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Abstract 

 

The effects of the different concentrations of Cd on accumulation of four cultivars of maize 

(Zea mays L.) viz., Nongda No. 108, Liyu No. 6, Shendan No. 10 and Tangkang No. 5, were 

investigated using inductively coupled plasma atomic emission spectrometry (ICP-AES). The Cd 

accumulation in the roots and shoots，and the interactions among Mn, Fe and Cu were also 

analyzed in the present study. The concentrations of cadmium chloride (CdCl2 
. 2.5 H2O) used were 

in the range of 10-4 M to 10-6 M. The results indicated that the Cd levels in roots and shoots of four 

cultivars increased significantly (P < 0.005) with increasing Cd concentration. Cadmium ions were 

concentrated mainly in the roots, and small amounts of Cd were transferred to the shoots. In Liyu 

No. 6, the distributive levels of Cd in the roots decreased with increasing the concentration of Cd. 

Liyu No. 6 had more ability to remove Cd from solutions and accumulate it when compared with 

the other cultivars. This kind of cultivar with many roots, a high biomass and high ability to 

accumulate Cd can play a very important role in the soil contaminated by Cd.  
 

Introduction 
 

The most common heavy metals in the environment are Cd, Cr, Cu, Hg, Pb and Zn. 

Recently, the industrial and agricultural development has released enormous amount of 

heavy metals and polluted the environment. Cadmium is particularly a dangerous 

pollutant due to its high toxicity and great solubility in water. At higher concentrations, it 

characteristically inhibits growth of different plant species such as maize (Lagriffoul et 

al., 1998), barley and wheat (Talanova et al., 2001), and garlic (Liu et al., 2003/2004). It 

also induces leaf chlorosis accompanied by a lowering of photosynthetic rate (Bazzaz et 

al., 1974; Hampp et al., 1976; Bazynski et al., 1980; Das et al., 1997), disturbs cell 

proliferation (Rosas et al., 1984), impedes respiration (Lee et al., 1976), reduces 

mitochondrial electron transport (Miller et al., 1973), induces high vacuolization in 

cytoplasm and nucleoli, and increases disintegration of organelles (Liu & Kottke, 2003).  

Considerable importance has been attached to the problems associated with Cd pollution. 

However, most conventional remediation approaches do not provide acceptable solutions 

to toxic metal pollution. Phytoremediation is an emerging technology that employs the 

use of higher plants for the cleanup of contaminated environments (Lasat, 2000).  

Maize (Zea mays L.) is one of the most important cereal crops and comprises some 

heavy metal tolerant genotypes (Clark, 1977; Liu et al., 2001). It is very important for 

scientists to find some maize cultivars with the capability of absorbing and accumulating 

extraordinarily high amounts of heavy metals from soil. Although the effects of Cd on 

maize  were  studied  by  several  authors  (Lagriffoul  et al., 1998;  Ju et al., 1997), a few  
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investigations concerning Cd accumulation and its effects on other heavy metals have 
been reported. In order to select a suitable maize cultivar with high uptake and 
accumulation of Cd2+ without undergoing severe damage to plant and to obtain more 
information about the mechanism of detoxification or tolerance of Cd by interacting with 
other metals, this study was conducted. The uptake and accumulation of Cd by roots and 
shoots of maize and effects of Cd on Fe, Mn and Cu were investigated in this study using 
inductively coupled plasma atomic emission spectrometry (ICP-AES).  

 

