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Abstract 

 
The rice FAE encodes protein for fatty acids elongation to form very long chain fatty acids (VLCFAs), which are the 

intermediates for wax biosynthesis. Agrobacterium- mediated transgenic tobacco plants bear rice fatty acid elongation gene 
(OsFAE), which has been incorporated into their genome. Amino acids multiple sequences alignment analysis reveals that 
rice FAE protein has sequence similarity with other fatty acids elongation and wax related proteins, especially corn FAE. 
Phylogenetic tree, a bioinformatics tool shows that OsFAE has a close evolutionary origin with that of maize FAE. Sense 
sequence of rice FAE gene incorporation to transgenic rice has consequently resulted into relatively more cuticular wax on 
leaf surface. Scanning electron microscopy (SEM) illustrates that transgenic tobacco leaves have phenotypically higher 
cuticular waxes than of control. Our findings also suggest that the transgenic tobacco exhibits more water use efficiency 
(WUE) at both the 90% and 35% field capacity (FC) levels under non-stress and stressful conditions, respectively.  

 
Introduction 
 

Plants are though sessile, yet they perform their life 
activities efficiently under sever stressful conditions by 
evolving numerous specialized mechanisms and adaptive 
structures compatible with their lifestyle (Pecinka et al., 
2009). Among most of the stresses, drought is considered 
very important stress as it impairs not only growth, but also 
productivity of plants. Of the most important adaptation 
traits, plants secrete essentially waxy layer that surrounds 
nearly all plant parts interface to the environment (Luo et 
al., 2007). Combination of cutin, waxes, and possibly 
polysaccharides form the cuticle, a hydrophobic covering 
over the epidermis (Yukihiro et al., 2011).  

The cuticular waxes are a blend of different lipophilic 
compounds that are predominantly composed of aliphatic 
monomers, glycerols, phenolics, very long-chain fatty 
acids (VLCFAs) and their derivatives (Bach et al., 2008). 
Additionally, waxes include triterpenoids (Vogg et al., 
2004) and phenylpropanoids (Goodwin & Jenks, 2005; 
Kunst & Samuels, 2003). Accumulating findings suggest 
that the wax load of a leaf fluctuates between not only 
abaxial and adaxial surfaces, but also intracuticular and 
epicuticular waxes (Gniwotta et al., 2005; Vogg et al., 
2004). Furthermore, wax deposition may vary amongst 
different epidermal cells, such as guard cells and 
trichomes (Schreiber, 2005). Thickness of the cuticle may 
vary (0.02–200 um) among diverse plant species and 
different organs of the same plant (Zheng et al., 2005).  

The cuticles have been attributed to protect the plants 
from non-stomatal water loss (Raffaele et al., 2009; 
Yukihiro et al., 2011), UV irradiation (Long et al., 2003), 
mechanical injury (Knight et al., 2004)), frost damage 
(Teece et al., 2008), chemicals and biotic invaders like, 
insects (Eigenbrode, 1996; Eigenbrode & Espelie, 1995) 
and other pathogens assault (Raffaele et al., 2009).  

Very little contribution of mitochondria towards fatty 
acids synthesis and the de novo synthesis of fatty acids 
(C16 - C18) occurs in plastids of leaf mesophyll tissue 
(Qiang et al., 2009). After leaving from the plastids, 

elongation of these fatty acids results to form VLCFAs 
ranging from C24 to C36 (Clare et al., 2009). From these 
VLCFAs various alcohols, aldehydes, alkanes, ketones 
and wax esters are formed via different pathways 
(Beaudoin et al., 2009; Raffaele et al., 2009). 

The phenomenon of VLCFAs biosynthesis has been 
explored to some extent, but knowledge about the genes 
involvement in VLCFAs elongation and modification is 
limited enough that needs continuous strides (Kunst & 
Samuels, 2003). Many VLCFAEs have been characterized 
in plants such as Arabidopsis thaliana FAE1 (Millar & 
Kunst, 1997), KCS1 (Todd et al., 1999), CER6 (Millar et 
al., 1999), LCR (Wellesen, et al., 2001), CUT1 (Millar et 
al., 1999) and Brassica napus FAE1 (Han et al., 2001).                           

