

SEED-BORNE MYCOFLORA OF SUNFLOWER (*HELIANTHUS ANNUUS L.*)

SHARFUN-NAHAR, MUHAMMAD MUSHTAQ* AND M.H. HASHMI**

*Central Plant Quarantine Laboratory (CPQL), Department of Plant Protection,
Ministry of Food, Agriculture and Livestock, Govt. of Pakistan, Jinnah Avenue,
Malir Halt Karachi, 75100 Pakistan. sharfunnahar@yahoo.com*

Abstract

Using standard blotter and deep-freezing techniques, seed-borne mycoflora of 35 samples of sunflower (*Helianthus annuus L.*) were studied. *Acremonium fusidioides*, *Arthrobotrys oligospora*, *Aspergillus ochraceus*, *Bipolaris bisepta*, *Cephaliophora tropica*, *Chaetomium spinosum*, *Cladobotryum varium*, *Cladosporium cladosporioides*, *Emericella nidulans*, *Gonatobotrys simplex*, *Humicola grisea*, *Memnoniella echinata*, *Mucor mucedo*, *Myrothecium verrucaria*, *Phialophora verrucosa* and *Syncephalastrum racemosum* were found to be new seed-borne fungal species on sunflower. *Absidia corymbifera*, *Alternaria alternata*, *Aspergillus flavus*, *A. niger*, *A. terreus*, *Chaetomium bostrychodes*, *C. globosum*, *Emericella nidulans*, *Fusarium pallidioroseum*, *F. solani*, *Macrophomina phaseolina*, *Penicillium* spp., *Rhizoctonia solani* and *Rhizopus stolonifer* were predominantly isolated by both techniques. During seed component plating, *Aspergillus awamori*, *A. ustus* and *Exerothilum halodes* were found to be new reported species. *Macrophomina phaseolina*, *Rhizoctonia solani* and *Trichoderma harzianum* were isolated from all component parts, whereas, *Fusarium solani* was isolated only from cotyledons and axis.

Introduction

Sunflower (*Helianthus annuus L.*) is an annual ornamental herb grown as an oil seed crop. It is planted in Pakistan over an area of 61,900 hectares producing 87,100 tons annually (Anon., 2002). Seeds, which are consumed as raw, roasted or salted, contain 32 to 45% edible oil, which is a rich source of polyunsaturated fatty acid. Several seed-borne fungi including species of *Alternaria*, *Aspergillus*, *Cladosporium*, *Curvularia*, *Drechslera*, *Fusarium* and *Penicillium* have been reported from sunflower seeds (Reddy, 1989; Kaur *et al.*, 1990; Shahnaz & Ghaffar, 1991). Moreover, seed-borne fungi decrease protein, carbohydrate, cholesterol contents, iodine values and increase acid quantity (Singh & Prasad, 1986; Sexana & Karan, 1991; Ahmad *et al.*, 1994). Low quality with reduced and discolored oil contents of sunflower seeds are reported to be caused by species of *Rhizopus* (Zad, 1979; Singh & Prasad, 1977), whereas seed infection and biodeterioration during storage and reduction in germination is reported to be caused by *Alternaria alternata* (Prasad & Singh, 1983). However, leaf blight, floral blight and fruit infection are also reported on sunflower (Kumar *et al.*, 1997; Svetov, 1975; Kumar & Dwivedi, 1981). Association of *Fusarium* species with seeds results in spread of several diseases in fields such as wilting (Vijayalakshmi & Rao, 1986) foot rot, seedling blight, stunting, wilting and hypertrophy in sunflower (Shahnaz & Ghaffar, 1990, 1991a). Straser (1985) reported *Fusarium oxysporum* as seed borne pathogen of sunflower even from the endosperm of chemically treated seeds. In the present study fungi associated with sunflower seeds were detected by standard blotter, deep-freezing and seed component plating techniques. The mycoflora was compared with that reported by Iftikhar *et al.*, (1993), Richardson (1979, 1981, 1983) and Abbas *et al.*, (2004).

