

EVALUATION OF *CICER* SPECIES FOR RESISTANCE TO *ASCOCHYTA* BLIGHT

TARIQ MAHMUD SHAH, MAHMUD UL HASSAN, MUHAMMAD AHSANUL HAQ, BABAR MANZOOR ATTA, SYED SARWAR ALAM AND HINA ALI

*Nuclear Institute for Agriculture and Biology,
Jhang Road, Faisalabad, Pakistan
E.mail: niabmail@niab.org.pk*

Abstract

A collection of 64 wild *Cicer* accessions from seven different species (*C. bijugum* K.H. Rech., *C. cuneatum* A. Rich., *C. echinospermum* Davis, *C. judaicum* Boiss., *C. pinnatifidum* Jaub. & Spach, *C. reticulatum* Ladiz., and *C. yamashitae* Kitamura) were screened for resistance to *Ascochyta* blight (*Ascochyta rabiei* (Pass.) Lab) by creating artificial epiphytic conditions in the field. Resistance was identified in accessions from six wild *Cicer* species. Variation for resistance within accessions of *C. bijugum*, *C. echinospermum*, *C. judaicum*, *C. pinnatifidum*, *C. reticulatum* and *C. yamashitae* was recorded. All the accessions of *C. cuneatum* were highly susceptible to *Ascochyta* blight. Resistant accessions of *C. echinospermum* and *C. reticulatum* belong to primary gene pool of *Cicer* species and can be crossed easily with *Cicer arietinum* and fertile hybrids can be obtained.

Introduction

Chickpea (*Cicer arietinum* L.) is the most important pulse crop in Pakistan. It is a major food legume in many countries of the world. Chickpea seed is an important source of plant based dietary protein and around 95% of its total annual production (8.8×10^6 tons) occurs in developing countries (Anon., 2002). The average yield of $550-650$ kg ha^{-1} is rather low in Pakistan. Unfortunately the chickpea crop is susceptible to a range of biotic and abiotic stresses, which can be devastating to crop yield by about one third every year (Haware, 1993). There are 47 diseases and 54 insect pests reported from chickpea, of which 6 diseases and 2 insect pests resulted in a severe losses of chickpea yield (van Rheezen 1991; Singh *et al.*, 1994). However, major biotic factor limiting chickpea yield worldwide are the fungal diseases, *Ascochyta* blight (*Ascochyta rabiei* (Pass.) Lab) and *Fusarium* wilt (*Fusarium oxysporum* Schlecht. Emend. Synd. & Hans. f. sp. *Cicer* [Padwick] Synd.& Hans). *Botrytis* grey mould (*Botrytis cinerea* Pers. Ex Fr.) and *Phytophthora* root rot (*Phytophthora megasperma* Drecs) are constraints to chick pea production in India, Pakistan and some parts of Australia (Singh *et al.*, 1994, 1998; Siddique *et al.*, 2000; Knights & Siddique, 2002). To minimize the yield losses, introduction of resistant species is necessary and screening is the best tool in this regard. Screening program of cultivated chickpea germplasm has not been able to identify stable and high level resistance to a number of diseases (Singh & Reddy 1993; Singh *et al.*, 1994). Chemical control of these diseases might be effective, however, use of resistant cultivars would be the most effective one. Limited germplasm of chickpea resistant to *Ascochyta* blight is found in existing chickpea species so it is, necessary to search out new sources of resistance to this disease (Reddy & Singh, 1984).

Wild relatives of crops often possess genes that confer resistance to biotic stresses (Malhotra *et al.*, 2000). Singh *et al.*, (1994) reported genes in *Cicer* species for resistance to *Ascochyta* blight, fusarium wilt, leaf miner (*Liriomyza cicerina* Rondani), seed beetle (*Callosobruchus chinensis* L.), cyst nematode (*Heterodera ciceri* Volvas, Grco et Di Vito), and cold. Sources of resistance to *Ascochyta* blight have been identified in a limited number of annual wild *Cicer* species, as reported for *C. pinnatifidum* Jaub. & Sp. and *C. judaicum* Boiss. (Singh *et al.*, 1981), *C. bijugum* K.H. Rech. (Haware *et al.* 1992), *C. echinospermum* P. H. Davis and *C. reticulatum* Ladiz. (Stamigna *et al.*, 1998) and *C. judaicum* and *C. pinnatifidum* (Singh & Reddy, 1993). The aim of this study was to evaluate seven annual wild *Cicer* species against local isolates of *A. rabiei* in order to identify potential sources of resistance for chickpea breeding programs.