Materials and Method 
 

Seeds of four cultivars of maize (Zea mays L.) i.e. Nongda No. 108, Liyu No. 6, 
Shendan No. 10 and Tangkang No. 5, were provided by the Institute of Crops, Tianjin 
Academy of Agricultural Sciences, Tianjin, P. R. China for use in the present 
investigation. Healthy and equal-sized seeds were chosen from each variety, soaked in tap 
water for 24 h, and germinated in the dark (25 ºC). Following germination, 20 seedlings 
for each treated group were chosen, fixed in cystose, and were floated on the 1/2 
modified Hoagland’s nutrient solution (Stephan & Prochazka, 1989) in plastic containers 
in a greenhouse equipped with supplementary lighting (14-h photoperiod; 24-26 C). The 
container contained 2L Hoagland’s nutrient solution consisted of 5 mM Ca(NO3)2, 5 mM 
KNO3, 1 mM KH2PO4, 50M H3BO3, 1 mM MgSO4, 4.5 M MnCl2, 3.8 M ZnSO4, 0.3 
M CuSO4 and 0.1 mM (NH4)6Mo7O24 and 10 M FeEDTA at pH of 5.5. Three days 
after culture, the seedlings were treated with Cd. Four concentrations of Cd (0, 10-6 M, 
10-5 M and 10-4 M) were added to each container having 2 L aerated Hoagland’s nutrient 
solution. Cadmium was provided as cadmium chloride (CdCl2 · 2.5 H2O). The Cd 
solutions were prepared in deionized water. The test solutions were changed every 4 days.  
Ten plantlets from each treatment were harvested randomly based on uniformity of size 
and color after 20 days of incubation. Their roots were rinsed in deionized water to 
remove traces of nutrient and Cd ions on the surface, and detached from shoots. The 
samples were dried for 3 days at 45 ºC, followed by 3 days at 80 ºC in oven, measured for 
dry weight (DW), and ashed for 2 h at 200 ºC and then placed for 10 h at 650 ºC. The 
contents of Cd, Mn, Cu and Fe were determined with inductively coupled plasma atomic 
emission spectrometry (ICP-AES) (LEEMAN LABS INC., New Hampshire, USA) after 
dry-ashing, as described by Duan (2003). 

Analysis of variance (ANOVA) using sigma statistical software (Jandel Scientific 
Corporation) was performed. Test of equality of averages using t-test was applied equally. 
The statistical significance was set at the P < 0.005 confidence level. 

 

Results 

 

Cd uptake and accumulation: The Cd uptake and accumulation in roots and shoots of 

four maize cultivars varied depending on the different Cd concentrations used. As shown 

in Table 1, the Cd content in roots and shoots increased significantly (p< 0.005) with 

increasing Cd concentration. Cadmium ions were accumulated mainly in the roots, and 

small amounts of Cd were transferred to the shoots. In Liyu No.6, the distributive levels 

of Cd in  roots decreased with the increasing concentrations of Cd. For other 3 cultivars, 

the distributive levels of Cd in roots exposed to 10-4 M Cd were the lowest when 

compared to those in 10-5 and 10-6 M Cd solutions. Liyu No. 6 proved more capable to 

remove and accumulate Cd from solutions as compared with other 3 cultivars. 
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The effects of Cd on Mn, Fe and Cu uptake and accumulation 

 

The effects of Cd on Fe, Mn and Cu concentration in maize cultivars varied with the 

concentrations of Cd added. Mn uptake and accumulation significantly (P < 0.005) 

decreased with increasing Cd ions in nutrient solution in all maize cultivars (Table 2). 

The distributive levels of Mn in roots also decreased with increasing Cd concentrations 

except for Liyu No.6 treated with 10-6 M Cd. Mn content in the control was the highest 

except for the one of Liyu No. 6 exposed to 10-6 M Cd (Table 3). 

Seedlings of the 4 cultivars could uptake and accumulate Fe significantly (P < 0.005) 

after the treatments with different concentration of Cd (Table 2). The results showed that 

Fe levels of the treated groups, Nongda No. 108 and Tangkang No. 5, were higher than 

their controls (Table 2). However, the Fe content in Shendan No. 10 treated with Cd was 

lower than its control (Table 2). In all cultivars Fe ions were mainly accumulated in the 

roots and only small amounts of Fe were transferred to the shoots (Table 3). 

Cu content in roots of Nongda No. 108 increased with the increasing concentrations 

of Cd, while it decreased in the roots of Liyu No. 6 and Tangkang No. 5. The contents of 

Cu in roots of Nongda No. 108 and Shendan No. 10 treated with Cd were higher than 

those in controls, and Tangkang No. 5 and Liyu No. 6 lower (Table 2). In all the cultivars 

more than 80 % of Cu was accumulated in the roots (Table 3). The effects of Cd on Cu 

content in shoot of four cultivars were not significant. 

 

Discussion 

 

Efficiency of phytoextraction is relative to the ability of the plant to grow on polluted 

soils and produce a large biomass with high concentration of metal in the above-ground 

parts (Schwartz et al., 2001). There are many reports on the definition of 

hyperaccumulation (Baker & Brook, 1989; Baker et al., 2000; Köhl et al., 1997). Most 

recognized standard criteria base on metal amounts in above-ground tissues on a dry-

biomass basis of plant material sampled from the natural habitat (Pollard et al., 2002). 

