STUDIES ON RADIATION-INDUCED MUTATIONS IN SOME VARIETIES OF RICE

the soul of the second

ABDUL JALIL MIAH, I. M. BHATTI AND AFSAR AWAN Atomic Energy Agricultural Research Centre, Tandojam.

Abstract

Dry seeds of two standard local varieties of rice namely, Dokri Basmati and Jajai-77 were subjected to different dosages of gamma-rays and fast neutron. Data on the seed fertility of the M_1 generation plants indicated that Jajai-77 is more radio-resistant than Dokri Basmati.

Chlorophyll deficient and viable mutations were scored in the M₂ generation. In general the mutation rates increased with the increase in dosages of radiations. In both the varieties, the highest frequency of chlorophyll mutations induced by either neutron or gamma-ray treatments, was obtained for albina followed by viridis type. In Dokri Basmati the spectrum of viable mutations was restricted to one type only. In Jajai-77, on the other hand, the viable mutant types included a wide variety of variants totalling to seven types.

Introduction

In many countries of the world new varieties of crop plants have been developed by radiation treatments and released as commercial varieties e.g., barley (Borg et al. 1958), mustard (Andersson and Olsson 1954), wheat (Swaminathan et al. 1967) and rice (Futsuhara 1968).

A programme on rice breeding through induced mutations was initiated in 1964 at the Atomic Energy Agricultural Research Centre, Tandojam, West Pakistan. Some of the results have been published recently (1968). The present irradiation experiment with rice was undertaken in 1967 with a view to obtaining:

- (a) Preliminary information on the frequency and spectrum of chlorophyll mutations.
- (b) Dwarf, semi-dwarf or short-culm types with better response to heavier doses of fertilizer for a higher yield.
- (c) Early maturing types with increased yield as compared to the mother variety.

Although the experiment is still in progress, some useful results have been obtained and are reported in this paper.

Materials and Methods

The characteristics of the rice varieties used in this investigation are as follows:

- (1) Dokri Basmati: Early maturing, fine quality variety with shorter and stiff straw.
- (2) Jajai-77: Medium late, fine scented variety with tall growing habit.

Neutron irradiation of seeds was done at the International Atomic Energy Agency, Vienna. For gamma-ray treatments a Co-60 source was used. The radiation doses used in this experiment are given in Tables 1 and 2.

The M_1 generation was grown in summer 1967. All the M_1 plants were harvested individually and seed fertility of the longest spike from each plant was studied.

The M_2 populations were screened for chlorophyll mutations at the seedling stage and viable mutations at the adult plant stage.

For chlorophyll mutation studies the longest spike from each M₁ plant was sown, without threshing, as an M₂ strain. Chlorophyll mutants were scored when the seedlings were 14 days old. While arranging experimental results, M₂ strains with less than 10 seedlings, were discarded. Mutation frequency was expressed as number of mutations per 100 M₁ spikes and also as number of mutants per 1000 M₂ seedlings. The segregation ratio for each treatment was pooled and expressed as a percentage of mutants in total no. of M₂ seedlings tested in mutated M₂ strains. Chlorophyll mutations were classified into 4 groups *i.e.*, albina (white), xantha (yellow), viridis (light green) and others (no definite pattern of chlorophyll destruction). Chlorophyll mutation studies were carried out in a field nursery from May to July, 1968. Calculation of viable mutation rate was made on the basis of the number of M₂ plants that survived till maturity.

Results

A. Studies in the M_1 generation

The data on seed fertility of M_1 plants as expressed in per cent of control, are presented in the first column of Table 1. In both the varieties seed fertility decreased following neutron and gamma irradiations. But the decrease was not proportional to the increase in dosage. From the data it is apparent that Jajai-77 is more radio-resistant than Dokri Basmati.

B. Studies in the M2 generation

(a) Chlorophyll mutations

Results of the chlorophyll mutation studies are summarised in columns 2-5 of Table 1. In the variety Dokri Basmati, mutation frequency per 100 M_1 spikes as well as per 1000 M_2 seedlings, was found to be highest in 1800 r neutron irradiation treatment, but at 1300 r the mutation frequency was lower than the 1000 r treatment. Following gamma-irradiation, both mutations per 100 M_1 spikes and mutants per 1000 M_2 seedlings increased upto 30000 r and then decreased at higher doses, though not proportional to the doses.