Materials and Methods

Chickpea germplasm: The material consisted of 64 accessions of seven annual wild *Cicer* species which were obtained from ICRISAT Hyderabad India, ICARDA Syria and WRPIS Pullman USA. Different species screened for resistance to *Ascochyta* blight were *C. bijugum* K.H. Rech., *C. cuneatum* A. Rich., *C. echinospermum* Davis, *C. judaicum* Boiss., *C. pinnatifidum* Jaub. & Spach, *C. reticulatum* Ladiz., and *C. yamashitae* Kitamura. The list of accessions of all the species along with their country of origin is presented in Table 1.

Isolation: Infected pods, stems or leaflets were collected and sterilized in 5% sodium hypochlorite for 1 minute and dried on sterile filter paper. The material was plated on 2% water agar and incubated at 20°C with a 12 h light/dark cycle for 5-7 days for fungal growth. Fungal colonies growing from the plant material were sub cultured onto chickpea seed-extract agar (CSEA) consisting of an extract from 60 g chickpea seed and boiling the seed in deionized water for 30 minutes. Sucrose (20g) and Agar (20g) were added to the extract and volume was made upto 1 liter with distilled water. Incubation on this medium for 1-2 weeks resulted in the development of colonies of the fungus with pycnidia.

Spore suspension: Chickpea seed were softened by boiling for 15-30 minutes in distilled water, drained and autoclaved for 30 minutes at 121°C and 15 psi in a conical flask. The sterilized seed were inoculated by *Ascochyta rabiei* from CSEA slants and incubated at 20-22°C for 10 days. Spore suspension was prepared from fungal cultures by adding sterile distilled water and gently mixing it with a glass rod. The suspension was filtered through four layers of muslin cloth. The concentration of the spore suspension was determined with a haemocytometer and adjusted to 4×10^4 spores /ml with sterile distilled water. Tween 20 (one drop/100mL) was added to the spore suspension as a surfactant agent for sticking the spore to leaves of chickpea plants.

Cultivation and inoculation: All the accessions were sown in the last week of October. The screening was carried out in *Ascochyta* Blight Screening Nursery at NIAB, Faisalabad during 2002-03 where sprinkle system for creating artificial humidity (about 70-80%) by producing mist was developed. To initiate the germination, the seeds of wild *Cicer* species were scarified by incising the seed coat carefully avoiding the area of the hilum and embryo, to allow water to penetrate into the seed. Seed of each accession (20 plants) was sown (about 2cm deep) in a single 2 meter row plot with inter and intra-row

spacing of 30 and 15cm, respectively. The experiment was conducted in a randomized block design with three replications. Variety K850 (highly susceptible to *Ascochyta* blight and resistant to *Fusarium* wilt) was used as check after every two lines of wild species to monitor possible variation in the level of infection. The plots were fertilized with 125 Kg ha⁻¹ DAP at the sowing time. Hand weeding was done three times during cropping season. Wild *Cicer* accessions germinated more slowly than cultivated chickpea, with *C. bijugum* being the slowest growing accession. During the first week of February, when the plants were about eight to ten-leaf stage, they were inoculated by spraying approximately 5 ml of the spore suspension per plant with a hand plastic/steel sprayer until run-off.

Disease rating: The disease reactions of individual plants were scored 14 days after inoculation on 1-9-scoring scale, modified from Reddy & Singh (1984), where:

- 1= No lesions of disease is visible on the plant;
- 2= Highly resistant, infection on 1–10% of leaves;
- 3= Resistant, infection on 11–20% of leaves;
- 4= Moderately resistant, infection on 21–30% of leaves and stem (s);
- 5= Tolerant, infection on 31–40% of leaves and stems and/or stem girdling;
- 6= Moderately susceptible, infection on 41–50% of leaves and stems and/or stem girdling and breakage;
- 7= Susceptible, infection on 51–75% of leaves and stems including stem girdling and breakage;
- 8= Highly susceptible, infection on 76–98% of leaves and stems, including stem girdling and breakage; and
- 9= Lesions profuse on all parts of plant and stem girdling cause drying of young shoots and branches, resulting in the death of the plant.

