## PLANT COMMUNITIES IN URBAN HABITATS OF ISTANBUL-TURKEY

# VOLKAN ALTAY<sup>1\*</sup>, İBRAHİM İLKER ÖZYİĞİT<sup>2</sup> AND CELAL YARCI<sup>2</sup>

<sup>1</sup>Department of Biology, Science and Arts Faculty, Mustafa Kemal University, 31040, Antakya, Hatay, Turkey <sup>2</sup>Department of Biology, Science and Arts Faculty, Marmara University, 34722, Göztepe, Istanbul, Turkey \*Corresponding author E-mail: valtay@mku.edu.tr; Phone: +90 326 245 58 66; Fax: + 90 326 245 58 67

#### Abstract

This study aims to analyze and classify distribution of urban vegetation as plant communities in Anatolian Side of Istanbul Turkey. The study was carried out in all districts of the Anatolian side excluding Şile and in total, 223 quadrates were recorded during 2004-2009 vegetation periods. Braun-Blanquet method was used for classification. As a result of the study, a total of 13 plant communities distributed in the study area was found. The plant groups were; *Sarcopoterium spinosum, Erica manipuliflora, Tordylium apulum, Sinapis arvensis, Rapistrum rugosum, Carduus pycnocephalus, Carduus nutans, Centaurea iberica, Centaurea solstitialis* subsp. *solstitialis, Rumex crispus, Ammi visnaga, Cichorium intybus* and *Parietaria judaica*. The floristic, ecologic and syntaxonomic analyses of these plant groups were realized and their distributions in the study area were given. Additionally, some soil properties such as maximum water holding capacity, pH, electrical conductivity, organic matter, CaCO<sub>3</sub>, P<sub>2</sub>O<sub>5</sub>, K<sub>2</sub>O and texture (sand, silt and clay) were analyzed. The formation and development conditions of them were described and discussed at the end of the paper. Protection against damage of this vegetation or at least protection of the existent situation was presented as suggestions.

## Introduction

Cities represent amazing range of habitats such as remnant natural, semi natural, modified or newly created habitats with their associated plants and animals (Gilbert, 1989; Jim & Chen, 2008). The destruction of natural ecosystems resulted in urbanization, followed by conversion of the land into built up structures and man made new habitats such as lawns, gardens, parks, meadows, small woodlands, ponds, hedges and ditches (Honu *et al.*, 2009). However, floristic species composition in cities is closely related with human activities (Hope *et al.*, 2003). Population increase and demand of land for infrastructure has resulted in destruction of existing vegetation and inadequate planting sites and lower quality of ecological environment and human health (Jim, 2000; Jackson, 2003).

Urban habitats occur with the presence of large numbers of people and infrastructure of urban areas that is associated with climate, hydrology, substrate, disturbance regime and management practices (Pickett et al., 2001; Turner et al., 2005). Trampling, vehicular movement, building activities (residential and industrial); transport links (roads, pavements, railways, canals); and open land required for parking vehicles and disposal of wastes recurrently affect vegetation, hence, only those species capable of regenerating after repeated disturbance become residents of urban habitats (Gilbert, 1989; Benvenuti, 2004). The cultivation of alien species of trees, shrubs and herbs imported from distant regions of the world has been recognized as important component of urban vegetation (Honu et al., 2009). Such practices, however, have affected indigenous vegetation and have negative impact on floristic diversity of native plant species (Ali & Malik, 2010).

In urban areas, demolition of buildings and subsequent leveling produces bare substrates composed of building rubble (usually brick or concrete) mixed with finer material (often containing a large amount of mortar) and in those areas plant communities, which are definitively urban in character are formed (Gilbert, 1989; 1992). The conditions are often not uniform across in those types of sites, but are usually low in organic material, reasonably fertile (though often lacking nitrogen), rapidly draining and alkaline (Gilbert, 1989). Limited nutrient and water availability, together with disturbance caused by rock fall and grazing, restricts the establishment of vigorous species and promotes early successional species rich plant communities similar to semi-natural grasslands (Davis, 1982; Gilbert, 1989).

The ecological surveys are necessary for an adequate characterization of a plant community. The vegetation in the disturbed areas does not reflect a naturally evolved species composition, but rather a mixture of small remnant native plants patches dominated by patches of largely invasive weedy alien plants, and areas of mixed native and non native plants. There are few undisturbed habitats left in some parts of the world. Plant ecologists have placed increasing emphasis on a functional understanding of vegetation (Lehsten & Kleyer, 2007). The response of plant communities to environmental change is generally studied by analyzing the composition of plant traits across communities. A lot of work has been done in ordinating the tropical, temperate, deciduous, desert and calcareous types of vegetation, whereas lesser work has been reported from disturbed vegetation. The ecological surveys of such disturbed areas were conducted by few researchers, in order to understand the damage made to ecology of the area and also to understand the diversity and dispersion status of species in the area (Muhammad et al., 2008; Shah et al., 2010).

### **Materials and Methods**

**Study area:** Istanbul is located in the northwest part of Turkey (41° 01.2' N, 28° 58.2' E) and extends both on European (Thrace) and Asian (Anatolia) sides of the Bosphorus. The study area (Asian side) is located on east side of Istanbul 40° 48' and 41° 16' in latitude and 29° 04' and 29° 58' in longitude (Altay *et al.*, 2010a; Yasar *et al.*, 2010; Municipality, 2011). Its neighbors are the Black Sea in the north, Marmara Sea in the south, Kocaeli City in the east and Bosphorus in the west (Fig. 1).



Fig. 1. Districts studied in Istanbul during 2004-2009 (Adalar, Beykoz, Kadıköy, Kartal, Maltepe, Pendik, Sultanbeyli Tuzla, Ümraniye, and Üsküdar).

**Study sites:** The study was realized in 10 different districts of Asian side, which follows as Adalar, Beykoz, Kadıköy, Kartal, Maltepe, Pendik, Sultanbeyli Tuzla, Ümraniye and Üsküdar during 2004-2009 vegetation periods. For this purpose, the study area was extensively surveyed, and the available species at selected sites were enlisted based on 223 quadrates. The details of plant community structure with dominant species were reported.

**Climate:** The climate of the research area is typical fourseason continental climate of the Mediterranean Region. In the summer, less precipitation and high temperature are characteristic and the annual mean temperature is 14.5°C for the last two decades. Between May and September the temperature is generally above 30°C and between November and April it is rarely below 0°C. In the vegetation period, the daily mean temperature is approximately 8°C, which lasts for about 280 days (between 15 March and 20 December). January and February are the coldest months (mean low -3.2°C) while July and August are the warmest (mean high 28.5°C). Annual precipitation is about 690.7 mm; the highest precipitation occurs in winter (Anon., 2009; Altay *et al.*, 2010a, b; Osma *et al.*, 2010; Yasar *et al.*, 2010).

**Geology:** Geological age of the research area consists of a sedimentary sequence from Ordovician to Carboniferous, which reaches several thousand meters. In the research area, structural features of arkose and quartzite are seen (Tuysuz, 2003; Yasar *et al.*, 2010).

**Soil analysis:** Soil samples were collected with a soil borer at a depth of 30 cm. from each quadrate and fed through a 2-mm sieve. Soil texture was determined by using hygrometer method (Bouyoucos, 1962). Percentage values of the three textural fractions, clay (0-2  $\mu$ m), silt (2-50  $\mu$ m) and sand (50-2000  $\mu$ m), were characterized according to a soil texture triangle. Electrical conductivity was determined according to USDA (1954). Soil pH was measured with an electronic pH-meter in a 1:2.5 soil/water suspension. CaCO<sub>3</sub> were determined with volumetric methods by using a calcimeter. Organic matters were measured according to Smith & Weldon (1941). Plant-available soil phosphorus was determined spectrophotometrically with Olsen method (Black, 1965).

Ecological analysis of the plant communities: The plants were identified according to "Flora of Turkey and the East Aegean Islands" (Davis, 1965-1985) and preserved in MUFE Herbarium (Marmara University, Science and Arts). Ecological data were recorded using random quadrate sampling method. Totally, 223 fixed quadrates, which ranged from 9 to 25 m<sup>2</sup> were used at each site and all individual plants in the quadrates were counted. For the classification of vegetation the Braun-Blanquet approach (Braun-Blanquet, 1932), which is recognized world-wide (Westhoff & Van der Maarel, 1980; Pignatti, 1995), was used. Life forms of all identified communities were mentioned according to Raunkiaer (1934). For syntaxonomic nomenclature and synonyms of the higher levels of classification Mucina (1997) and Rivas-Martinez et al., (1999) were followed.

