TOXIC EFFECTS OF COPPER AND LEAD ON A TROPICAL MARINE BLUE GREEN PHYTOPLANKTER, OSCILLATORIA THEIBAUTII

SHAUKAT HAYAT KHAN¹ AND S.M. SAIFULLAH²

Centre of Excellence in Marine Biology, University of Karachi, Karachi-32, Pakistan.

Abstract

Toxic effects of copper and lead on Oscillatoria theibautii (Gomont et Gomont) Geitler were studied. Copper was more toxic than lead and even lethal. The extent of inhibition by both metals was uniform throughout different stages of growth of the species with linear inverse relationship between the two parameters. Effect of copper and lead was synergistic.

Introduction

Oscillatoria theibautii (Gomont et Gomont) Geitler, a eurythermal blue green phytoplankter occurs mainly in tropical seas (Desikachary, 1959; Scouria, 1968). It has the ability to fix elemental nitrogen (Carpenter & McCarthy, 1975). It occurs commonly in coastal waters of Karachi, a large industrial city, with vast amounts of pollutants discharged into the sea. Since metals coexist and interact with each other in nature (Break et al., 1976), the individual and combined effect of copper and lead on O. theibautii was, therefore, studied.

Materials and Methods

All cultures were batch cultures and were maintained in a medium modified after von Stosch & Drebesh (1964) containing NaNO₃, 45.5 mg; Na₂HPO₄·12 H₂O, 10.75 mg; MnCl₂·4 H₂O, 0.0198 mg; FeSO₄·7 H₂O, 0.278 mg; Na₂SiO₃, 15.0 mg; and Vit. B₁₂, 0.001 mg in 1 litre of sea water. Chelating substances were not used in the experimental cultures. Stock cultures in addition contained 3.72 mg Na₂EDTA·2H₂O and 1 ml soil extract prepared with a Soxhlet apparatus (Kornmann, 1972).

² Department of Botany, University of Karachi, Karachi-32, Pakistan.
All glasswares, sea water and media were sterilized in an autoclave at 121°C and 15 lb. lb-2 inch. A 2 day old culture was used as inoculum. Twenty ml of stock culture was inoculated in 1 litre Erlenmeyer flasks and kept at 28°C ± 2°C with a 10 hr. dark; 14 hr. light cycle and illuminated from both sides of the flasks using two fluorescent day light tubes giving 6000 lux. In another set copper and lead dissolved in sterilized distilled water were added to the experimental cultures. The culture flasks were shaken vigorously for few minutes twice daily so that the filaments may not stick to sides and bottom. At 24 hr. interval an aliquot of 50 ml of the culture was pipetted and chlorophyll 'a' content of _O. thiebaudii_ estimated using SCOR/Unesco method (Anonymous, 1966).

Results and Discussion

O. thiebaudii was very sensitive to copper, since the inhibition in growth was noted as early as the first day of incubation (Figs. 1 & 2). At low concentrations of copper chlorophyll 'a' values increased with time at a rate slower than the control. At high concentrations (10 – 20 μg Cu 1 l⁻¹) a lag phase in growth was observed as chlorophyll values even lower than the inoculum values were noted but this remained only for

![Graph](image-url)

Fig. 1. Effect of copper on chlorophyll 'a' concentrations at an inoculum size of 0.96 μg chl. 'a' l⁻¹ (arrows indicating zero values).
Fig. 2. Effect of copper on chlorophyll \(a \) concentrations at an inoculum size of 3.17 \(\mu \)g chl. \(a \) \(\text{L}^{-1} \) (arrows indicating zero values).

a day (Fig. 2). It seems that the cells took one day to adapt to higher concentrations of the metal most probably by excreting dissolved organic matter to bind it (Steemann Nielsen & Wium-Anderssen, 1971). At higher concentration (above 20 \(\mu \)g Cu \(\text{L}^{-1} \)) however, the species could not adapt. Such similar inhibitory effect of copper on other algae has been reported (Davey et al., 1973; Saifullah, 1978).

Copper inhibited carbon assimilation in \(O. \ thiebautii \) and low values affected the species since cupric ion activity instead of copper concentrations were used (Rueter et al., 1979). Growth of \(S. \ text{costatum} \) was inhibited at 50 \(\mu \)g Cu \(\text{L}^{-1} \) and above (Manelli, 1969; Berland et al., 1977; Braek et al., 1976). Such high inhibitory concentrations may be accounted for the complex media containing chelating substances.

Lead inhibited the growth of \(O. \ thiebautii \) at all concentrations ranging from 50 to 2000 \(\mu \)g Pb \(\text{L}^{-1} \) and it was not lethal (Fig. 3). Like copper, the cells entered a lag phase on the first day of incubation at high concentrations. Inhibitory effect of lead on other groups of algae is known (Dayton & Lewin, 1975; Saifullah, 1976; Berland et al., 1977).
Fig. 3. Effect of lead on chlorophyll 'a' concentrations at an inoculum size of 1.39 μg chl. 'a' l⁻¹

The results indicate that chlorophyll 'a' values progressively decrease with an increase in concentrations of both metals. Chlorophyll 'a' values on the sixth day of incubation were 66, 38, 28 and 22% of the control, respectively, at 5, 20, 30 and 50 μg Cu l⁻¹ (Fig. 2). Similarly, the values were 71, 59, 57, 47 and 38% of the control, respectively, at 50, 100, 250, 1000 and 2000 μg Pb l⁻¹. When the chlorophyll 'a' values at different concentrations of copper (Fig. 4) and lead (Fig. 5) observed on a certain day of the experiment during the exponential phase were plotted against each other and fitted to a least square regression equation, they were linearly inversely related with each other. The relationship was significant, and may be generalized as follows:

i) log chlorophyll 'a' conc. = 1.253 - 0.0147 Cu conc.

ii) log chlorophyll 'a' conc. = 1.195 - 0.0002 Pb conc.