*Corresponding: Department of Botany, Adamjee Govt. Science College, Business Recorder Road Karachi, Karachi-74800, Pakistan, E-mail: mmushtaq72@yahoo.com

**Department of Botany, Jinnah University for Women, Karachi, Pakistan.

Materials and Methods

Thirty-five seed samples of *Helianthus annuus* L. (sunflower) were collected from different localities of Karachi, Sindh. These samples were analyzed for the presence of seed-borne mycoflora by standard blotter (Anon., 1976) and deep-freezing techniques (Limonard, 1968). Four hundred seeds of each sample were plated on 3 layered moistened blotter discs in 9 cm glass Petri plates @ 15 seeds per plate and incubated for 7 days at $22\pm1^{\circ}\text{C}$ in Eyela La 1000 low temperature incubator. Incubated seeds were examined under compound light microscope at 4 - 40X magnifications. In deep-freezing technique, seeds were incubated at $22\pm1^{\circ}\text{C}$ for 24 hrs., followed by an incubation period at $-20\pm1^{\circ}\text{C}$ for 24 hrs., and then at $22\pm1^{\circ}\text{C}$ for 5 days.

Six selected samples of sunflower seeds (that showed highest occurrence of pathogenic fungi, during seed testing techniques) were further tested to detect location of seed-borne fungi in various parts of sunflower seeds using seed component plating technique (Mathur *et al.*, 1975). Twenty-five seeds of each sample were soaked for 10 hrs. in 10 ml of sterilized distilled water in test tubes and dissected aseptically into seed coat (testa and tegmen), cotyledons and embryo (Willis, 1960). Component parts were treated with 5% sodium hypochlorite and plated on PDA. In all methods fungi were isolated and purified on potato dextrose agar (PDA), corn meal agar (CMA) and speziellier nahrstoffarmer agar (SNA). The isolated fungi were identified after reference to Booth (1971), Ellis (1971), Barnett & Hunter (1972), Carmichael *et al.*, (1980), Domsch *et al.*, (1980), Nelson *et al.*, (1983), Joffe (1986), Pascoe (1990 a, b), Nirenberg (1990) and Singh *et al.*, (1991). The data was statistically analyzed using computer-based software SPSS version 10.

Results and Discussion

Using standard blotter technique, 45 fungal species belonging to 27 genera and by deep-freezing technique, 38 fungal species belonging to 23 genera were isolated and identified from 35 samples of *Helianthus annuus* (Table 1). Occurrence of fungi was recorded in terms of mean value with standard error and standard deviation. *Acremonium fusidioides*, *Arthrobotrys oligospora*, *Aspergillus ochraceus*, *Bipolaris bisepta*, *Cephaliophora tropica*, *Chaetomium spinosum*, *Cladobotryum varium*, *Cladosporium cladosporioides*, *Emericella nidulans*, *Gonatobotrys simplex*, *Humicola grisea*, *Memnoniella echinata*, *Mucor mucedo*, *Myrothecium verrucaria*, *Phialophora verrucosa* and *Syncephalastrum racemosum* were found to be new records of seed-borne fungal species on sunflower.

A comparision of two techniques showed that *Absidia corymbifera*, *Acremonium fusidioides*, *Alternaria alternata*, *Aspergillus candidus*, *A. flavus*, *A. fumigatus*, *A. niger*, *A. ochraceus*, *A. sulphureus*, *A. tamarii*, *A. tereus*, *A. versicolor*, *Bipolaris hawaiiensis*, *Cephalosporium* sp., *Chaetomium bostrychodes*, *C. globosum*, *Curvularia lunata*, *Emericella nidulans*, *Exerohilum rostratum*, *Fusarium chlamydosporum*, *F. pallidoroseum*, *F. solani*, *Macrophomina phaseolina*, *Penicillium* spp., *Phoma oleracea*, *Rhizoctonia solani*, *Rhizopus stolonifer*, and *Syncephalastrum racemosum* were commonly isolated by both techniques. On the other hand, *Arthrobotrys oligospora*, *Cephaliophora irregularis*, *C. tropica*, *Chaetomium crispatum*, *C. spinosum*, *Cladobotryum varium*, *Cladosporium cladosporioides*, *Curvularia pallescens*, *Cylindrocarpon* sp., *Emericella nidulans*, *Fusarium equiseti*, *F. proliferatum*,

Gonatobotrys simplex, *Memnoniella ehinata*, *Myrothecium verrucaria* and *Verticillium* sp. were isolated only by standard blotter technique, and *Bipolaris australiensis*, *B. bisepta*, *Fusarium oxysporum*, *F. sporotrichioides*, *Humicola grisea*, *Mucor mucedo*, *Phialophora verrucosa*, *Scopulariopsis* sp. *Stachybotrys atra* and *Ulocladium* sp., by only deep-freezing technique (Table 1).