## **Results and Discussion**

In this study, 13 different plant communities were observed in 223 quadrates. The observed communities were named with dominant species names, which are Sarcopoterium spinosum, Erica manipuliflora, Tordylium apulum, Sinapis arvensis, Rapistrum rugosum, Carduus pycnocephalus, Carduus nutans, Centaurea iberica, Centaurea solstitialis subsp. solstitialis, Rumex crispus, Ammi visnaga, Cichorium intybus and Parietaria judaica. The most remarkable taxa in the community and their observed months were given in Table 1. In the study area, while *Erica manipuliflora* communities were observed in non-destroyed open lands, which are near forests or natural areas near the edge of the city, the remaining communities were observed in urban lands. *Rapistrum rugosum* and *Sinapis arvensis* communities are not only widespread, but also the communities with the highest number of taxa (Table 2). Unlike other communities, *Parietaria judaica* community is represented with less quadrate and taxa numbers because of its distribution on walls (Altay *et al.*, 2010b). Additionally, it was observed that *Erica manipuliflora* community preferred higher altitudes (Table 2).

| Plant community                            | The most remarkable taxa in the community                                                                                                                         | <b>Observed months</b> |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Sarcopoterium spinosum                     | Dactylis glomerata subsp. hispanica, Scabiosa columbaria subsp. columbaria, Avena sterilis subsp. sterilis                                                        | May-July               |
| Erica manipuliflora                        | Cistus salviifolius, Lavandula stoechas subsp. stoechas,<br>Dactylis glomerata subsp. hispanica, Bellis perennis,<br>Brachpodium sylvaticum                       | October-<br>November   |
| Tordylium apulum                           | Carduus pycnocephalus, Euphorbia helioscopia, Calendula<br>arvensis, Avena sterilis subsp. sterilis, Hordeum murinum<br>subsp. leporinum.                         |                        |
| Sinapis arvensis                           | Carduus pycnocephalus, Sonchus asper subsp. glaucescens,<br>Sinapis arvensis                                                                                      | April-June             |
| Rapistrum rugosum                          | <i>Carduus pycnocephalus, Sonchus asper subsp. glaucescens,</i><br><i>Avena sterilis subsp. sterilis, Bromus sterilis</i>                                         | April-June             |
| Carduus pycnocephalus                      | Sonchus asper subsp. glaucescens, Galium aparine, Sinapis arvensis                                                                                                | April-May              |
| Carduus nutans                             | Carduus pycnocephalus, Sonchus asper subsp. glaucescens,<br>Avena sterilis subsp. sterilis, Malva sylvestris                                                      | May-June               |
| Centaurea iberica                          | Plantago lanceolata, Echium vulgare, Cynodon dactylon var.<br>dactylon, Plantago coronopus subsp. coronopus                                                       | May-July               |
| Centaurea solstitialis subsp. solstitialis |                                                                                                                                                                   | June-August            |
| Rumex crispus                              | Carduus pycnocephalus, Sonchus asper subsp. glaucescens,<br>Bromus sterilis, Malva sylvestris                                                                     | April-July             |
| Ammi visnaga                               | Carduus pycnocephalus, Agrostis capillaris var. capillaris,<br>Scabiosa columbaria subsp. columbaria                                                              | June-August            |
| Cichorium intybus                          | Plantago lanceolata, Sonchus asper subsp. glaucescens,<br>Bromus sterilis                                                                                         | June-October           |
| Parietaria judaica                         | Sonchus asper subsp. glaucescens, Galium aparine,<br>Mercurialis annua, Euphorbia helioscopia, Stellaria media<br>subsp. media, Cymbalaria muralis subsp. muralis | April-May              |

| Table 1 | Plant community names       | the most remarkable taxa        | in the community and  | l their observed months    |
|---------|-----------------------------|---------------------------------|-----------------------|----------------------------|
|         | . I TAILL COMMUNICY MAINES. | LIIC IIIUSE I CIIIAI KADIC LAXA | III LIE COMMUNICY AND | I LIICH VUSELVEU HIVHLIIS. |

| Table 2.  | Some | ecological | parameters | of n | olant | communities. |
|-----------|------|------------|------------|------|-------|--------------|
| I abit 2. | Some | cconogicai | parameters | vi p | manu  | communities. |

| Plant community                            | Quadrate<br>number | Taxa<br>number | Plant<br>cover % | Average plant<br>high cm. | Altitude<br>m. | Slope<br>% |
|--------------------------------------------|--------------------|----------------|------------------|---------------------------|----------------|------------|
| Sarcopoterium spinosum                     | 15                 | 92             | 80-100           | 60-80                     | 2-209          | 5-45       |
| Erica manipuliflora                        | 10                 | 35             | 75-100           | 60-80                     | 160-236        | 5-30       |
| Tordylium apulum                           | 9                  | 44             | 90-100           | 40-80                     | 0-200          | 5-45       |
| Sinapis arvensis                           | 31                 | 102            | 75-100           | 100-150                   | 0-155          | 5-45       |
| Rapistrum rugosum                          | 58                 | 116            | 60-100           | 100-150                   | 0-232          | 5-45       |
| Carduus pycnocephalus                      | 18                 | 74             | 85-100           | 100-150                   | 0-111          | 5-45       |
| Carduus nutans                             | 11                 | 72             | 75-100           | 140-180                   | 0-213          | 5-30       |
| Centaurea iberica                          | 14                 | 50             | 80-100           | 60-80                     | 35-161         | 5-10       |
| Centaurea solstitialis subsp. solstitialis | 9                  | 60             | 85-100           | 80-120                    | 16-164         | 5-20       |
| Rumex crispus                              | 13                 | 75             | 95-100           | 120-140                   | 0-201          | 5-30       |
| Ammi visnaga                               | 13                 | 71             | 80-100           | 80-120                    | 3-158          | 5-45       |
| Cichorium intybus                          | 17                 | 71             | 65-100           | 80-120                    | 1-104          | 5-45       |
| Parietaria judaica                         | 5                  | 7              | 75-90            | 30-50                     | -              | -          |

Soil characteristics such as saturation, pH, electrical conductivity (EC), CaCO<sub>3</sub>, organic matter, P<sub>2</sub>O<sub>5</sub>, K<sub>2</sub>O, % values of sand, clay and silt, and soil texture of the areas where plant communities distributed were given in Table 3. As seen in the table, while soil pH values of the areas where Erica manipuliflora community distributed were acidic (5.63), pH values of the areas that other communities distributed were close to the neutral values. This situation suggests that Erica manipuliflora community was present only in open lands as mentioned above and the pH values in those areas are acidic. Sinapis arvensis and Rapistrum rugosum communities were observed in areas with higher EC values. The lowest soil EC values were measured in the areas where Erica manipuliflora community was distributed. It was observed that Rumex crispus, Ammi visnaga, and Cichorium intybus communities prefer soils with higher CaCO<sub>3</sub> like some urban areas where their soils are include rubble from construction activities. Additionally, the soils

where Erica manipuliflora community was distributed did not contain CaCO<sub>3</sub>. Tordylium apulum community preferred soils with higher organic composition, while Centaurea solstitialis subsp. solstitialis community soils with higher organic composition. The highest P<sub>2</sub>O<sub>5</sub> values were measured in the areas where Carduus pycnocephalus community was distributed. Sarcopoterium spinosum and Erica manipuliflora communities were distributed in soils with the lowest P<sub>2</sub>O<sub>5</sub>. In the study area, while Carduus pycnocephalus community was distributed in soils with higher K<sub>2</sub>O, Centaurea solstitialis subsp. solstitialis community preferred lower K<sub>2</sub>O concentrations. It was observed that Sarcopoterium spinosum and Cichorium intybus communities preferred sandy clay loamy (SCL) soils, while the remaining preferred sandy and loamy soils in the study area. Additionally, the soil values were not studied for Parietaria judaica community since it is a member of wall flora (Altay et al., 2010a, b).