In Jajai-77, both the number of mutations per $100~M_1$ spikes and of mutants per $1000~M_2$ seedlings increased with the doses of neutron irradiation except in the highest dose (1800 r) where a remarkable reduction in mutation frequency can be observed. Following gamma irradiations, on the other hand, mutations per $100~M_1$ spikes decreased with the increase in doses while the frequency of mutants per $1000~M_2$ seedlings increased upto 30000~r and then decreased at higher doses.

In general, segregation ratio increased with the increase in doses with the exception that in Dokri Basmati the highest segregation ratio was obtained in neutron irradiation with the 1000 r and in Jajai-77, the segregation ratio decreased remarkably at the 1800 r following neutron irradiations.

As regards the spectrum of chlorophyll mutations induced by neutron or gamma-ray treatments, the highest relative frequency was that of albina followed by viridis type in both the varieties (Table 2).

(b) Viable mutations

Data pertaining to the frequency of viable mutations isolated in the M_2 generation are tabulated in the last 2 columns of Table 1. In Dokri Basmati the highest viable mutation rates of $24.0^{\circ}/_{00}$ and $26.0^{\circ}/_{00}$ were obtained after neutron and gamma-ray treatments respectively. In Jajai-77, however, the highest mutation rate was $55.0^{\circ}/_{00}$ for neutron and $74.0^{\circ}/_{00}$ for gamma-ray treatments.

The spectrum of viable mutations is given in Table 3. In Dokri Basmati, the viable mutant was restricted to the short-culm type only. In Jajai-77, on the other hand, the viable mutation types included a wide variety of variants consisting of physiological mutants pertaining to maturity (like early and late) as well as morphological ones relating to changes in plant height (Fig. 1) and grain size and shape (Fig. 2) totalling to seven types. Studies on the breeding behaviour of all the viable mutants will be followed in the next generation.

Discussion

The results on seed fertility (Table 1) indicate that the effects of both neutron and gamma-irradiations are not equal in the two varieties. In their response to irradiation treatments, Jajai-77 appeared to be more resistant than Dokri Basmati. It has now been established that plants respond differently to irradiation depending on their variety. Mikaelsen and Halvorsen (1953) have found that two barley varieties responded differently to irradiation. These authors have attempted to interpret this phenomenon in terms of the physiological traits of the two varieties (because one has a longer and the other a shorter growing season) and of their respective seed sizes.

Fig. 1.—Left: Control. Right: Mutations for plant height, isolated from the irradiated progenies of rice variety Jajai-77.

Of the two estimates of mutation rate used in the present study (Table 1), the one on the M_2 seedling basis is a better estimate, as has been discussed by Gaul (1961). For this reason the mutation rate on the M_2 seedling basis is discussed here. In general both chlorophyll and viable mutation rates increased at lower doses and then decreased at higher doses. This might be due to the fact that the unadaptable mutations become eliminated at higher doses.

Most of the chlorophyll mutations are recessive, and theoretically it is expected that they will segregate in 3:1 ratio (25%). But in the present investigation the segregation ratios showed a clear deficit of recessives (Table 1). These deviations from the 3:1 ratio might be due to chromosome aberrations associated with chlorophyll mutations resulting in gametic elimination.

 M_2 segregation ratios of chlorophyll mutations increased with increasing radiation doses, indicating a progressive increase in the average size of mutated sectors in M_1 spikes. This observation is in agreement with the results obtained in rice by Yamaguchi and Miah (1964) and Bekendam (1961).

Chlorophyll mutation spectrum following treatment with chemical mutagens varies from the spectrum obtained with radiation treatment in barley. Radiation

Fig. 2.—Left: Control. Right: Mutations for grain size and shape, isolated from the irradiated progenies of rice variety Jajai-77.