Deep freezing technique appeared more suitable as compared to standard blotter technique for the detection of *Fusarium* spp. In the present study, 8 *Fusarium* spp., were isolated from sunflower seed samples, where *F. pallidoroseum* and *F. solani* were found predominantly and commonly isolated by both techniques as compared to the reports of Shahnaz & Ghaffar (1991a) where 5 *Fusarium* spp., were reported with predominant occurrence of *F. moniliforme* and *F. solani*. *Fusarium oxysporum* and *F. solani* which were isolated from seeds are aggressive pathogens of sunflower as compared to *F. moniliforme* and *F. pallidoroseum* (Bhutta *et al.*, 1997).

Apart from *Fusarium* spp. some other pathogenic fungi such as *Alternaria alternata*, *Curvularia lunata*, *Macrophomina phaseolina*, *Myrothecium roridum*, *Phoma oleracea*, *Rhizoctonia solani* and *Verticillium dahliae* were also isolated from sunflower seeds. *Myrothecium verrucaria* and *Phoma oleracea* were isolated for the first time from sunflower seeds. It may be mentioned that *Rhizoctonia solani* which is an important pathogen of sunflower (Ahmad *et al.*, 1994) was also isolated from various parts of seeds during component plating, indicating its systemic nature.

Nine species of *Aspergillus* were isolated from seed samples and all of them are reported to produce different groups of aflatoxins which are natural toxins and hazardous to animals and man (Shahnaz & Ghaffar, 1991a,b; Abdel-Mallek *et al.*, 1994). Among them, *Aspergillus flavus* and *A. niger* showed highest occurrence, that may lower the seed quality. Various threatening diseases including different types of carcinoma in humans may develop, if such seeds are consumed as food.

During seed component plating of selected samples, a total of 24 fungal species belonging to 17 genera were isolated and identified, mostly from testa and cotyledons as compared to tegmen and embryo. *Aspergillus awamori*, *A. ustus* and *Exerothilum halodes* were found to be new reported species. Intra- and extra-embryal seed-borne pathogenic fungi *viz.*, *Rhizoctonia solani*, *Macrophomina phaseolina* and *Fusarium solani* were predominantly isolated from all components of seeds, corroborating the findings of Shahnaz & Ghaffar (1990), but contrary to the report of Sadashivaiah (1986) who found *Macrophomina phaseolina* infection only in testa and tegmen. *Macrophomina phaseolina* and *Rhizoctonia solani* were more predominantly detected from seed coat and cotyledons (extra embryl), whereas infection of *Fusarium solani* was observed in embryo and cotyledons (intra embryl). These pathogens may colonize the growing roots and cause rotting of germinating seeds. All tested samples showed 100% colonization of *Aspergillus flavus*, *A. niger* and *Rhizopus stolonifer*. A number of other saprophytic fungi were identified as *Absidia corymbifera*, *Aspergillus awamori*, *A. fumigatus*, *A. ochraceus*, *A. terreus*, *A. ustus*, *A. versicolor*, *Bipolaris australiensis*, *B. hawaiiensis*, *Chaetomium* sp., *Curvularia lunata*, *Emericella nidulans*, *Exerothilum halodes*, *Paecilomyces variotii*, *Penicillium* sp., *Rhizopus stolonifer*, *Syncephalastrum racemosum* and *Trichoderma harzianum*. The study of mycoflora by component plating technique appeared helpful in detecting the deep seated seed infection. Pericarp and seed coat may be removed or cleaned properly if infection is superficial. However, in case of deep-seated fungal infection especially those producing mycotoxins, seed lots must be rejected and destroyed. This technique of ISTA is also helpful in selecting healthy seed lots for raising new plants.