Table 3. Soil characteristics of areas where plant communities distributed.

| Plant community                            | Saturation<br>% | pН   | EC<br>mmhos<br>/cm | CaCO <sub>3</sub><br>% | Organic<br>matter<br>% | P <sub>2</sub> O <sub>5</sub><br>Kg/da | K <sub>2</sub> O<br>Kg/da | Sand<br>% | Clay<br>% | Silt<br>% | Texture |
|--------------------------------------------|-----------------|------|--------------------|------------------------|------------------------|----------------------------------------|---------------------------|-----------|-----------|-----------|---------|
| Sarcopoterium spinosum                     | 43              | 7.09 | 0.53               | 3.52                   | 1.69                   | 2.88                                   | 17.55                     | 58        | 20        | 22        | SCL     |
| Erica manipuliflora                        | 44              | 5.63 | 0.25               | 0.00                   | 3.63                   | 2.88                                   | 21.06                     | 64        | 15        | 21        | SL      |
| Tordylium apulum                           | 59              | 7.52 | 0.58               | 8.00                   | 4.60                   | 11.22                                  | 64.35                     | 57        | 17        | 26        | SL      |
| Sinapis arvensis                           | 40              | 7.50 | 1.12               | 6.96                   | 1.51                   | 12.45                                  | 35.10                     | 67        | 14        | 19        | SL      |
| Rapistrum rugosum                          | 44              | 7.53 | 1.09               | 10.42                  | 1.51                   | 11.83                                  | 35.10                     | 60        | 18        | 22        | SL      |
| Carduus pycnocephalus                      | 55              | 7.35 | 0.64               | 6.00                   | 3.15                   | 39.16                                  | 56.16                     | 61        | 18        | 21        | SL      |
| Carduus nutans                             | 46              | 7.45 | 0.53               | 8.40                   | 3.87                   | 19.11                                  | 69.03                     | 65        | 15        | 20        | SL      |
| Centaurea iberica                          | 49              | 7.29 | 0.93               | 6.24                   | 2.72                   | 14.36                                  | 38.61                     | 61        | 17        | 22        | SL      |
| Centaurea solstitialis subsp. solstitialis | 45              | 7.41 | 0.65               | 9.76                   | 1.09                   | 5.51                                   | 19.31                     | 60        | 19        | 21        | SL      |
| Rumex crispus                              | 46              | 7.22 | 0.79               | 15.20                  | 1.63                   | 11.83                                  | 56.16                     | 58        | 18        | 24        | SL      |
| Ammi visnaga                               | 45              | 7.43 | 0.65               | 15.20                  | 2.60                   | 10.02                                  | 46.80                     | 60        | 18        | 22        | SL      |
| Cichorium intybus                          | 47              | 7.49 | 0.66               | 13.76                  | 2.54                   | 10.02                                  | 43.29                     | 58        | 20        | 22        | SCL     |
| Parietaria judaica                         |                 |      |                    |                        | Not stu                | died                                   |                           |           |           |           |         |

EC: electrical conductivity SCL: sandy clay loamy, SL sandy and loamy

In this study, the largest groups were therophytes and hemicryptophytes when floristic compositions of plant communities examined (Table 4). As it is known, therophytes and hemicryptophytes are widespread in areas under influence of Mediterranean climate (Akman & Ketenoglu, 1987; Altay *et al.*, 2010 a, b; Osma *et al.*, 2010).

The most common phytogeographical elements were Mediterranean and Euro-Siberian elements (Table 5). This is because Istanbul's climate is predominantly Mediterranean. However, the northern side of Istanbul is partly affected by the oceanic climate (Aksoy, 1994; Altay *et al.*, 2010a, b; Osma *et al.*, 2010). Additionally, % values of widespread and cosmopolitan taxa in the communities were given in Table 5.

## Table 4. Percentage values of the life forms (H= hemicryptophytes; Ph= phanerophytes; G= geophytes; Ch= chaemaphytes; Th= therophytes).

| Plant community                            | Th | H  | Ph | G  | Ch |
|--------------------------------------------|----|----|----|----|----|
| Sarcopoterium spinosum                     | 46 | 31 | 8  | 8  | 7  |
| Erica manipuliflora                        | 3  | 34 | 33 | 18 | 12 |
| Tordylium apulum                           | 78 | 20 | -  | -  | 2  |
| Sinapis arvensis                           | 67 | 30 | -  | 1  | 2  |
| Rapistrum rugosum                          | 58 | 35 | 1  | 3  | 3  |
| Carduus pycnocephalus                      | 76 | 22 | -  | 1  | 1  |
| Carduus nutans                             | 40 | 54 | -  | 3  | 3  |
| Centaurea iberica                          | 64 | 32 | -  | 2  | 2  |
| Centaurea solstitialis subsp. solstitialis | 52 | 45 | -  | -  | 3  |
| Rumex crispus                              | 51 | 43 | 3  | -  | 3  |
| Ammi visnaga                               | 42 | 51 | -  | 4  | 3  |
| Cichorium intybus                          | 52 | 42 | -  | 3  | 3  |
| Parietaria judaica                         | 57 | 43 | -  | -  | -  |

| Plant community                            | Medit. El. | Euro-Sib. El. | IrTur. El | Widespread | Cosmopolitan |
|--------------------------------------------|------------|---------------|-----------|------------|--------------|
| Sarcopoterium spinosum                     | 23         | 7             | -         | 18.48      | 1.08         |
| Erica manipuliflora                        | 34         | 17            | -         | 14.29      | -            |
| Tordylium apulum                           | 14         | 5             | -         | 18.18      | 2.27         |
| Sinapis arvensis                           | 11         | 3             | -         | 22.55      | 2.94         |
| Rapistrum rugosum                          | 13         | 4             | -         | 21.55      | 3.45         |
| Carduus pycnocephalus                      | 11         | 4             | -         | 14.87      | 5.41         |
| Carduus nutans                             | 14         | 4             | 1         | 20.83      | 2.78         |
| Centaurea iberica                          | 10         | 4             | -         | 28         | 6            |
| Centaurea solstitialis subsp. solstitialis | 15         | 5             | 2         | 15         | 1.67         |
| Rumex crispus                              | 19         | 4             | 1         | 16         | -            |
| Ammi visnaga                               | 17         | 4             | -         | 19.72      | 1.41         |
| Cichorium intybus                          | 11         | 6             | -         | 23.94      | 4.23         |
| Parietaria judaica                         | -          | -             | -         | -          | -            |

Table 5. Percentage values of phytogeographical elements of plant communities and their % distributions.

Species within the floristic composition of plant communities and their syntaxonomy (alliance, order and class) were given at the end of the paper (Appendix-1). The most widespread plant taxa in the communities were *Hordeum murinum* subsp. *leporinum*, *Cichorium intybus*, *Bromus sterilis*, *Dactylis glomerata* subsp. *hispanica*, *Plantago lanceolata*, *Cynodon dactylon* var. *dactylon*, *Rapistrum rugosum*, *Sonchus asper* subsp. *glaucescens*.

In this study, some members of *Liliaceae*, *Iridaceae* ve *Orchidaceae* families were not observed or rarely observed within plant communities although they are members of rural habitats. Additionally, only *Cymbalaria muralis* was observed in *Parietaria judaica* community as a rare plant, and no other rare plant was found in the research area. Endemic taxa in plant groups were *Cirsium polycephalum* and *Ballota nigra* subsp. *anatolica*. Most of the plant communities were within *Stellarietea mediae* class, when the syntaxonomic structure is searched. This class is the most represented class in ruderals and agricultural areas where anthropogenic pressure is

present. Furthermore, this class shows therophytic properties and prefers soils rich in nitrate (Tüxen, 1950; Knapp, 1959; Böttcher, 1971; Dorogostajskaja, 1972).

In this study, for the first time in Turkey, communities, which were distributed in urban lands, were studied. 13 different plant communities were found in Anatolian Side of Istanbul. Therophytes were the best represented life forms due to their greater tolerance to disturbance. As mentioned in many previous papers, we observed that determinants of plant growth and distribution are some environmental factors such as soil moisture, mineral nutrient composition and topography (Sharma et al., 1983; Skarpe, 1990; Ahmad et al., 2010). These factors were also found as important components for the determination of plant communities during different seasons and sites. It is assumed that there are various locations yet to be discovered in many urban lands and therefore we suggest that detailed study should be undertaken to find new plant communities in those lands.