Resistance for an individual plant was defined as a disease score less than, or equal to, four. Accessions possessing mean disease scores of less than five were described as resistant. Mean disease scores were subjected to analysis of variance (ANOVA) in order to detect differences between different accessions. Difference between mean disease scores of cv. K-850 the susceptible control and mean disease scores of individual accessions were calculated using *t*-test.

Results and Discussions

Forty-six (72 %) out of a total of 64 *Cicer* accessions were categorized as resistant and eighteen (28 %) as susceptible to *ascocyta* blight (Table 2). This figure shows that a lot of resistant genes to biotic stress are available in wild species of crop (Malhotra *et al.*, 2000), which can be utilized in the breeding program for increasing stress tolerance in chickpea crops.

The analysis of variance table (ANOVA) revealed that the variation among accessions of seven wild *Cicer* species were highly significant. The mean disease scores and their standard errors (SE) for all *Cicer* accessions tested in the trial are given in the Table 3. Accessions possess significantly lower (at $p \geq 0.05$ and $p \geq 0.01$) mean disease scores than that of cv. K850 (Susceptible check). Control plants were given same treatment like other wild *Cicer* species but they did not survive.

Table 2. Reaction of accessions of *Cicer* species to *Ascochyta blight*.

Species	Total	Resistant	Susceptible
<i>Cicer bijugum</i>	14	14	-
<i>C. cuneatum</i>	2	-	2
<i>C. echinospermum</i>	1	1	-
<i>C. judaicum</i>	27	12	15
<i>C. pinnatifidum</i>	16	15	1
<i>C. reticulatum</i>	1	1	-
<i>C. yamashitae</i>	3	3	-
Total	64	46 (72%)	18 (28%)

Only *Cicer bijugum* accessions maintained uniform resistance to the disease. Some accessions of *Cicer bijugum*, *C. pinnatifidum* and *C. yamashitae* showed high level of resistance whereas it was only moderate in the accessions of other four wild *Cicer* species. Some variations for resistance between plants within accessions of *Cicer judaicum* and *C. pinnatifidum* were also recorded which include both types of accessions i.e. resistant and susceptible. All *C. cuneatum* accessions evaluated were as susceptible as that of check variety (cv. K-850).

Most of the accessions included in this study had not been tested previously. Only six accessions of *C. bijugum* (ILWC 32, ILWC 42, ILWC68, PI 458550, PI458551 and PI 458552) and one accessions of *C. pinnatifidum* (PI 518862) were studied by Collard *et al.*, (2001) and classified as resistant these were also found resistant in our study (Table 3 & 4). Only few reports are available in the literature for the screening of *C. cuneatum*. Four accessions were classified as highly susceptible by Singh *et al.*, (1998) and Stamigna *et al.*, (1998) and were also classified as highly susceptible in our study. Similarly, in the case of *C. judaicum*, only three accessions were screened by Singh *et al.*, (1998) and classified one accession (ILWC 46) as highly susceptible and other two accessions (ILWC255 and ILWC256) as highly resistant and our findings confirmed the above finding. In contrast to present study i.e. the three accessions of *C. yamashitae* (ILWC3, ILWC214 and ILWC215) and one accession of *C. echinospermum* (PI 489776) classified as resistant in this study were classified as highly susceptible by Singh *et al.*, (1998) and by Collard *et al.*, (2001) respectively. They also screened three accessions of *C. yamashitae* but did not mention the accession number in their report. The reason may be due to the disease reactions that may be caused by the differences in the races of *Ascochyta rabiei* of the region.