Damages of seeds, such as seed death, seedling and plant abnormalities or decreased seed vigor caused by seed-borne pathogens are not always recognized by users. Once harmful fungi, pathogenic as well as toxigenic, have been listed, it is important to define for each of them the methods to be used for their detection and identification (Neergaard, 1979). When basic knowledge of the fungus and mycotoxin(s) is obtained, progress in the prevention and control could be rapid. There is undoubtedly worldwide contamination of the seeds with a variety of mycotoxin producing fungi and there is little doubt that mycotoxins are a probable source of naturally occurring carcinogens in humans (Diener *et al.*, 1981). Concerted effort could be made to avoid such contaminants using seed health technology.

References

Abbas, S.Q., S. Shahzad and A. Ghaffar. 2004. *The Fungi of Karachi*. Deptt. of Botany, University of Karachi, Pakistan (In Press).

Abdel-Mallek, A.Y., S.S.M. El-Maraghy and H.A.H. Hasan. 1994. Mycotoxin-producing potentialities of some isolates of *Aspergillus*, *Penicillium* and *Fusarium* from corn grains and sunflower seeds. *Assiut J. Agric. Sci.*, 25(2): 133-141.

Ahmad, K.G.M., S.I.A. EL-Said, R.N. Fawzy, A.E. Badr and M.A. Abd-Allah. 1994. Pathological study on sunflower plant, chemical and biological control and seed oil content. *Annals Agric. Sci. Moshtoh.*, 3(3): 1529-1543.

Ahmed, I., S. Iftikhar and A.R. Bhutta. 1993. *Seed-borne Microorganisms in Pakistan. Checklist* 1991. PARC, Islamabad, Pakistan, 32 pp.

Anonymous. 1976. *International Rules of Seed Testing*. Proc. Int. Seed Test. Assoc., 4:3-49.

Anonymous. 2002. *Pakistan Agricultural Data*. Govt. of Pakistan, Ministry of Food, Agricultural and Livestock (Economic Wing), Islamabad, 17 pp.

Barnett, H.L. and B.B. Hunter. 1972. *Illustrated Genera of Imperfect Fungi*. 3rd ed., Burgess Publ. Co. Minneapolis, Minnesota, 241 pp.

Bhutta, A.R., M.H.R. Bhatti and I. Ahmad. 1997. Study on pathogenicity of seed-borne fungi of sunflower in Pakistan. *Helia.*, 20(27): 57-66.

Booth, C. 1971. The genus *Fusarium*. Common Wealth. Mycol. Inst. Kew, Surrey, England, 237 pp.

Carmichael, J.W., W.B. Kendrick, I.L. Connors and L. Sigler. 1980. *Genera of Hyphomycetes*. The University of Alberta Press, 386 pp.

Diener, U.L., G. Morgan-Jones, R.E. Wagener and N.D. Davis. 1981. Toxigenicity of fungi from grain sorghum. *Mycopath.*, 75: 23-26.

Domsch, K.H., H.W. Gams and T.H. Anderson. 1980. *Compendium of Soil Fungi*. Vol. I. Academic Press, New York, 1089 pp.

Ellis, M.B. 1971. *Dematiaceous Hyphomycetes*. Common Wealth Mycol. Inst. Kew, Surrey, England, 608 pp.

Joffe, A.Z. 1986. *Fusarium species: Their Biology and Toxicology*. John Wiley and Sons, Inc. 588 pp.

Kaur, J., S.S. Chahal and K.S. Aulakh. 1990. Differential efficiency of different methods in detection and location of seed borne fungi in sunflower. *Pl. Dis. Res.*, 5(1): 53-58.

Kumar, K., J. Singh and M.D. Yadav. 1997. Fungi associated with linseed seeds, their effect and chemical control. *Annls Pl. Protec. Sc.*, 5(2): 179-183.

Kumar, V. and R.S. Dwivedi. 1981. Mycoflora associated with floral parts of sunflower. *Ind. Phytopathol.*, 34(30): 314-317.

Limonard, T. 1968. *Ecological Aspect of Seed Health Testing*. Proc. Intl. Seed Test. Assoc., 33: 71-73.

Mathur, S.K., S.B. Mathur and P. Neergaard. 1975. Detection of seed-borne fungi in Sorghum and location of *Fusarium moniliforme* in the seed. *Seed Sci. and Technol.*, 3: 683-690.

Neergaard, P. 1979. *Seed Pathology*. Vol. 1 The MacMillan Press Ltd. London, 839 pp.