Appendix 1. Syntaxonomy and floristic composition of communities. 1. Sarcopoterium spinosum, 2. Erica manipuliflora, 3. Tordylium apulum, 4. Sinapis arvensis, 5. Rapistrum rugosum, 6. Carduus pycnocephalus, 7. Carduus nutans, 8. Centaurea iberica, 9. Centaurea solstitialis subsp. solstitialis, 10. Rumex crispus, 11. Ammi visnaga, 12. Cichorium intybus, 13. Parietaria judaica.

|    | maurea solsinanis subsp. solsinanis, 10. Kam |   | , |   |   | · · | - | - |   |   |    |    |    |    |
|----|----------------------------------------------|---|---|---|---|-----|---|---|---|---|----|----|----|----|
|    |                                              | 1 | 2 | 3 | 4 | 5   | 6 | 1 | 8 | 9 | 10 | 11 | 12 | 13 |
|    | Hordeion leporini Alliance                   |   |   |   |   |     |   |   |   |   |    |    |    |    |
| G  | Asphodelus fistulosus                        |   |   |   |   |     |   | x |   |   |    | X  |    |    |
| Th | Carduus pycnocephalus                        |   |   | х | х | х   | х | х |   |   | х  | х  |    |    |
| Th | Crepis foetida subsp. foetida                |   |   | х |   |     | х |   |   |   |    | х  | х  |    |
| Th | Hordeum murinum subsp. leporinum             | х |   | х | х | х   | х | х | х | х | х  | х  | х  |    |
| Th | Plantago lagopus                             | х |   | х | х | х   |   |   | х | х |    | х  | х  |    |
| Th | Rostraria cristata                           |   |   |   | х | х   |   |   | х |   |    |    |    |    |
| Н  | Rumex pulcher                                | х |   |   | х | х   | х | х | х | х | х  | х  | х  |    |
| Th | Trifolium nigrescens subsp. petrisavi        |   |   |   | х | х   |   |   |   |   |    |    |    |    |
|    | Fumario-Euphorbion Alliance                  |   |   |   |   |     |   |   |   |   |    |    |    |    |
| Th | Euphorbia helioscopia                        | х |   | х | х | х   | х | х | х |   | х  | х  |    | х  |
| Th | Euphorbia peplus var. minima                 | х |   | х | х |     | х |   |   |   |    |    |    |    |
| Th | Mercurialis annua                            |   |   | х | х | х   | х | х | х |   |    |    |    | X  |
| Th | Senecio vulgaris                             | х |   | х | х | х   | х |   |   |   |    |    |    |    |
| Н  | Sonchus oleraceus                            |   |   |   | х |     |   |   |   |   | х  |    |    |    |
|    | Dauco-Melilotion Alliance                    |   |   |   |   |     |   |   |   |   |    |    |    |    |
| Ch | Cichorium intybus                            | х | х |   | х | х   |   | x | х | х | х  | х  | х  |    |
| Th | Echium vulgare                               | х |   |   | х | х   | х | х | х | х | х  | х  | х  |    |
| Th | Medicago lupulina                            |   |   |   |   |     |   |   | x |   |    |    |    |    |

Appendix 1. (Cont'd.).

|         |                                            | Append | ix 1. ( | Cont' | d.). |   |   |   |   |   |    |    |    |   |
|---------|--------------------------------------------|--------|---------|-------|------|---|---|---|---|---|----|----|----|---|
|         |                                            | 1      | 2       | 3     | 4    | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 |
| Н       | Melilotus officinalis                      |        |         |       | х    | х | х | х | х |   |    |    | х  |   |
| Н       | Reseda lutea var. lutea                    |        |         |       |      | х |   |   |   |   |    |    | X  |   |
|         | Onopordion acanthii Alliance               |        |         |       |      |   |   |   |   |   |    |    |    |   |
| Η       | Carduus nutans                             |        |         |       | х    | х |   | х |   |   | Х  | х  |    |   |
|         | <b>Onopordion illyrici</b> Alliance        |        |         |       |      |   |   |   |   |   |    |    |    |   |
| Th      | Centaurea diffusa                          | x      | x       |       |      |   |   | x |   | х | Х  | х  | x  |   |
| Н       | Scolymus hispanicus                        |        |         |       |      | х | х | х | х | х | х  | х  | х  |   |
|         | Arction lappae Alliance                    |        |         |       |      |   |   |   |   |   |    |    |    |   |
| Н       | Conium maculatum                           |        |         |       | х    | х | х | х |   |   | х  |    |    |   |
|         | Chenopodion muralis Alliance               |        |         |       |      |   |   |   |   |   |    |    |    |   |
| Н       | Ecballium elaterium                        |        |         |       | х    | х | х | х |   |   | х  |    |    |   |
| Th      | Urtica pilulifera                          |        |         |       |      |   | x |   |   |   |    |    |    |   |
|         | Caucalidion platycarpae Alliance           |        |         |       |      |   |   |   |   |   |    |    |    |   |
| Th      | Sherardia arvensis                         | x      |         | x     |      | х |   |   |   |   |    |    |    |   |
| 111     | Papaveretalia rhoeadis Order               | л      |         | л     |      | л |   |   |   |   |    |    |    |   |
| Th      |                                            |        |         |       |      |   |   |   |   |   |    |    |    |   |
| Th      | Papaver rhoeas                             |        |         | X     | X    | X | X | x |   |   | X  |    |    |   |
|         | Sinapis arvensis                           | х      |         | X     | X    | X | X | x | x |   | X  | x  | x  |   |
| Th      | Veronica persica                           | Х      |         |       | X    | X | X | X |   |   | X  |    |    |   |
| -       | Sisymbrietalia officinalis Order           |        |         |       |      |   |   |   |   |   |    |    |    |   |
| Th      | Avena barbata                              |        |         |       | х    | х |   |   |   |   | х  |    |    |   |
| Th      | Avena sterilis                             | х      |         | X     | X    | X | X | X |   |   | X  | X  | X  |   |
| Th      | Bromus hordeaceus                          |        |         |       | х    | х | х | x | x |   | Х  |    | X  |   |
| Th      | Bromus sterilis                            | х      |         | X     | X    | X | Х | X | х | Х | Х  | х  | X  |   |
| Th      | Catapadium rigidum                         | х      |         |       | X    | х | X |   |   |   |    | x  | X  |   |
| Н       | Malva sterilis                             |        |         | х     | х    | х |   |   | х |   |    |    |    |   |
| Th      | Matricaria chamomilla var. recutita        |        |         |       | х    | х | х | х | х |   | х  |    | х  |   |
| Th      | Medicago polymorpha var. vulgaris          | x      |         | х     | х    | х | х | х | х |   | х  |    |    |   |
| Th      | Sisymbrium officinale                      |        |         |       |      |   | х |   |   | х |    |    |    |   |
| Th      | Trifolium resupinatum var. resupinatum     |        |         |       | х    | х | х |   | х |   | х  |    |    |   |
|         | <i>Thero-Brometalia</i> Order              |        |         |       |      |   |   |   |   |   |    |    |    |   |
| Th      | Cynosurus echinatus                        | х      |         |       | x    | х |   |   |   |   | x  | x  |    |   |
| Th      | Daspyrum villosum                          | л      |         | x     | x    | x |   |   |   |   | x  | x  | v  |   |
| Th      | Medicago rigidula                          |        |         | л     | x    | л |   |   |   |   | л  | л  | x  |   |
| Th      | Onobrychis caput-galli                     |        |         |       | л    |   |   | v |   |   |    |    |    |   |
| Th      |                                            |        |         |       |      | _ |   | x |   |   |    |    |    |   |
|         | Pallenis spinosa                           | х      |         |       |      | X |   | x |   |   | Х  | x  | x  |   |
| Th      | Torilis leptophylla                        |        |         |       |      |   |   |   |   |   |    | X  |    |   |
| Th      | Tordylium apulum                           | Х      |         | Х     | X    | х | х | x |   |   | Х  |    |    |   |
| Th      | Trifolium campestre                        | X      |         | Х     | х    | х | х |   | X |   |    | X  |    |   |
| Th      | Trifolium stellatum var. stellatum         | х      |         |       | х    | х |   | x |   |   |    |    | X  |   |
|         | Onopordetalia acanthii Order               |        |         |       |      |   |   |   |   |   |    |    |    |   |
| Η       | Cardaria draba subsp. draba                |        |         |       | х    | х |   | х |   |   | Х  |    | х  |   |
| Η       | Cirsium vulgare                            |        |         |       |      |   |   |   |   | х |    | х  |    |   |
| Н       | Convolvulus arvensis                       |        |         |       | x    | х |   | x | x | х | х  | x  | x  |   |
| Н       | Malva sylvestris                           |        |         |       |      |   | х | х |   | x | х  | x  | x  |   |
| Th      | Picris hieracioides                        |        |         |       |      |   |   | х |   | х |    | x  | х  |   |
| Н       | Silybum marianum                           |        |         |       | x    | х | x | x | x | x | х  |    |    |   |
|         | <i>Eragrostietalia</i> Order               |        |         |       |      |   |   | - | - |   |    |    |    |   |
| Th      | Chenopodium botyris                        |        |         |       |      |   |   |   |   | х |    |    |    |   |
| Th      | Portulaca oleracea                         |        |         |       |      |   |   |   |   | x |    |    |    |   |
| Th      | Xanthium spinosum                          |        |         |       |      |   |   |   |   |   |    |    |    |   |
| 111     | *                                          |        |         |       |      |   |   |   |   | X |    |    |    |   |
| и       | Polygono-Poetea Class                      |        |         |       |      |   |   |   |   |   |    |    |    |   |
| H<br>Th | Plantago major subsp. intermedia           |        |         |       |      | X |   |   | x |   |    |    | X  |   |
| Th      | Poa annua                                  |        |         |       | X    | X | X |   | x |   |    |    | x  |   |
| Th      | Polygonum arenastrum                       |        |         |       | X    |   |   |   |   | X |    |    | X  |   |
| Th      | Polygonum aviculare                        |        |         |       |      |   | X |   |   | X |    |    |    |   |
|         | Artemisetea vulgaris Class                 |        |         |       |      |   |   |   |   |   |    |    |    |   |
| Th      | Centaurea solstitialis subsp. solstitialis |        |         |       | X    | X |   |   | x | X | Х  | x  | X  |   |
| Н       | Eryngium campestre var. virens             | х      |         |       | x    | X |   |   | x | х |    | x  | x  |   |
| Η       | Foeniculum vulgare                         |        |         |       | X    | X |   | x |   | х |    | x  | x  |   |
| Н       | Galium aparine                             | х      |         | х     | х    | х | х | х |   |   | х  | x  |    |   |
|         | Malva neglecta                             |        |         |       |      | х |   |   |   |   |    |    | х  |   |