Drought is a deficit of adequate moisture, critically 
necessary for a plant to grow normally to complete its life 
cycle (Zhu, 2002). The paucity of optimum moisture leads 
to drought stress, which is very common in the arid and 
semi-arid rain-fed regions across the globe especially, 
where erratic rains and poor irrigation prevails (Lawlor, 
2002). Habitually, plants are tolerant to water stress, though 
its level varies among the species (Chaitanya et al., 2003). 
Every year, drought hits many parts of the world that often 
inflicts worse impact over the crop production (Thomas, 
2008; Ludlow & Muchow, 1990). Therefore, it has been 
predicted that worldwide losses in crop yield because of 
water deficit, might surpass the losses incur from all the 
combined causes (Litsinger, 2009). 

Progress regarding genetic improvement in crops for 
water stress is dawdling and more limited (Evenson & 
Gollin, 2003), owing to poor understanding of water stress 
tolerance mechanisms, and dearth of proficient techniques 
for selection breeding resources for drought tolerance 
(Khush, 2001). Development of stress tolerant crops is the 
usual outcome of the most plant breeding 
projects/programs. Speedy development of genetic 
engineering and molecular breeding has offered a 
practical approach to improve stress tolerance in crops 
(Collard et al., 2008; Ramanjulu & Bartels, 2002).  
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Recently, a number of successful endeavors to 
incorporate stress-tolerant genes into plants for developing 
enhanced tolerance against water and other stresses have 
been well documented (Bressan et al., 2009; Bhattacharya et 
al., 2004; Chandra et al., 2004). Previously, we introduced 
rice FAE gene into tobacco via Agrobacterium-mediated 
transformation system to raise transgenic plants (Bhatti & 
He, 2009). We studied some of the morphology, growth and 
physiological parameters to expound the biological role of 
OsFAE in the transformed tobacco. 

In the present work, we focused on SEM and relevant 
aspects of water stress such as actual water use, biomass 
increment and WUE (water use efficiency) of tobacco 
plants per plant at non-stress and stress conditions at 90% 
and 35% FC (field capacity) respectively.  
 
Materials and Methods 
 
Plant material and growth conditions: Agrobacterium-
mediated tobacco plants with rice FAE gene have been 
generated according to method described by Bhatti & He 
(2009). The T2 transgenic tobacco and the control (wild 
type SR-1) plants were used for experimentation, which 
were maintained under green-house conditions.  
 
PCR analysis of T2 transgenic tobacco: Total genomic 
DNA was isolated from the control and hygromycin-
resistant transgenic tobacco leaves using CTAB method 
(Reichardt & Rogers, 1994). PCR analysis of T2 
transgenic and control plants was essentially performed as 
described by Bhatti & He (2009). 
 
Sequences alignment and phylogenetic analysis: The 
amino acid sequences of proteins encoding for wax and 
the intermediate synthesis products in rice and other plant 
species were aligned using software ClustalW 1.83, 
according to method (Chenna et al., 2003; Thompson et 
al., 1994) with the following parameters: gap open 
penalty (5.00), gap extension penalty (0.05). Then, the 
alignment was adjusted manually. The phylogenetic tree 
was constructed by the neighbor-joining method using 
(MEGA 3.1) software as described by (Fujita et al., 2004). 
The confidence level of monophyletic groups was 
estimated by bootstrap analysis with 1000 replicates. 
 
Scanning electron microscopy (SEM): The leaves of T2 
transgenic and control tobacco were collected and 
prepared for SEM by adopting protocol with some 
modification reported by Bensalem et al., (2009). The 
leaves were cut into 1-cm2 pieces, and dried in shade. 
Adaxial as well as abaxial surfaces of matured leaves 
were used for SEM. Fragments of the leaves were first 
fixed in 6% glutaraldehyde and then mounted them on 
stubs. Samples were coated with 15-20 A° grain-size gold 
particles for 20 min by using an appropriate coater. The 
coated samples were used for scanning electron 
microscopy at 70 KV (Hitachi, Japan).  
 