100 (f) 1 0 10 j											Acceptable of the second									***************************************
es Dokri	Viable mutations	Mutants/ 1000 M ₂ plants	(parasses)	14.6	24.0	6.1		26.9	26.1	12.2	7.8	45.6	50.2	55.0	16.8		28.6	57.1	74.0	more control of the c
rice, varieti ons.	Viable n	M ₂ plants studied	337	412	4 6	420		. 356	383	409	385	717	418	419	217		420	418	419	
s in M2 in na-irradiati	Cognogne	ion ratio	Approximate	4.51	×	13.6		3.6	∞; ∞;	10.7	1.2	277	7.9	12.8	7.1		3.7	4.0	10.4	Copraint Propriet Copyright Copyrigh
1 le mutation n and gami	Chlorophyll mutations	Mutants/ 100 M ₂ seedlings	pp.	21.9	8.7 2.7	34.5		8.1	26.8	17.5 24.9	h-md	8	25.3	50.5	12.0		14.0	18.3) T	STATEMENT OF THE PROPERTY OF T
TABLE 1 TAGENCY of chlorophyll and viable mutations in M ₂ in rice Basmati and Jajai-77 following neutron and gamma-irradiations.	Chlorophy	M ₂ seed- lings analysed	5468	3468	2791	24/4 2087		1847	1607	1260 1608	9848	4561	5494	5428	8609		6362	4165	3336	
of chloropl ajai-77 folk		Mutations, 100 M ₁ spikes	1	16.4	2.1	17.0 26.3		22.5	30.6	15.2 23.2	11.5	\$	21.7	33.0	19.4		35.5	20.0	15.1	
frequency mati and J	-	Seed fertility % of control	1	58.0	42.5	43.5 36.5		74.0	59.4	48.1 39.6		į	71.5 52.3	49.2	58.3		75.2	57.9 6.5	23.0 45.0	
TABLE 1 Fertility in M_1 , frequency of chlorophyll and viable mutations in M_2 in rice, varieties Dokri Basmati and Jajai-77 following neutron and gamma-irradiations.		Lreat- ment, dose inr	Control	Neutron 1 000	1,300	1,500 1,800	Basmati	Gamma-rays 20.000	30,000	40,000 50,000	Control	Neutron		1.500	1,800	Constant of the Constant	50,000	30,000	40,000 50,000	The second secon
		Variety	d 2500				Dokri Be		enist of	arva felicif		nar artari	arat D	- 1.9 M/M	1	Jajai-77		* # A * E	18.18.50	Signature graphical advisors and deliver

TABLE 2

Spectrum of chlorophyll mutations (values in % of total mutations) in M₂ in rice varieties Dokri Basmati and Jajai-77 following neutron and gamma-irradiations.

Variety	Treatment, doses in r	Albina	Xantha	Viridis	Others	Total no. of mutations		
	Control	ga	Produced	Economical .	State-de-core	\$100mmods*		
	Neutron					and Albert		
	1,000	57.1	harrowed \$	jamonogi	42.9	14		
	1,300	65.2	i i i i i i i i i i i i i i i i i i i	30.4	4.4	23		
	1,500	50.0	7.5	40.0	2.5	40		
	1,800	66.7	5.6	9.7	11.0	72		
Dokri Basmati								
	Gamma-rays							
	20,000	33.3	6.7	53.3	6.7	15		
	30,000	9.3	9.3	51.2	30.2	43		
	40,000	77.3	9.1	9.1	4.5	22		
	50,000	30.0	7.5	45.0	17.5	43		
TO SEE SEE SEE SEE SEE SEE SEE SEE SEE SE	Control	57.1	дін сторійці. Под применення применення применення применення продукти продукти применення применення продукти применення продукти применення применення применення применення применення продукти применення	No. in contract to the contract of the contrac	42.9	14		
	Neutron							
	1,000	48.4	1946 - 1951 - 1951 1946 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951	32.3	19.3	31		
	1,300	54.7	20.9	17.3	7.1	139		
	1,500	54.0	25.9	4.7	16.1	274		
	1,800	78.1		4.1	17.8	73		
Jajai-77			s se German					
July 11	Gamma-rays							
And San	20,000	10.1	15.7	55.1	19.1	89		
	33,000	47.4	7.9	43.4	1.3	76		
	40,000	41.2	38.2	16.2	4.4	68		
	50,000	73.7	- Shaha a mad∰	26.3	\$necessarily	38		

TABLE 3

Types and number of viable mutations isolated in M_2 in rice varieties Dokri Basmati and Jajai-77 following neutron and gamma-irradiations.