|             |                                                                | Append |   |   |   |   |   |   | - |   | 10 |    | 10 |    |
|-------------|----------------------------------------------------------------|--------|---|---|---|---|---|---|---|---|----|----|----|----|
| п           | Madiana antina adam di                                         | 1      | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| H<br>H      | Medicago sativa subsp. sativa                                  |        |   |   |   |   |   |   |   |   |    | x  |    |    |
| п           | Silene vulgaris var. vulgaris<br>Molinio-Arrhenatheretea Class |        |   |   |   | X |   |   |   |   |    |    |    |    |
| G           |                                                                |        |   |   |   |   |   |   |   |   |    |    |    |    |
| н<br>Н      | Agrostis stolonifera<br>Dactylis glomerata subsp. hispanica    |        |   |   |   |   |   |   |   |   |    |    | X  |    |
| н<br>Н      |                                                                | х      | X | X | X | X |   | X |   | X | X  | x  | x  |    |
| н<br>Th     | Holcus lanatus                                                 |        |   |   | _ | X | X |   | x |   |    |    |    |    |
| H           | Lolium perenne<br>Lotus corniculatus var. corniculatus         | X      |   |   | X | X | X | X | X | X | X  | x  | x  |    |
| п<br>Н      |                                                                | x      |   | X | X | X | X | X |   | x | X  | x  | x  |    |
| н<br>Н      | Plantago lanceolata<br>Poa trivialis                           | х      |   | X | X | X | X | X | x | x | x  | x  | x  |    |
| п<br>Н      |                                                                |        |   |   | X |   |   |   |   |   |    |    |    |    |
| п<br>G      | Prunella vulgaris<br>Rumex acetosella                          | х      |   |   |   |   |   |   |   |   |    |    |    |    |
| н<br>Н      |                                                                |        |   |   |   | X |   |   |   |   |    | x  |    |    |
| н<br>Ch     | Rumex crispus<br>Tanangoum officingle                          |        |   |   | X | X | X | X | Х | X | X  | x  | X  |    |
|             | Taraxacum officinale                                           |        |   |   |   |   | X |   |   |   |    |    |    |    |
| Н           | Trifolium pratense var. pratense                               |        |   |   |   |   |   | X |   |   |    |    |    |    |
| Н           | Trifolium repens var. repens                                   |        |   |   |   |   |   |   | X |   |    |    |    |    |
| Н           | Vicia cracca subsp. stenophylla                                |        |   |   | X | X |   |   |   |   |    |    |    |    |
| <b>T</b> 1. | Stellarietea mediae Class                                      |        |   |   |   |   |   |   |   |   |    |    |    |    |
| Th          | Anagallis arvensis var. arvensis                               | х      |   | X | X | X | X | X | X | X |    |    | X  |    |
| Н           | Anchusa officinalis                                            |        |   |   |   |   |   |   |   |   |    |    | X  |    |
| Th          | Borago officinalis                                             |        |   |   |   |   |   |   |   |   | X  |    |    |    |
| Th          | Bromus diandrus                                                |        |   | X |   |   | X |   |   |   |    |    |    |    |
| Th          | Bromus japonicus subsp. japonicus                              | X      |   |   |   | X |   |   |   |   |    |    |    |    |
| Th          | Calendula arvensis                                             |        |   | х | х | х | х | х |   |   | X  |    |    |    |
| Th          | Capsella bursa-pastoris                                        |        |   | х | х | х | х | х | х |   |    |    | X  |    |
| Th          | Cerastium glomeratum                                           | х      |   | х | х | Х | Х | х | х |   |    |    | х  |    |
| Th          | Chenopodium album                                              |        |   |   | X | X |   | х | X | X | X  | X  | X  |    |
| Th          | Conyza canadensis                                              |        |   |   |   |   |   |   |   | X |    |    |    |    |
| Н           | Cynodon dactylon var. dactylon                                 | Х      | х |   | х | х | х | х | х | х | х  | х  | х  |    |
| Н           | Diplotaxis tenuifolia                                          |        |   | х | х | х | х | х | х |   |    | х  |    |    |
| Th          | Erodium cicutarium subsp. cicutarium                           |        |   | X | х | Х | Х | Х | Х | X | X  |    | х  |    |
| Th          | Erodium malacoides                                             |        |   |   | х | Х |   | Х | Х |   | X  | х  | х  |    |
| Th          | Geranium dissectum                                             |        |   | X | х | Х |   | Х | Х |   | X  |    |    |    |
| Th          | Geranium molle subsp. molle                                    |        |   | х | х | х | х | х |   |   | х  |    |    |    |
| Th          | Geranium pusillum                                              |        |   |   |   |   | Х |   |   |   |    |    |    |    |
| Th          | Geranium rotundifolium                                         |        |   | х | х | х | х |   |   |   |    |    |    |    |
| Th          | Lamium amplexicaule                                            |        |   |   |   | х |   |   |   |   |    |    |    |    |
| Th          | Lamium purpureum var. purpureum                                |        |   | х | х | х | х |   |   |   | Х  |    |    |    |
| Th          | Lolium multiflorum                                             |        |   |   |   | Х |   |   |   |   |    |    |    |    |
| Th          | Medicago orbicularis                                           |        |   |   | х | Х | Х | х |   | x | X  | х  | х  |    |
| Th          | Ranunculus muricatus                                           |        |   |   | х |   | Х |   |   |   | X  |    |    |    |
| Th          | Raphanus raphanistrum                                          |        |   |   | х | х | х | х | х | х | x  | х  | х  |    |
| Th          | Rapistrum rugosum                                              | х      |   | х | х | х | х | х | х | х | x  | х  | х  |    |
| Th          | Setaria viridis                                                |        |   |   | х |   |   |   |   | x |    |    |    |    |
| Th          | Silene nocturna                                                |        |   |   | х | х | х |   |   |   |    |    |    |    |
| Н           | Sonchus asper subsp. glaucescens                               | х      |   |   | х | х | х | х | х | х | х  | х  | х  | х  |
| Th          | Stellaria media var. media                                     |        |   | х | х | х | х |   |   |   | х  |    |    | х  |
| Th          | Torilis nodosa                                                 |        |   |   | х | х | х | х |   |   | х  |    |    |    |
| Th          | Urospermum picroides                                           | х      |   | х | х | х | х | х |   |   |    |    | х  |    |
| Th          | Vicia sativa                                                   | х      |   | х |   | х | х |   |   |   | х  |    | х  |    |
|             | Thero-Brachypodietea Class                                     |        |   |   |   |   |   |   |   |   |    |    |    |    |
| Н           | Carlina corymbosa                                              | х      |   |   |   |   |   |   |   | х | х  | х  | х  |    |
| Th          | Trifolium arvense var. arvense                                 | х      |   |   |   |   |   |   |   |   |    |    | x  |    |
|             | Festuca-Brometea Class                                         |        |   |   |   |   |   |   |   |   |    |    |    |    |
| Н           | Centaurea virgata                                              |        | x |   |   |   |   |   |   |   |    |    |    |    |
| G           | Hordeum bulbosum                                               | х      |   |   | х | x | x | х | x |   |    | x  | x  |    |
| Th          | Phleum exaratum subsp. exaratum                                |        |   |   | x |   |   | x |   |   |    | -  |    |    |
| Н           | Sanguisorba minor                                              | x      | x |   |   | x |   |   |   |   | x  | x  |    |    |
| -           | Cisto-Micromerietea Class                                      | 4      |   |   |   |   |   |   |   |   |    | -  |    |    |
|             |                                                                |        |   |   |   |   |   |   |   |   |    |    |    |    |
| Н           | Anthoxanthum odoratum subsp. odoratum                          | х      |   |   |   |   |   |   |   |   |    |    |    |    |