Actual water-use, biomass production and water-use 
efficiency assay: Thirty-five days old independent 
transgenic tobacco plants (T2 generation) expressing 
OsFAE gene and the control plants were maintained at 90 
% and 35 % field capacity (FC). The soil moisture was 
measured according to method of Singh (1980) with slight 
modifications. To determine  the field capacity, 15 cm 
plastic pots  were filled with finely ground soil and green 
yard manure in 3:1  ratio (after passing through 3 mm 

sieve), leaving about 5 cm of the pot top unfilled, in a way 
that no  air pockets left inside. The pots were watered 
until their saturation. The upper surface of the soil was 
then sealed with paraffin wax and covered with a watch 
glass to check evaporation from the soil surface. The pots 
were allowed to stand for 48 to 72 hrs. The soil samples 
were taken from the pots and then moisture contents at 
field capacity were determined after drying the soil 
sample in an oven at 70ºC.  

The desired moisture levels were obtained by allowing 
the soil to dry until close to the specific moisture level that 
was determined gravimetrically on each pot (Galmes et al., 
2005). The pots were weighed on alternate days, and the 
required amount of water was added in order to maintain the 
correct moisture level. The pots were maintained at the 
respective field capacity for 30 days. The water loss was 
corrected after every two days by application of the 
calculated water for each of the respective required field 
capacity. Some pots were kept without plants as control for 
the determination of water loss through evaporation. The 
actual water applied, increment of biomass/plant and water 
use efficiency (biomass increment/kg water applied/per 
plant) were worked out for the transgenic and control plants. 
The experiments were repeated essentially twice with ten 
replicates for each parameter. 
 
Statistical analysis: Student t-test was performed using MS 
Excel 2003 (Microsoft Corporation, Seattle, USA). 
Differences between results are described as being significant 
where p≤0.001, and not significant where p≥0.05. 
 
Results and Discussion 
 
The Sequence analyses: Various proteins relevant to 
cuticular wax biosynthesis have been identified, which 
were assumed to be characterized by sequence alignment. 
The sequence analysis gives a glimpse to predict a 
probable role of OsFAE in comparison with other related 
genes. The open reading frame (ORF) of rice FAE gene 
encodes a protein of 519 amino acids - the longest 
peptides amongst the transcription products for wax 
synthesis. The deduced amino acid sequence of FAE 
contains some conserved domains. Whilst, aligned with 
the characterized fatty acid elongation related protein 
sequences, the rice FAE shares high similarity with other 
plants’ proteins like Zm (Zea mays), At (Arabidopsis), Mp 
(Marchantia polymorpha), Bn (Brassica napus ) and Sb 
(Sorghum bicolor) (Fig. 1). The OsFAE shares identical 
sequences with ZmFAE (94%), AtKCS2 (78%), AtAcytf 
(61%), MpKCS (61%), BnKCS, AtCUT1 (61%) and 
SbKCS (64%), respectively.  