PROPOSE TO A PHYSICAL PROPOSE AND A STATE OF THE STATE OF		Тур	es of Mutations	Number Isolated			
Dokri Basn	nati	2 4	Sh	ort culm	57		
Jajai-77	in de profi Alba		1.	Dwarf	41		
4.5			2.	Short-culm	189		
			3.	Long grain	10		
		4.	Short grain	2			
			5.	Slender grain	4. 14. 14. 1		
			6.	Early	6		
44 () \$2 4 () 64 ()	4.8 4.40		7.	Late	15 100 (00)		

treatments generally produce higher proportion of albina mutations in comparison to viridis or xantha types (Ehrenberg et al. 1956, Swaminathan et al. 1962). This agrees well with our results presented in Table 2.

From the spectrum of viable mutations (Table 3), it is evident that among the viable mutations, short-culm mutant is the most common followed by dwarf type. In rice, mutations for earliness, short-culm, disease resistance, large grain and other useful characters have been induced through radiation treatments by many workers (Masima and Kawai 1958; Toriyama and Futsuhara 1962).

From the results reported here it can be concluded that both neutron and gamma-rays were highly effective in inducing mutations in rice. Some of the viable mutations isolated in the present study appear to be of economic use from the agricultural point of view.

Acknowledgment

It is a pleasant obligation to express our thanks to the International Atomic

Energy Agency, Vienna, for partly financing this work under the Research Contract No. 290/RB and to the Pakistan Atomic Energy Commission for permission to undertake it. Thanks are also due to all the colleagues who rendered their assistance from time to time during the progress of this work.

References

- Andersson, G. and G. Olsson. 1954. Svalofs Primex white mustard—a market variety selected in X-ray treated material. Acta. Agr. Scand. 4: 574-577.
- Bekendam, J. 1958. X-ray induced mutations in rice. In: "Effects of ionizing radiations on seeds", IAEA, Vienna, 609-628.
- Borg, G., K. Froier and A. Gustafsson. 1958. Pallas barley, a market variety produced by ionizing radiation: its significance for plant breeding and evolution. Proceedings of the Second United National International Conference on the Peaceful Uses of Atomic Energy 27: 341-349.
- Ehrenberg, L., A. Gustafsson and D. Von Wettstein. 1956. Studies on mutation process in plant regularities and international control. Proc. Conference on Chromosomes, Wageningen.
- Futsuhara, Y. 1968. Breeding of a new rice variety "Reimei" by gamma-ray irradiation. Abstract presented in the International Symposium on "Present State in Mutation Breeding" held in Japan from 15-16 August.
- Gaul, H. 1961. Critical analysis of the methods for determining the mutation frequency after seed treatment with mutagens. Genet. Agrar. 12: 297-318.
- Masima, I. and T. Kawai. 1958. Mutations of rice induced by radioisotope P³².

 Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy 27: 293-298.
- Miah, A. J. and I. M. Bhatti. 1968. Evolution of new rice varieties by induced mutations to increase yield and resistance to diseases and to improve seed quality. In: "Rice Breeding with Induced Mutations". Technical Reports Series No. 86, IAEA, Vienna.
- Mikaelsen, K. and H. Halvorsen. 1953. Experiments on the respiration of X-irradiated barley seeds. Physiologia Plantarum 6.
- Swaminathan, M. S., V. L. Chopra and S. Bhaskaran. 1962. Chromosome aberrations and the frequency and spectrum of mutations induced by ethyl methanesulfonate in barley and wheat. Ind. J. Genet. 22: 192-207.

- E.A. Siddiq, V. N. Savin and G. Varughese. 1967. Studies on the enhancement of mutation frequency and identifications of mutations of plant breeding and phylogenetic significance in some cereals. In: "Mutations in Plant Breeding II", IAEA, Vienna.
- Toriyama, K. and Y. Futsuhara. 1962. Studies on the artificial mutation breeding in rice. II. Breeding of the high yielding mutant line "Fukei No. 53" by P³² treatment. Jap. J. Breed. **12**: 148-152.
- Yamaguchi, H. and A. J. Miah. 1964. Mutational Mosaicism induced by X-, gamma-rays and ethyleneimine in rice. Radioisotopes, 13: 472-476.