|         |                                                     | Append |   |   |   | _ |   |   | ~ | ~ |    |    |    |    |
|---------|-----------------------------------------------------|--------|---|---|---|---|---|---|---|---|----|----|----|----|
| DI      |                                                     | 1      | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| Ph      | Cistus creticus                                     | х      | X |   |   |   |   |   |   |   | x  |    |    |    |
| Ph      | Cistus salviifolius                                 | х      | X |   |   |   |   |   |   |   | X  |    |    |    |
| Ph      | Erica arborea                                       |        | X |   |   |   |   |   |   |   |    |    |    |    |
| Ph      | Erica manipuliflora                                 | х      | X |   |   |   |   |   |   |   |    |    |    |    |
| Ch      | Lavandula stoechas subsp. stoechas                  | х      | X |   |   |   |   |   |   |   |    |    |    |    |
| Н       | Melica ciliata                                      | х      |   |   |   |   |   |   |   |   |    |    |    |    |
| Ch      | Micromeria graeca subsp. graeca                     | Х      |   |   |   |   |   |   |   |   |    |    |    |    |
| Н       | Psoralea bituminosa                                 | Х      |   |   |   |   |   |   |   |   |    | X  |    |    |
| Н       | Sarcopoterium spinosum                              | Х      | х |   |   | X |   |   |   |   | X  |    |    |    |
| Ph      | Spartium junceum                                    | х      |   |   |   | х |   |   |   |   |    |    |    |    |
|         | Quercetea ilicis Class                              |        |   |   |   |   |   |   |   |   |    |    |    |    |
| Ph      | Arbutus unedo                                       |        | х |   |   |   |   |   |   |   |    |    |    |    |
| G       | Asparagus acutifolius                               | х      | х |   |   |   |   |   |   |   |    | Х  |    |    |
| Ph      | Juniperus oxycedrus subsp. oxycedrus                |        | X |   |   |   |   |   |   |   |    |    |    |    |
| Н       | Osyris alba                                         | Х      | х |   |   |   |   |   |   |   |    |    |    |    |
| Ph      | Phillyrea latifolia                                 | х      | Х |   |   |   |   |   |   |   |    |    |    |    |
| Ph      | Pistacia terebinthus subsp. terebinthus             | х      |   |   |   |   |   |   |   |   |    |    |    |    |
|         | Quercetea pubescentis Class                         |        |   |   |   |   |   |   |   |   |    |    |    |    |
| G       | Brachypodium sylvaticum                             |        | х |   |   |   |   |   |   |   |    |    |    |    |
| Н       | Dorycnium pentaphyllum subsp. herbaceum             | х      | х |   |   |   |   |   |   |   |    | X  |    |    |
| Гh      | Geranium purpureum                                  |        |   |   | х |   |   |   |   |   | x  |    |    |    |
| Н       | Hypericum perforatum                                | х      |   |   |   | x |   |   |   | х | x  | x  | x  |    |
| Ph      | Quercus infectoria subsp. infectoria                |        | х |   |   |   |   |   |   |   |    |    |    |    |
| Ph      | Quercus pubescens                                   | х      | х |   |   |   |   |   |   |   |    |    |    |    |
| Ch      | Teucrium chamaedrys subsp. chamaedrys               | х      | х |   |   |   |   |   |   |   |    |    |    |    |
|         | Companions                                          |        |   |   |   |   |   |   |   |   |    |    |    |    |
| Гh      | Aegilops geniculata                                 | х      |   |   |   |   |   |   |   |   |    |    |    |    |
| Н       | Agrostis capillaris var. capillaris                 | х      | х |   | x | x | x | x |   | x | х  | х  | х  |    |
| Н       | Alcea pallida                                       |        |   |   |   |   |   | x |   | х | х  | х  | х  |    |
| G       | Allium paniculatum subsp. paniculatum               | х      |   |   |   |   |   |   |   |   |    |    |    |    |
| Гh      | Ammi visnaga                                        |        |   |   |   |   |   |   |   | x | x  | х  | x  |    |
| Н       | Anthemis cretica subsp. tenuiloba                   | x      |   | x | x | x |   | x |   |   | x  | x  | x  |    |
| Th      | Arenaria leptoclados                                | A      |   | А |   |   | x | A |   |   | А  | А  | А  |    |
| Н       | Asperula tenella                                    | x      |   |   |   |   |   |   |   |   |    |    |    |    |
| G       | Asphodelus aestivus                                 | A      | x |   |   |   |   |   |   |   |    |    |    |    |
| H       | Ballota nigra subsp. anatolica                      |        | л |   |   |   |   | x |   | x | x  |    |    |    |
| Н       | Bellis perennis                                     |        | x |   |   |   |   |   |   | A | А  |    |    |    |
| Н       | Berula erecta                                       | х      | А |   |   | x |   |   |   |   | x  | x  |    |    |
| Гh      | Bleckstonia perfoliata subsp. perfoliata            | x      |   |   |   | л |   |   |   |   | л  | л  |    |    |
| Гh      | Briza maxima                                        | x      |   |   |   |   | v |   |   |   |    | x  |    |    |
|         |                                                     | А      |   |   |   |   | X |   |   |   |    | А  |    |    |
| G<br>H  | Briza media<br>Calamintha nanata suban, alan dulasa |        | X |   |   |   |   |   |   |   |    |    |    |    |
| н<br>Гh | Calamintha nepeta subsp. glandulosa                 |        |   |   |   |   |   |   |   |   |    | х  |    |    |
|         | Calepina irregularis                                |        |   |   |   |   | X |   |   |   |    |    |    |    |
| G       | Carex flacca subsp. serulata<br>Centaurea iberica   | X      | X |   |   |   |   |   |   |   |    |    |    |    |
| Th      |                                                     |        |   |   | X | X |   | X | x | x |    |    | X  |    |
| H       | Centaurium erythraea subsp. erythraea               | х      |   |   |   |   |   |   |   |   |    |    |    |    |
| Н       | Cirsium polycephalum                                |        |   |   |   |   |   |   |   | x |    |    |    |    |
| Н       | Convolvulus cantabrica                              |        |   |   | X | X |   |   |   |   |    | X  |    |    |
| Гh      | Crepis sancta                                       | х      |   | х | х | х | х | х | х |   |    |    |    |    |
| Гh      | Cymbalaria muralis subsp. muralis                   |        |   |   |   |   |   |   |   |   |    |    |    | Х  |
| Γh      | Daucus guttatus                                     | х      |   |   | X | X |   |   |   | X |    |    | X  |    |
| Н       | Dianthus leptopetalus                               |        |   |   |   | X |   |   |   |   |    |    |    |    |
| Н       | Echinops ritro                                      | X      |   |   |   |   |   |   |   |   |    |    |    |    |
| Η       | Echium italicum                                     |        |   |   |   |   |   | х |   | х |    | х  | х  |    |
| Гh      | Filago vulgaris                                     |        |   |   |   |   | X |   |   |   |    |    |    |    |
| Гh      | Helminthotheca echioides                            |        |   |   | x | x | x | х | x | x | х  | х  | x  |    |
| Гh      | Hypocrepis unisiliguosa subsp. unisiliguosa         | х      |   |   |   |   |   |   |   |   |    |    |    |    |
| Гh      | Gastridium phleoides                                |        |   |   | x | x |   |   |   |   |    |    |    |    |
| Th      | Geranium robertianum                                |        |   |   | х |   |   |   |   |   |    |    |    |    |
| Н       | Glaucium flavum                                     |        |   |   |   | х |   |   |   |   |    |    |    |    |
| G       | Inula oculus-christi                                |        | х |   |   |   |   |   |   |   |    |    |    |    |