The worldwide germplasm collection of cultivated chickpea has very low frequency of resistance against *Ascochyta rabiei* (Reddy & Singh, 1984) and chickpea are lacking in genetic diversity that may include traits needed for effective improvement of the crop (Robertson *et al.*, 1997, Collard *et al.*, 2003). However, this may be overcome by looking to the wild relatives to widen the genetic bases of breeding program through interspecific hybridization (Singh & Ocampo, 1997). The accessions of *C. echinospermum* and *C. reticulatum* belong to primary gene pool of *Cicer* species and are easily crossable and can generate fertile hybrids with *Cicer arietinum* and also readily accessible source of resistance (Singh & Ocampo, 1993). The accessions evaluated in this study demonstrated that there is resistance within wild *Cicer* species to the *Ascochyta rabiei* pathotype prevalent in this region, and this may be used to develop resistant cultivars. *C. bijugum*, *C. judaicum* and *C. pinnatifidum* belong to secondary gene pool of wild chickpea and limited success has been reported in crossing the species in group I with group II (Ahmad *et al.*, 1988, Singh *et al.*, 1994, Anon., 1998). However, tissue culture methods such as

Table 4. Comparison with previous studies of resistant classification of *Cicer* accessions.

Name	Species	Classification ^A		References
		Previous study	Present study	
ILWC 32	<i>C. bijugum</i>	R	R	Collard et. al., (2001)
ILWC 42		R	R	Collard et. al., (2001)
ILWC68		R	R	Collard et. al., (2001)
PI 458550		R	R	Collard et. al., (2001)
PI 458551		R	R	Collard et. al., (2001)
PI 458552		R	R	Collard et. al., (2001)
PI 458554	<i>C. cuneatum</i>	S	S	Stamigna et al., (1998)
ICP 17162		S	S	Stamigna et al., (1998)
PI 489776	<i>C. echinospermum</i>	S	R ^B	Collard et. al., (2001)
ILWC 46	<i>C. judaicum</i>	S	R ^B	Singh et. al., (1998)
ILWC 255		R	R	Singh et. al., (1998)
ILWC 256		R	R	Singh et. al., (1998)
PI518862	<i>C. pinnatifidum</i>	R	R	Collard et. al., (2001)
ILWC 3	<i>C. yamashitae</i>	S	R ^B	Singh et. al., (1998)
ILWC214		S	R ^B	Singh et. al., (1998)
ILWC215		S	R ^B	Singh et. al., (1998)

^AR, Resistant or S, susceptible.^B Denotes classification, which differ from previous studies.

embryo rescue techniques (Dey et al., 1993) and gene transformation technology (Kahl et al., 1994) may provide the means to negate crossability barriers to produce wide and interspecific hybridization in the future (Badami et al., 1997).

Within group II, *C. bijugum*, *C. judaicum* and especially *C. pinnatifidum* possesses very high levels of genetic diversity and were reported as sources of resistance or tolerance to biotic and abiotic stresses (Singh et al., 1998). Therefore, they offer great potential sources for future chickpea breeding. However, before germplasm from group II and III can be utilized in chickpea breeding, the barriers preventing interspecific hybridization needs to be overcome.

Acknowledgement

Statistical assistance provided by Mr. G.R. Tahir DCS and Mr. M. Akram PSA-II is greatly acknowledged.

References

Ahmad F., A.E., Slinkard and G.J. Scoles. 1988. Investigation into the barrier (s) to interspecific hybridization between *Cicer arietinum* L. and eight other annual *Cicer* species. *Plant Breeding*, 100: 193-198.

Anonymous. 1998. International Center for Agricultural Research in the Dry land Areas: Interspecific hybridization in Chickpea. *Annual Report*, 31. <http://www.icarda.cgiar.org/publications/Annual%20report/98/An-Page31.HTML>.

Anonymous. 2002. 'FAOSTAT DATABASE' (FAO Rome) <http://apps.fao.org/htm500/nphapp.pl/production.Crops.Primary&Domain=SUA&servlet=1>.

Badami, P.S., N. Nallikarjuna and J.P. Moss. 1997. Interspecific hybridization between *Cicer arietinum* and *Cicer pinnatifidum*. *Plant Breeding*, 116: 393-395.

Collard, B.C.Y., E.C.K. Pang and P.W. J. Taylor. 2003. Selection of wild *Cicer* accessions for the generation of mapping population segregating for resistance to *ascocochya* blight. *Euphytica*, 130: 1-9.