It is interesting to note that maximum inhibition of O. theibautii was noted at 500 μg Pb l⁻¹ and such anomalous observations have been found in Ochromonas malhamensis (Malanchuk & Gruendling, 1973) and Prorocentrum micans (Saifullah, 1976).
Fig. 4. Relationship between chlorophyll 'a' and copper concentrations during third day of exponential phase (log Y = 1.253 - 0.0147 X; P < 0.001).

Comparing effects of copper and lead, the rate of inhibition in growth at a given concentration of metals remained almost the same throughout different phases of growth (Figs. 1–3). In this respect blue green algae may be distinguished from other groups of algae, where the inhibitory effect of heavy metals considerably increase with the age of culture (Hessler, 1974; Saifullah, 1976; 1978; Berland, et al., 1977). Algae are known to accumulate the metals with time (Riley & Roth, 1971) and become physiologically weak with age (Fogg, 1966). In the present study, however, the inhibitory effects of heavy metals were not pronounced during stationary phase than during exponential phase. Whether this is true with other blue green forms needs investigations.

Fig. 5. Relationship between chlorophyll 'a' and lead concentrations during second day of exponential phase, (log Y = 1.195 - 0.00024 X; P < 0.5).
Size of inoculum is known to modify the inhibitory effects of heavy metals. Steemann Nielsen & Kamp-Nielsen (1970) and Saifullah (1978) have reported large size inocula to reduce the effect of copper on algae resulting in an increased excretion of organic matter by the cells which binds the heavy metals (Davey et al., 1973; Bentley-Mowat & Reid, 1977). In the present study also the effect of both the metals was retarded by large size inoculum since O. thiebaudii died at 30 μg Cu 1⁻¹ when smaller inocula were used (Fig. 1) as compared to large size inoculum (Fig. 2) when 100 μg Cu 1⁻¹ showed this effect. Similarly, chlorophyll ‘a’ values did not decline up to 250 μg Pb 1⁻¹ on the first day of incubation with larger inoculum but showed a reduction at low concentrations of lead with smaller inocula (Fig. 3).

Combinations of copper (20 μg 1⁻¹) and lead (250 μg 1⁻¹) showed greater inhibition in growth of O. thiebaudii (Fig. 6) than used separately (Figs. 2 & 3). On the sixth day of incubation, chlorophyll ‘a’ values were 2% when Cu and Pb were used together as compared to 37% in Cu alone related to the control. Similarly, the species died within two days of incubation at 30 and 50 μg Cu 1⁻¹ in combination with lead, whereas no lethal effects were recorded at these concentrations in copper alone (Fig. 2). These observations would suggest a synergistic effect of Cu and Pb. Of the four species of marine phytoplankton, Braek et al., (1976) found a synergistic effect of Cu and Zn on three species only. Lead affects the metabolism indirectly by causing phosphate defi-
ciency in the medium (Monahan, 1973; Dayton & Lewin, 1975), arrests cell division and uptake of essential elements as it deposits on the cell membrane (Hessler, 1974; Schulz-Baldes & Lewin, 1976). On the other hand copper is known to inhibit plant metabolism in unicellular algae (Greenfield, 1942; McRae & Hassal, 1967). The present studies also confirm that the inhibitory effect of copper increases in the presence of lead.

Acknowledgements

Grant of a fellowship from University Grants Commission to Shaukat H. Khan during 1976-78 is gratefully acknowledged.

References

Hessler, A. 1974. The effects of lead on algae. I. Effects of Pb on viability and motility of Platy-
monas subcordiformis (Chlorophyta; Volvocales.) Water Air Soil Pollut., 3: 371-385.

Schlieper (ed); Research methods on marine biology. London; Sidgwick & Jackson, pp. 192-204.

Univ. Tex., 14: 47-57.

McBrien, D.C.H. and K.A. Hassal. 1967. The effect of toxic doses of copper upon respiration, photo-

Monahan, T.J. 1973. Lead inhibition of Hormotila bleanista (Chlorophyceae, Chlorococcales). Phyc-
ologia, 12: 247.

Riley, J.P. and J. Roth. 1971. The distribution of trace elements in some species of phytoplankton

national Symposium on Marine Pollution Research. Jan. 27-29 Louisiana State University,
Baton Rouge, pp. 120-132.

Sournia, A. 1968. La Cyanophyceae Oscillatoria (Trichodesmium) dans le plancton marine: Toxono-

Steemann-Nielsen, E. and S. Wium-Andersen. 1971. The influence of copper on photosynthesis and

Diatomeen: IV Die Planktondiatomeen Stephanopyxis turris ihre Behandlung und Entwick-