|         |                                            | Append |   |   |   |   |   |   | 6 |   |    |    |    |    |
|---------|--------------------------------------------|--------|---|---|---|---|---|---|---|---|----|----|----|----|
|         |                                            | 1      | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| Н       | Inula viscosa                              | х      | х |   |   | х |   | х |   | х | x  | х  | х  |    |
| Th      | Kickxia commutata subsp. commutata         |        |   |   |   |   |   |   |   | х |    |    |    |    |
| Th      | Lavatera punctata                          |        |   |   | X |   |   |   |   |   |    |    |    |    |
| G       | Leontodon tuberosus                        |        | х |   |   |   |   |   |   |   |    |    |    |    |
| Н       | Lepidium graminifolium                     |        |   |   |   | х |   |   |   | х | x  |    | х  |    |
| Η       | Lepidium spinosum                          |        |   |   | X |   |   |   |   |   |    |    |    |    |
| Η       | Linum bienne                               | Х      |   | х |   | х |   |   |   |   |    | х  |    |    |
| Th      | Linum trigynum                             | х      |   |   |   |   |   |   |   |   |    |    |    |    |
| Th      | Malva nicaeensis                           |        |   |   | X | X | Х | х | х |   |    | X  | x  |    |
| Ch      | Mentha longifolia subsp. typhoides         |        |   |   |   | х |   |   |   | х |    |    |    |    |
| G       | Mentha pulegium                            |        |   |   |   |   |   |   |   |   |    |    | х  |    |
| Th      | Moenchia mantica subsp. mantica            | х      |   |   |   |   |   |   |   |   |    |    |    |    |
| G       | Muscari neglectum                          | х      |   |   |   | х |   |   |   |   |    |    |    |    |
| Th      | Nigella damascena                          | х      |   |   |   |   |   |   |   |   |    |    |    |    |
| Н       | Ononis spinosa subsp. glandulosa           | х      |   |   |   |   |   |   |   |   |    | х  |    |    |
| Th      | Ononis viscosa subsp. breviflora           |        |   |   |   |   |   |   |   | x |    |    |    |    |
| G       | Ornithogalum umbellatum                    | х      |   |   |   |   |   |   |   |   |    |    |    |    |
| Гh      | Papaver dubium                             | A      |   |   | x |   | x |   |   |   |    |    |    |    |
| Н       | Parietaria judaica                         |        |   |   | А |   | А |   |   |   |    |    |    | ,  |
| Th      | Petrorhagia prolifera                      |        |   |   |   |   |   |   | v |   |    |    |    |    |
| Н       | Phalaris aquatica                          |        |   |   | x | v |   |   | x | x | v  |    | v  |    |
| H       |                                            |        |   |   | А | X |   |   |   |   | X  |    | x  |    |
|         | Plantago coronopus subsp. coronopus        |        |   |   |   | X | X | X | X | x | x  | X  | x  |    |
| G       | Poa bulbosa                                |        |   |   |   | X |   |   |   |   |    |    |    |    |
| Н       | Potentilla inclinata                       | X      |   |   |   |   |   |   |   |   |    |    |    |    |
| Н       | Prunella laciniata                         | X      |   |   |   |   |   |   |   |   |    |    |    |    |
| Гh      | Ranunculus marginatus var. marginatus      |        |   |   | X | X |   |   |   |   |    |    |    |    |
| Ph      | Rubus canescens var. canescens             |        | х |   |   |   |   |   |   |   |    |    |    |    |
| Н       | Rumex conglomeratus                        |        |   |   |   | X |   |   |   |   |    |    |    |    |
| Н       | Ruta montana                               | х      |   |   |   |   |   |   |   |   |    |    |    |    |
| Ch      | Salvia verbenaca                           | х      |   | Х | X | X |   | Х |   |   | X  | X  | X  |    |
| Н       | Scabiosa columbaria subsp. columbaria      | х      |   |   | х | х |   | х |   | х | x  | х  | х  |    |
| Н       | Scabiosa columbaria subsp. ochlera         |        |   |   |   |   |   |   |   | х |    |    |    |    |
| Гh      | Scorpius muricatus var. subvillosus        |        |   |   | X |   |   |   |   |   |    |    |    |    |
| Η       | Scrophularia scopolii var. scopolii        |        |   |   |   | х |   |   |   |   |    |    |    |    |
| G       | Serapias cordigera                         |        | х |   |   |   |   |   |   |   |    |    |    |    |
| Th      | Silene dichotoma subsp. dichotoma          |        |   |   |   |   |   |   |   |   |    | х  |    |    |
| Th      | Sinapis alba                               |        |   |   |   |   | х |   |   |   |    |    |    |    |
| Th      | Spergularia bocconii                       |        |   |   | x | x |   |   | х | х | x  |    |    |    |
| Н       | Stachys byzantinum                         | х      | x |   |   |   |   |   |   |   |    |    |    |    |
| Н       | Stachys officinalis subsp. balcanica       |        |   | х |   |   |   |   |   |   |    |    |    |    |
| Н       | Symphytum orientale                        |        |   |   | х |   |   |   |   |   |    |    |    |    |
| Н       | Telephium imperati subsp. orientalis       |        |   |   | x |   |   |   |   |   |    |    |    |    |
| Ch      | Thymus longicaulis subsp. longicaulis      | v      | v |   | л |   |   |   |   |   |    |    |    |    |
| Th      | Torilis nodosa                             | x      | x |   |   |   |   |   |   |   |    |    |    |    |
| Н       | Tragopogon longirostris var. longirostris  | х      |   |   |   |   |   |   |   |   |    |    |    |    |
| п<br>Th |                                            |        |   |   | x | X |   |   |   |   |    |    |    |    |
|         | Trifolium angustifolium var. angustifolium | X      |   |   |   | X |   |   |   | x |    | X  |    |    |
| Гh      | Trifolium glomeratum                       | X      |   |   |   |   |   |   |   |   |    |    |    |    |
| Th      | Trifolium lappaceum                        | X      |   |   |   |   |   |   |   |   |    |    |    |    |
| Th      | Trifolium scabrum                          |        |   |   | X |   |   |   |   |   |    |    |    |    |
| Th      | Trifolium tomentosum                       |        |   |   |   |   |   | X |   | X |    |    |    |    |
| Th      | Valerianella turgida                       | Х      |   |   |   |   |   |   |   |   |    |    |    |    |
| Н       | Verbascum lasianthum                       |        |   |   | X |   |   |   |   |   | x  | х  | X  |    |
| Гh      | Veronica cymbalaria                        |        |   | X |   | X | X |   |   |   |    |    |    |    |
| Th      | Vicia hybrida                              |        |   | х |   | х |   |   |   |   |    |    |    |    |

## Acknowledgements

References

We wish to thank Assist. Prof. Dr. Ülkühan Yaşar, Instructor Dr. İlhan Doğan, Research Assistant Ahmet Yılmaz and Bahçeşehir University for their technical support. Ahmad, I., M.S.A. Ahmad, M. Hussain, M. Ashraf, M.Y. Ashraf and M. Hameed. 2010. Spatiotemporal aspects of plant community structure in open scrub rangelands of submountainous Himalayan Plateaus. *Pak. J. Bot.*, 42(5): 3431-3440.