Collard, B.C.Y., P.K. Ades, E.C.K. Pang, J.B. Brouwer and P.W.J. Taylor. 2001. Prospecting for sources of resistance to *ascocochya* blight in wild *Cicer* species *Australasian Plant Pathology*, 30: 271-276.

Dey S.K., G. Singh, S.S. Gosal, and M.M. Verma. 1993. Tissue culture response and resistance to *ascocochya* blight in some interspecific crosses in chickpea. *Annals of Biology*, 9: 235-238.

Haware, M.P. 1993. Editorial; *International Chickpea Newsletter*, 29: 1.

Haware, M.P., J. Narayana Rao and R.P.S. Pundir. 1992. Evaluation of wild *Cicer* species for resistance to four chickpea diseases. *International Chickpea Newsletter*, 27: 16-18.

Kahl G., D. Kaemmer, K. Weising, S. Kost, F. Weigand and M.C. Saxena. 1994. The potential of gene technology and genome analysis for cool season food legume crops: theory and practice. *Euphytica*, 73: 177-189.

Knights E.J and K.H.M Siddique. 2002. Chickpea status and production constraints in Australia. In: 'Integrated Management of Botrytis Grey Mould of Chickpea in Bangladesh and Australia workshop' Dhaka, Bangladesh, 1-2 June 2002, pp 33-41.

Malhotra R.S., R.P.S. Pundir and W.J. Kaiser. 2000. *Cicer* species -conserved resources, priorities for collection and future prospects. In 'Linking research and marketing opportunities for pulses in the 21st century'. (Ed.): R Knight. pp. 603-622. Kluwer Academic Publishers.

Reddy M.V. and K.B. Singh. 1984. Evaluation of a world collection of chickpea germplasm accessions for resistance to *ascocochya* blight. *Plant Disease*, 68: 900-901.

Robertson L. D., B. Ocampo, and K.B. Singh. 1997. Morphological variation in wild annual *Cicer* species in comparison to the cultigen. *Euphytica*, 95; 309-319.

Siddique K.H.M, R.B Brindsmead, R. Knight E.J, Knights, J.G Paull and I.A Rose. 2000. Adaptation of chickpea (*Cicer arietinum*) and faba bean (*Vicia faba* L.) to Australia. In: 'Linking Research and Marketing Opportunities for Pulses in the 21st Century'. (Ed.): R knight. pp. 289-303. Kluwer Academic Publishers: Dordrecht, The Netherlands.

Singh K.B, G.C. Hawtin, Y.L. Nene and M.V. Reddy. 1981. Resistance in chickpeas to *Ascochyta rabiei*. *Plant Disease*, 65:586-587.

Singh K.B, R.S Malhotra, M.H Halila, E.J Knights and M.M Verma. 1994. Current status and future strategy in breeding chickpea for resistance to biotic and abiotic stresses. *Euphytica*, 73: 137-149.

Singh K.B. and M.V. Reddy. 1993. Sources of resistance to *ascocochya* blight in wild *Cicer* species. *Netherlands Journal of Plant Pathology*, 99: 163-167.

Singh K.B. and B. Ocampo. 1993. Interspecific hybridization in annual *Cicer* species. *Journal of Genetics and Breeding*, 47: 199-204.

Singh, K.B. and S. Weigand. 1994. Identification of resistant sources in *Cicer* species to *Liriomyza cicernia*. *Gen. Res. Crop Evol.*, 41: 75-79.

Singh, K.B., B. Ocampo. and L.D. Robertson. 1998. Diversity for abiotic and biotic stress resistance in the wild annual *Cicer* species. *Gen. Resour. and Crop Evol.*, 45: 9-17.

Stamigna, C., R. Mancinelli, P. Crino, A. Infantino, A. Porta-Puglia and F. Saccardo. 1998. Multiple resistance to diseases in wild relatives of chickpea (*Cicer arietinum* L.). In 'Proceedings of the 3rd European conference on grain legumes'. 14-19 November 1998, Valladolid, Spain.

van Rheenen H.A. 1991. Chickpea breeding- progress and prospects. *Plant breeding Abstracts*, 61:997-1005.

(Received for publication 12 April 2004)