern of highest spore count at specific hour of the day which was also similar to the results obtained by Hasnain et al. (2012).

The fungal spore counts were correlated with meteorological conditions by using statistical software SPSS and Spearman rank correlation coefficient "r". Over all most of the fungal spore types are negatively correlated with the temperature and wind speed while positive correlation with humidity is observed. Humidity plays a key role in the fungal growth and spore production. Thus, the relation of humidity and fungal spore count has always been positively correlated. Other studies also demonstrated that increase in the humidity level will increases the spore count (Afzal *et al.*, 2004; Hasnain *et al.*, 2012).

Conclusion

Epidemiological surveys suggest that the prevalence of allergies and asthma is about 5 to 30% in school going children and affect 2 to 30% of adult persons. Unfortunately, there are no records of aerobiological data of fungal spores of Tando-Jam, Sindh. For the first time this study has provided a comprehensive data base comprising details of airborne biological data, and effect of meteorological conditions on spore counts. This data would aid in the treatment of allergy suffering individuals of the study area.

Acknowledgements

The authors are thankful to the Higher Education Commission Pakistan for providing financial support to this research project. We are also thankful to the Meteorological Department of Tando-Jam for providing the meteorological data of Tando-Jam.

References

- Afzal, M., F.S. Mehdi and Z.S. Siddqui. 2004. Effect of relative humidity and temperature of Karachi city. *Pak. J. Biol. Sci.*, 7: 159-162.
- BAF. 1995. Airborne pollens and spores: A guide to trapping and counting. The British Aerobiology Federation Harpenden.
- Al-Suwaine, A.S., S.M. Hasnain, and A.H. Bahkali. 1999. Viable airborne fungi in Riyadh, Saudi Arabia. *Aerobiologia*, 15: 121-130.
- Campbell, C.K., E.M. Johnson, C.M. Philpot and D.W. Warnock. 1996. *Identification of Pathogenic Fungi*. London Public Health Laboratory Service, pp. 298.
- Carinanos, P., C. Galan, P. Alcazar and E. Dominguez. 1999. Comparison of two pollen counting method of slide from a hirst type volumetric trap. *Aerobiologia*, 15: 177-182.
- Cutten, A.E., S.M. Hasnain, B.P. Segedin, T.R. Bai and E.J. McKay. 1988. The basidiomyceteganoderma and asthma: collection, quantitation and immunogenicity of the spores. *N. Z. Med. J.*, 101: 361-363.
- Denning, D.W., B.R. O'driscoll, C.M. Hogaboam, P. Bowyer, and R.M. Niven. 2006. The link between fungi and severe asthma: a summary of the evidence. *Eur. Respir. J.*, 27: 615-626.
- Gioulekas, D., A. Damialis, D. Papakosta, F. Spieksma, P. Giouleka, and D. Patakas. 2004. Allergenic fungi spore records (15 years) and sensitization in patients with respiratory allergy in Thessaloniki-Greece. J. Invest. Allerg. Clin., 14: 225-231.

- Green, B.J., J.K. Sercombe and E.R. Tovey. 2005. Detection of aerosolized Alternaria alternata conidia, hyphae, and fragments by using a novel double-immunostaining technique. J. Allergy Clin. Immunol., 115: 1043-1048.
- Gregory, P.H. 1973. The Microbiology of the Atmosphere. 2nd edition, Leonard Hill, Aylesbury, pp. 39-42.
- Hasnain, S.M., T. Akhter and M.A. Waqar. 2012. Airborne and allergenic fungal spores of the Karachi environment and their correlation with meteorological factors. J. Environ. Monit., 14: 1006-1013.
- Hasnain, S.M., A.S. Al-Frayh, M.O. Gad-El-Rab and S. Al-Sedairy, Airborne Alternaria spores: potential allergic sensitizers in Saudi Arabia. Ann. Saudi. Med., 1998; 18: 497-501.
- Hasnain, S.M., A.S. Al-Frayh, H.A. Harfi, A. Al-Suwaine, M.O. Gad-El-Rab, K. Al-Muberik and S. Al-Sedairy. 1994. *Cladosporium* as an airborne allergen in Saudi Arabia. *Ann. Saudi. Med.*, 14: 142-146.
- Hussain, T., M. Ishtiaq, M. Maqbool, S. Azam and A. Shah. 2013. Incidence of air-borne mycoflora of Bagsar Fort and its allied areas from Samahni valley district Bhimber Azad Kashmir, Pakistan. *Afr. J. Microbiol. Res.*, 7: 724-729.
- Ingold, C.T. 1971. Fungal Spores: their Liberation and Dispersal. Clarendon Press, Oxford, pp 302.
- Kalyoncu, F. 2010. Relationship between airborne fungal allergens and meteorological factors in Manisa city, Turkey. *Environ. Monit. Assess.*, 165: 553-558.
- Lacey, M.E. and S.W. Jonathan. 2006. Introduction to Aerobiology, The Air Spora. Springer US, ch. 1, pp 1-14.
- Leenders, A.C., A. van-Belkum, M. Behrendt, A. Luijend and H.A. Verbrugh. 1999. J. Clin. Microbiol., 1752-1757.
- Moustafa, A.F. and S.M. Kamel. 1976. A study of fungal spore populations in the atmosphere of Kuwait. *Mycopathologia*, 59: 29-35.
- Nair, P.K.K. 1964. Advances in Palynology. National Botanical Gardens, Lucknow, pp. 203-210.
- Peat, J.K., S. Mihrshahi, , A.S. Kemp, G.B. Marks, E.R. Tovey and K. Webb. 2004. Three-year outcomes of dietary fatty acid modification and house dust mite reduction in the childhood asthma prevention study. J. Allergy Clin. Immunol., 114: 807-813.
- Samson, R.A., J. Houtbraken, R.C. Summerbell, B. Flannigan, and J.D. Miller. 2001. *Microorganisms in home and indoor* work environments, ed. Flannigan B, Samson RA, and Miller JD, pp. 287-473.
- Santilli-Jr, J., W.J. Rockwell and R.P. Collins. 1985. The significance of the spores of the Basidiomycetes (mushrooms and their allies) in bronchial asthma and allergic rhinitis. *Ann. Allergy*, 55: 469-471.
- Schubert, M.S. and D.W. Goetz. 1998. Evaluation and treatment of allergic fungal sinusitis. I. Demographics and diagnosis. *J. Allergy Clin. Immunol.*, 102: 387-394.
- Smith, E.G. Sampling and identifying allergenic pollens and molds. Blewstone Press, 1990, pp 169-176.
- Tarlo, M., B. Bell, J. Srinivasan, J. Dolovich, and F.E. Hargreave. 1979. Human sensitization to *Ganoderma* antigen. J. Allergy Clin. Immunol., 64: 43-49.
- Waqar, M.A., T. Akhter, A. Waqar, S. Shaukat, and M. Khan. 2009. The role of fungi as aeroallergens in asthma and allergies. J. Chem. Soc. Pak., 31: 688-704.
- Waqar, M.A., S.M. Hasnain, and M. Khan. 2010. Airborne pollen survey in Karachi: A coastal city in Sindh Province in Pakistan.*Indian J. Aerobiol.*, 23: 7-17.

(Received for publication 7 May 2015)