- Akman, Y. and O. Ketenoglu. 1987. Vejetasyon Ekolojisi (Vegetation Ecology). A.Ü. Fen Fakültesi Yayın No: 146. Ankara, Turkey.
- Aksoy, Y. 1994. İstanbul'da yeşil alan kullanımı üzerine bir araştırma (A study on the use of green areas in Istanbul). *MSc Thesis*. I.T.U., Istanbul.
- Ali, S.M. and R.N. Malik. 2010. Vegetation communities of urban open spaces: Green Belts and Parks in Islamabad City, *Pak. J. Bot.*, 42(2): 1031-1039.
- Altay, V., I.I. Ozyigit and C. Yarci. 2010a. Urban flora and ecological characteristics of the Kartal District (Istanbul): A contribution to urban ecology in Turkey. *Sci. Res. Essays*, 5(2): 183-200.
- Altay, V., I.I. Ozyigit and C. Yarci. 2010b. Urban ecological characteristics and vascular wall flora on the Anatolian side of Istanbul. *Maejo Int. J. Sci. Technol.*, 4(3): 483-495.
- Anonymous. 2009. The Meteorological Report for 2009 Year of Istanbul. Prime Ministership, General Directorship for Meteorology, the Directorship for Statistics and Publication, Ankara.
- Benvenuti, S. 2004. Weed dynamics in the Mediterranean urban ecosystem: ecology, biodiversity and management. Weed Res., 44: 341-354.
- Black, C.A. 1965. *Method of Soil Analysis*. American Society of Agronomy, Inc, Publisher, Madison, Wisconsin USA.
- Böttcher, H. 1971. Some remarks on the vegetation of South-Icelandic cultivated hayfields and their damages by "winterkilling" ("kal"). *Res. Inst. Nedri Ás.*, Hveragerdi (Iceland), Report 9, 1-28.
- Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of soil. *Agron. J.*, 54(5): 21.
- Braun-Blanquet, J. 1932. Plant Sociology: The Study of Plant Communities (English translation). McGraw-Hill, New York.
- Davis, B.N.K. 1982. Regional variation in quarries. In: *Ecology* of *Quarries*. (Ed.): B.N.K. Davis. Institute of Terrestrial Ecology, Cambridge.
- Davis, P.H. 1965-1985. Flora of Turkey and the East Aegean Islands. Vol. 1-9, University Press, Edinburgh.
- Dorogostajskaja, E.V. 1972. Sornyje rastenija krajnego severa SSSR. Izd. Nauka, Leningrad.
- Gilbert, O.L. 1989. *The Ecology of Urban Habitats*. Chapman and Hall, London.
- Gilbert, O.L. 1992. *The Flowering of Cities: the Natural Flora* of Urban 'Commons'. English Nature, Peterborough.
- Honu, Y.A.K., S. Chandy and D.J. Gibson. 2009. Occurrence of non-native species deep in natural areas of the Shawnee Natural Forest, Southern Illinois, USA. *Nat. Area. J.*, 29(2): 177-187.
- Hope, D., C. Gries, W.X. Zhu, W.F. Fagan, C.L. Redman, N.B. Grimm, A.L. Nelson, C. Martin and A. Kinzig. 2003. Socioeconomics drive urban plant diversity. *Proceedings of the National Academy of Sciences*, USA. 100: 8788-8792.
- Jackson, L.E. 2003. The relationship of urban design to human health and condition. *Landscape Urb. Plan.*, 64:191-200.
- Jim, C.Y. 2000. The urban forest programme in the heavily built-up milieu of Hong Kong. *Cities*, 17: 271-283.
- Jim, C.Y. and W.Y. Chen. 2008. Pattern and divergence of tree communities in Taipei's main urban green spaces. *Landscape Urb. Plan.*, 84: 312-323.
- Knapp, R. 1959. Anthropogene Pflanzengesellschaften im nördlichen und mittleren Schweden. Angew. Bot., 33: 122-132.
- Lehsten, V. and M. Kleyer. 2007. Turnover of plant trait hierarchies in simulated community assembly in response to fertility and disturbance. *Ecol. Model.*, 203 (3-4): 270-278.

- Mucina, L. 1997. Conspectus of classes of European vegetation. Folia Geobot. Phytotax., 32: 117-172.
- Muhammad, Z.I., S.Z. Shah and M. Shafiq. 2008. Ecological surveys of certain plant communities around urban areas of Karachi. J. Appl. Sci. Environ. Manage., 12(3): 51-60.
- Municipality. 2011. The official website of Istanbul Metropolis Municipality. http://www.ibb.gov.tr
- Osma, E., I.I. Ozyigit, V. Altay and M. Serin. 2010. Urban vascular flora and ecological characteristics of Kadıköy district, Istanbul, Turkey. *Maejo Int. J. Sci. Technol.*, 4(1): 64-87.
- Pickett, S.T.A., M.L. Cadenasso, J.M. Grove, C.H. Nilson, R.V. Pouyat, W.C. Zipperer and R. Costanza. 2001. Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. *Annu. Rev. Ecol. Syst.*, 32, pp. 127-157.
- Pignatti, S. 1995. A new spirit in phytosociology. Annali di Botanica, 53: 9-21.
- Raunkiaer, C. 1934. The Life Forms of Plants and Statistical Plant Geography. Oxford University Press, Oxford, Reprinted in History of Ecology Series (Ed. F. N. Egerton), Ayer Co., Manchester.
- Rivas-Martinez, S., G.F. Fernandez and J. Loidi. 1999. Checklist of plant communities of Iberian Peninsula, Balearic and Canary islands to suballiance level. *Itinera Geobotanica*, 13: 353-451.
- Shah, F.R., N. Ahmad, D.M. Zahid, K.R. Masood and S.S. Ahmad. 2010. The Hudiara drain wastewater effect on the distribution of surrounding herbaceous vegetation, *Pak. J. Bot.*, 42(3): 1745-1754.
- Sharma, S.K., M. George and K.G. Parsad. 1983. Forest vegetation survey and classification with special reference to South India. I. Vegetation survey and quadrate analysis. *Indian Forest.*, 109: 384-394.
- Skarpe, C. 1990. Structure of the woody vegetation in disturbed and undisturbed arid savanna, Botswana. *Plant Ecol.*, 87: 11-18.
- Smith, H.W. and M.D. Weldon. 1941. A comparison of some methods for the determination of soil organic matter. *Soil Sci. Soc. Amer. Proc.*, 5, 177-182.
- Turner, K., L. Lefler and B. Freedman. 2005. Plant communities of selected urbanized areas of Halifax, Nova Scotia, Canada. Landscape Urban Plan., 71(2-4): 191-206.
- Tüxen, R. 1950. Grundriss einer Systematik der nitrophilen Unkrautgesellschaften in der Eurosibirischen Region Europas. Mitt. Flor. Soz. Arbeitsgem., 2: 94-175.
- Tuysuz, O. 2003. İstanbul için Deprem Senaryolarının Hazırlanmasında Coğrafi Bilgi Sistemlerinin Kullanımı (Use of Geographic Information Systems in Preparation Earthquake Scenarios for Istanbul) I.T.U., Scientific Research Projects, Istanbul, Turkey. Online at: http://www.eies.itu.edu.tr/deprem/depremsen.pdf
- USDA. 1954. Diagnosis and improvement of saline and alkali soils. *Agric. Handbook*, no: 60. United States Salinity Laboratory, Riverside, CA.
- Westhoff, V. and E. Van der Maarel. 1980. The Braun-Blanquet approach. In: *Classification of Plant Communities*. (Ed.): R.H. Whittaker, Dr. W. Junk, The Hague, pp. 287-399.
- Yasar, U., I.I. Ozyigit and M. Serin. 2010. Judas tree (*Cercis siliquastrum* L. subsp. *siliquastrum*) as a possible biomonitor for Cr, Fe and Ni in Istanbul (Turkey). *Rom. Biotech. Lett.*, 15(1): 4979-4989.

(Received for publication 12 February 2011)