The OsFAE transgene, under the control of constitutive 
promoter CaMV35S, has been incorporated into tobacco via 
Agrobacterium-mediated transformation system (Bhatti & 
He, 2009). The multiple protein alignment analysis revealed 
that OsFAE highly shares the homology with other fatty 
acids elongation proteins from different plant species, 
especially with ZmFAE (Fig. 1). The bioinformatics tools, 
especially the multiple sequence alignment, are very helpful 
to envisage the role of gene, which may further be employed 
for imparting the desired traits in the target organism through 
accessible transformation system (Yilmaz et al., 2009; 
Thompson, 2003). The phylogenic analysis signifies that 
OsFAE and ZmFAE are from a very close origin (Fig. 2). In 
the sequence analysis, phylogeny inference regarding 
proteomic studies is very important (Edgar & Batzoglou, 
2006).  
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Fig. 1. Multiple alignments of plant proteins showing high similarity with the rice protein OsFAE. (GenBank accession numbers are indicated 
in parentheses). OsFAE, Oryza sativa fatty acid elongase (NP_001057996); ZmFAE, Zea mays FAE (CAC01441); AtKCS2, Arabidopsis 
thaliana 3-ketoacyl-CoA synthase 11 (O48780); AtAcytf, Arabidopsis thaliana acyltransferase (NP_195178); MpKCS, Marchantia 
polymorpha beta-ketoacyl-CoA-synthase (AAO48425); BnKCS, Brassica napus beta-ketoacyl-CoA-synthase (AAT65207); AtCUT1, 
Arabidopsis thaliana cuticular 1 (NP_177020); SbKCS, Sorghum bicolor beta-ketoacyl-CoA-synthase (AAD27560). Sequences were aligned 
with CLUSTAL W. Black background indicates identical amino acid residues and gray background designates similar amino acids. Gaps 
required for optimal alignment are shown by dashes. Asterisks indicate perfectly matched amino acids amongst these eight proteins. The 
identity and similarity of the aligned proteins for OsFAE are shown at the last part of the alignments.  
  

                      
   

Fig. 2. Phylogenic analysis of proteins similar to OsFAE. Phylogenic analysis by MEGA 3.1 was performed using the neighbor-joining 
tree with 1000 replicates; the handling gap option was pair-wise deletion.  
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The PCR analysis of T2 transgenic tobacco: PCR gel 
electrophoresis results of the selected T2 transgenic 
tobacco lines reveal that transformed tobacco genome 
contains the both, OsFAE a transgene and hygromycin a 
marker gene (Fig. 3).  The results were similar to Gao & 
Hu (2008) and our previous findings for PCR analysis 
regarding molecular studies of putative transgenic plants 
(Bhatti & He, 2009). It suggests that the transgene has 
been integrated into tobacco genome. However, the role 
of the gene products and the phenomenon of gene 
expression are not initially predictable, however, it can be 
traced to fully grasp the molecular response to drought 
stress (Karaba et al., 2007). 
 
Scanning electron microscopy: The SEM was carried 
out of the selected T2 OsFAE transgenic lines and control 
plants. Both adaxial and abaxial leaf surfaces showed 
altered cuticular wax morphology. SEM micrographs of 
the adaxial surfaces are shown (Fig. 4). Our SEM results 
found coherent with the finding reported by Islam et al., 
(2009) and Zhang et al., (2007). As the rice FAE gene 
was placed under a constitutive promoter CAMV35S in 
the transforming vector Bhatti & He (2009), subsequent to 
transformation its expression probably led to an enhanced 
accumulation of wax over the leaves of transgenic plants. 
The accumulation of waxes over the aerating surfaces of 
plants frequently leads to induction of protection against 
various abiotic and biotic stresses (Pinto & Yephremov, 
2009). However, SEM micrographs of abaxial surfaces of 
transgenic leaves showed not substantially different from 
that of control for cuticular wax morphology (data not 
shown), and therefore, it possibly be accredited to the 
differential gene expression among various tissues (Nouar 
et al., 2003). 
 
The actual water use, biomass increment and water 
use efficiency (WUE): The actual water used by the 
transgenic lines was relatively less than that of the control 
at both the 90% and 35% FCs. However, the difference 
was significant (P=0.01) among transgenic and control 
plants at 35% FC, but it was found insignificant in them at 
90% FC (Fig. 5). Nevertheless, the difference among the 
control plants and the transgenic lines was found also 
insignificant at both the 35% and 90% FCs (data not 
shown). Relatively, less amount of actual water utilization 
by the transgenic lines as compared to control at both the 
90% and 35% field capacities (FCs) is a good indicator 
for drought resistance. The lower amount of actual water 
utilization might be due to smaller and/ or less number of 
stomata per unit area and more cuticular waxes may lower 
the transpiration rate to adjust water economy budget 
(Chen et al., 2005). It was assumed that lesser root 
permeability might contribute to less water utilization 
(Anders & Jens, 2009). 