According to the current accepted hyper-accumulation definition shoot concentration 

being 0.01% (on a w/w basis) for cadmium (Baker et al., 2000), the four cultivars appear 

to be Cd-hyper-accumulator, because the Cd contents in the shoots reach or exceed the 

standard criteria. However, only Liyu No. 6 can be considered as Cd-hyperaccumulator, 

because it grew very strong under concentrations of 10-5 M and 10-6 M Cd, and it was 

inhibited at concentration of 10-4 M Cd. This kind of cultivar with many roots, a high 

biomass and high ability to accumulate Cd can play a very important role in the soil 

contaminated by Cd. The results in the present investigation also demonstrated that Liyu 

No. 6 has obvious ability to uptake and accumulate Cd ions as compared to other three 

cultivars. Cadmium ions mainly accumulated in the roots with lower concentrations in 

shoots, which agree with the findings of Lagriffoul et al., (1998). These differences in 

root and shoot uptake might be explained by the fact that one of the normal functions of 

roots is to selectively acquire ions from the soil solution, whereas shoot tissue does not 

normally play this role (Salt et al., 1997). The accumulation of Cd decreased from 

epidermis to inner parts of the root cortex. As the endodermis constitutes a barrier to ion 

transport, root cortex cells usually contain higher element concentrations than cells in the 

central vascular cylinder (Hagemeyer & Breckle, 1996). 
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Hagemeyer & Breckle (1996) reported that the contents (mg kg-1 DW) of several 

essential trace metals are quite different in leaves of higher plants. For instance, Fe: 60-

1500, Mn: 20-900, Cu: 2-20. Data from the present investigation fall in these. 

Manganese (Mn) is an essential element required in trace amounts by all organisms. 

It plays a crucial role in the life-cycle of plants and other photosynthetic organisms, 

because it is required for light-induced evolution of oxygen from water (Andersson & 

Styring, 1991). A number of metabolic and protein-processing enzymes require Mn as a 

cofactor (Kaufman et al., 1994; Larson & Pecoraro, 1992). Larson & Pecoraro (1992) 

also reported it as a redox-active cofactor in Mn-superoxide dismutase and its important 

role in the detoxification of free radical forms of oxygen. Korshunova1 et al., (1999) 

demonstrated that the IRT1 protein which had previously been identified as an iron 

transporter when expressed in yeast could transport manganese as well, but the 

manganese uptake activity was inhibited by Cd2+, Fe2+ and Zn2+. The results from this 

investigation showed that the uptake and accumulation of Mn were reduced significantly 

(P < 0.005) in the cultivars treated with Cd, which agrees with the findings by Hernández 

et al., (1996, 1998).  

Iron is an essential element for plant growth because it is required in the activities of 

a range of enzymes, especially those involved in oxidation and reduction processes, for 

the synthesis of porphyrine ring (chlorophyll and heme biosynthesis), reduction of nitrite 

and sulphate, N2-fixation (as a part of the leghemoglobin), etc. (Rengel, 1999). It is 

known that the lack of iron in growth media leads to the accumulation of Cd, Cu, Mn and 

Zn in shoots and roots of pea (Cohen et al., 1998). Hagemeyer & Breckle (1996) reported 

that Fe plays a general role in cation absorption of roots, the enzyme catalyzes the 

reduction of Fe3+ to Fe 2+, which is more readily absorbed by roots, the plasma 

membrane-bound reductase system can also increase the uptake of other trace elements, 

like copper and manganese. Fe uptake in the Cd treated-plants was greater than that in 

control plants in Nongda No.108 and Tangkang No.5, which is in agreement with the 

findings by Hernández et al., (1998), who found that Fe in pea plants was higher than that 

recorded in the control plants after the treatment with 50 µM Cd. The relationship 

between Fe and Cd uptake is significant, as reported by Lombi’s et al., (2002): both short 

and long-term studies revealed that Cd uptake was significantly enhanced by Fe 

deficiency in the Ganges ecotype. 

Within a certain concentration range, copper was extensively translocated, as it was 

essential to the plant metalloenzymes diamine oxidase, ascorbate oxidase, cytochrome C 

oxidase, superoxide dismutase and plastocyanin oxidase (Van Assche & Clijsters, 1990) 

and photosynthesis (Hsu & Lee, 1988). Various interactions can occur when plants are 

exposed to unfavorable concentrations of more than one trace element. The sensitive 

plants showed chlorosis and necrosis of young leaves in response to Cu stress. The results 

from this investigation indicated that the plants concentrated the Cu2+ in the roots more 

than that of the above-ground parts of maize cultivars when treated with different 

concentrations of Cd, which disagrees with the finding of Liu et al. (2001) who reported 

a large amount of Cu accumulation in the shoots (10-4 M and 10-5 M Cd) of Zea mays.  
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