Nelson, P.E., T.A. Toussoun and W.F.O. Marasas. 1983. *Fusarium species: An Illustrated Manual for Identification*. Pennsylvania State Univ. Press, Univ. Park, Pennsylvania, 203 pp.

Nirenberg, H. 1976. Untersuchungen über die morphologische und Differenzierung in der *Fusarium* Sektion Liseola. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft. *Berlin-Dahlem*, 169: 1-117.

Nirenberg, H.J. 1990. Recent advances in the taxonomy of *Fusarium*. *Stud. Mycol.*, 32: 91-101.

Pascoe, I.G. 1990a. *Fusarium* morphology I: identification and characterization of a third conidium type the mesoconidium. *Mycotaxon*, 37: 121-160.

Pascoe, I.G. 1990b. *Fusarium* morphology II: experiments on growing conditions and dispersal of mesoconidia. *Mycotaxon*, 37: 161-172.

Prasad, T. and B.K. Singh. 1983. Effect of relative humidity on oil properties of fungal infested sunflower seeds. *Biol. Bull. India*, 5: 85-88.

Reddy, M. J. 1993. Varietal differences in seed mycoflora of sunflower. *Seeds & Farms*, 15: 17-20.

Richardson, M.J. 1979. *An Annotated List of Seed-borne Diseases*. Int'l. Seed Test. Assoc., Zurich, Switzerland, 320 pp.

Richardson, M.J. 1981. *An Annotated List of Seed-borne Diseases*. Supplement 1. Int'l. Seed Test. Assoc., Zurich, Switzerland, 78 pp.

Richardson, M.J. 1983. *An Annotated List of Seed-borne Diseases*. Supplement 2. Int'l. Seed Test. Assoc., Zurich, Switzerland, 108 pp.

Sadashivaiah, A.S., K.G. Ranganathaiah and D.N. Gowda. 1986. Seed health testing of *Helianthus annuus* with special reference to *Macrophomina phasianina*. *Ind. Phytopathol.*, 39: 445-447.

Sexena, N. and D. Karan. 1991. Effect of seed-borne fungi on protein and carbohydrate contents of sesame and sunflower seeds. *Ind. Phytopath.*, 44(1): 134-136.

Shahnaz, D. and A. Ghaffar. 1990. Location of fungi in sunflower seed. *Pak. J. Bot.*, 22(2): 117-120.

Shahnaz, D. and A. Ghaffar. 1991a. Detection of seed-borne mycoflora of sunflower. *Pak. J. Bot.*, 23(2): 173-178.

Shahnaz, D. and A. Ghaffar. 1991b. Detection of Aflatoxin in Sunflower seed. *Pak. J. Bot.*, 23 (1): 123-126.

Singh, B.K. and T. Prasad. 1977. Effect of seedborne fungi on the Physico-chemical properties of sunflower oil. *Phytopath. Z.*, 90: 337-341.

Singh, B.K. and T. Prasad. 1986. Changes in cholesterol content in sunflower seeds due to fungal infestation. *Ind. Phytopath.*, 38(4): 666-667.

Singh, K., J.C. Frisvad, U. Thrane and S.B. Mathur. 1991. *An illustrated manual on identification of some seed-borne Aspergilli, Fusaria, Penicillia and their mycotoxins*. Danish Govt. Inst. Seed Pathol., Hellerup, Denmark, 133 pp.

Straser, N. 1985. Mycopopulation of sunflower seed from a 1984 large plot trial treated with fungicides. *Savremena Poljoprivreda*, 33(3/4): 179-184.

Svetov, V.G. 1975. *Alternaria* blight of sunflower along the Kuban River. *Miklogiya Fitopatologija*, 9: 418-421.

Vijayalakshmi, M. and A.S. Rao. 1986. Mycoflora invading sunflower seeds during development. *Acta Botanica Indica*, 14(1): 1-7.

Willis, J.C. 1960. *A dictionary of the flowering plants and ferns*. (8th ed.). Cambridge University Press, London. 1245 pp.

Zad, J. 1979. A note on the mycoflora of sunflower seeds in Iran. *Ir. J. Pl. Pathol.*, 15: 953-956.

(Received for publication February 15 2005)