The biomass increment per plant reveals that in the 
transgenic lines, it was produced relatively more than that 
of control at both the field capacity levels i.e., 90% and 
35% FC, respectively (Fig. 6). It was significantly higher 
(P= 0.01) in the transgenic plants in comparison with 
control at 90% FC. It indicates that the transgenic lines are 
relatively more productive and their higher biomass 
increment might be due to more photosynthetic efficiency 
Cheng et al., (2009). Our results are coherent with the 
findings of Ge et al., (2004), and the more biomass 
production depends on internal and physical factors 
involvement Kanno et al., (2009). However, the 
difference in terms of biomass increment among the 

transgenic lines was recorded insignificant at both the 
35% and 90% FCs (data not shown).  
 

 
 
Fig. 3. Representatives of PCR analysis of T2 transgenic tobacco 
bearing rice FAE and hygromycin gene. Where, 1, 2 and 3 are 
the transgenic lines; 4, negative control (Wild-type SR-1); 5 
positive control (plasmid) and 6, 1-Kb fragment size marker.   
 

 
Fig. 4. Representatives of scanning electron microscopy (SEM) 
on the adaxial surfaces for cuticular wax morphology of the 
transgenic and control (Wild- type SR-1) leaves.  
 

 
 
Fig. 5. Representative of the actual water used per plant by 
transgenic and control plants at 90% and 35% FC (field 
capacity). The actual water applied/plant was determined by 
subtracting the water lost by evaporation through soil. The bars 
represent the standard deviation (n=10). Where, FTN, non-
stressed transgenic; FTS, stressed transgenic; WTN, non-
stressed control (Wild-type SR-1) and WTS, stressed control 
(Wild-type SR-1) plants. 
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Fig. 6. Representative of the biomass increment per plant by 
transgenic and control plants at 90% and 35% field capacity 
(FC) after 30 days’ water treatment. The bars represent the 
standard deviation (n=10). Where, FTN, non-stressed transgenic; 
FTS, stressed transgenic; WTN, non-stressed control (Wild-type 
SR-1) and WTS, stressed control (Wild-type SR-1) plants. 

 
 
Fig. 7. Representative of WUE of transgenic and control plant at 
35% and 90% FC after 30 days’ water treatment. The WUE was 
calculated as biomass increment production per plant by 
dividing actual water applied (kg). The bars represent the 
standard deviation (n=10). Where, FTN, non-stressed transgenic; 
FTS, stressed transgenic; WTN, non-stressed control (Wild-type 
SR-1) and WTS, stressed control (Wild-type SR-1) plants. 

 
Water use efficiency of transgenic lines was found 

generally higher than of t he control at the both 90% and 
35% field capacity levels (Fig. 7). It was significantly 
higher (P=0.001) in the transgenic lines than of control at 
90% FC. These results are quite similar with the findings 
reported by Karaba et al., (2007) and Ge et al., (2004). 
However, there was insignificant difference (P= 0.05) at 
35% FC in both the transgenic and control plants for 
WUE. 

In conclusion, OsFAE is a rice gene that is involved 
in regulation of very long chain fatty acids (VLCFAs) 
elongation. The rice FAE gene integration into tobacco 
genome subsequently showed its expression in the form of 
altered leaf cuticular wax morphology on the leaf 
surfaces. Because of more cuticular wax deposition, there 
was an enhanced biomass production with low water 
utilization and consequently more WUE in the transgenic 
plants due to rice FAE gene integration. Thus, the 
transgenic tobacco with rice FAE gene exhibits a higher 
WUE at both the field capacity levels (90% and 35% FC). 
However, the precise role of OsFAE gene in various 
agronomic important plants during biotic and abiotic 
stress conditions would remain an open venue for future 
research.  
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