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Abstract

Genotype performance in multienvironment trials (METS) are usually analyzed by parametric
analysis of variance (ANOVA) and stability models. The results of these models can give
misleading inferences when some sensitive assumptions are not satisfied. In this paper, assumptions
of combined ANOVA are scrutinized in detail to justify the validity of use of 5 nonparametric
stability methods (Si®, Si®, Si®, S® and YSi®, YSi@) applied to 20 genotypes grown in 40
hetroscedastic and nonnormal environments in Pakistan for the year 2004-05. There is a severe
heterogeneity problem in the data because the ratio of the largest estimated mean squares error
(MSE) for individual environments randomized complete block design (RCBD) to the smallest
MSE is approximately (1.00/0.02=50). Out of 40 environments individual coefficients of
determination (R?), 27 are less than 0.70. This leads to violation of linearity assumption in the
model. Standardized residual plots vs. individual environments plots and normal probability plot
are indicators of the violation of homogeneity, normality assumptions and absence of outliers. No
linear relationship was established between the natural logs of the error variance and the natural log
of environments’ mean, which again violates coefficient of variation (CV) assumption. Remedial
transformations as suggested in literature were not successful to stabilize environments MSEs and
could not normalize the data, so as a last resort in this regard nonparametric stability methods seem
to justify the analysis of genotype x environment interactions (GEI). The low values of modified
rank-sum statistics YSi") and YSi® were positively and significantly associated with mean yield but
the other nonparametric methods were not correlated with mean yield. The results of principal
component analysis and correlation analysis of nonparametric stability methods indicate that the
use of modified rank-sum method would be justifiable for simultaneous selection for high yield and
stability. Using modified rank-sum method, the genotypes G7, G3, G15, G5 and G12 were found to
be the most stable with yield, whereas G14 and G19 were the least stable genotypes.

Introduction

One of the most challenging issues in plant breeding process to accurately analyze
genotype x environment interaction (GEI) is based on data from multienvironment trials.
GEl is a universal issue that relating to all living organisms, from humans to plants and
bacteria (Kang, 1998). Usually GEI is the nonadditive component of two or more
experiments with the same genotypes combined over environments. The process for
selecting high yield and stable genotypes usually involves three stages of
experimentation: At stage-1, genotypes are tested at a single location; at stage-2, the
selected genotypes are tested in a multilocation trials (genotype x location); and finally at
stage-3, the most promising genotypes with new set of genotypes are tested for several
years under a range of locations (genotype x location x year) (Linn & Binns, 1994).
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Genotype performance trials are usually analyzed by various ANOVA models which
are based on assumptions that may often not be satisfied. Departure from one or more
assumptions can affect both the type-1 error and the sensitivity of F or t tests. Excellent
and detailed discussions about assumptions, the consequences their invalidates and
remedial steps involved for ANOVA are described by some classic papers (Eisenhart,
1947; Cochran, 1947).

The primary goal of most plant breeders is to identify stable genotypes, whose yield
performance remains high across a range of environmental conditions. Stability analysis
is only relevant if GEI is present (Hussain et al., 2000). Basically there are two broad
categories of GEI: crossover and noncrossover (usual) interaction. A crossover
interaction (discordance) exists if the ranking of the genotypes is not identical in different
environments. If the ranking is identical, crossover interaction is nonexistent
(concordance) (de Kroon & Laan 1981; Truberg & Huehn, 2000). Measures of GEI and
stability are common tools applied by biometricians who have developed numerous
methods to analyze it (Lin et al., 1986; Becker & Leon 1988; Flores et al., 1998;
Mohammadi & Amri, 2008).

Huehn (1996) indicated that there are two major approaches for studying GEI to
determine the adaptation characterization of genotypes. The first and most common
approach is parametric, which relies heavily on distributional assumptions about
genotypic, environmental, and G x E effects. The second approach is the nonparametric
approach (rank-based methods), based on weak assumptions. Numerous univariate and
multivariate (parametric and nonparametric) methods have been developed by
statisticians and applied by plant breeders to analyze GEI at the end of plant breeding
programs.

The univariate parametric stability statistics are commonly used by plant breeders to
analyze GELI. The essential ideas of stability analysis are described in Lin et al., (1986);
Hussain et al., (2000) and Backer & Leon (1988) are concerned with describing as to
how a genotype responds to differing environmental conditions. The parametric stability
methods have good properties under statistical assumptions of a normal distribution of
independent errors with homogenous variance and no outliers. However, many of these
measures may not perform well if any or all of these assumptions are violated,
specifically the assumptions of homogeneity of mean square errors (MSES), nonmixture
of normal distributions and data having no outliers (Huehn, 1990). Due to GEI the
relative differences among genotypes render performance over environments
inconsistent. MSEs are rarely homogeneous in multienvironment or regional yield trials.
MSEs are influenced by specific circumstances and tend to be lower in low yielding
environments (Bowman & Watson, 1997).

Thus it is advisable to search for alternative approaches such as nonparametric
methods that are more robust and are valid in the absence of variance homogeneity, no
outliers and normality assumptions. The importance of nonparametric methods in modern
statistics has been growing dramatically since their inception in the mid-1930s. Requiring
few or no assumptions about the populations from which the data is obtained,
nonparametric methods emerged as a very useful methodology among statisticians and
researchers performing data analyses. Today, these techniques are being applied to an
ever-growing variety of experimental designs in the social, behavioral, biological and
physical sciences (Hollander & Wolfe, 1999). These methods are based on the ranks of
original observations or residuals of combined ANOVA model.
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Huehn (1979) and Nassar & Huehn (1987) proposed four nonparametric indices of
stability which are: (1) S{® is the mean of absolute rank differences of a genotype over
environments, (2) Si@ is the variance among the ranks over the environments, (3) Si® and
Si® are the sum of the absolute deviations and sum of squares of ranks for each genotype
relative to the mean of ranks respectively.

Kang (1988) proposed the rank sum method which integrates yield and Shukla’s
stability unbiased variance in one index (Shukla, 1972). In this study, method used for
selecting high yielding and stable genotypes was the consideration of yield and Huehn’s
first two stability statistics (Si¥ and Si®) are used as selection criteria. Based on this
method, ranks are assigned for mean yield, with the genotype with highest yield receiving
the rank of I. Similarly the ranks are assigned for S® and Si® with lowest estimated value
receiving the rank of | and they are denoted by YSi® and YSi®. The two ranks for each
genotype are summed and the lowest rank sum is regarded as most stable.

According to Huehn (1990) the nonparametric procedures have a number of
advantages over parametric stability methods e.g., they reduce the bias caused by outliers,
no assumptions are needed about the distribution of the observed values, they are easy to
use and interpret, and additions or deletions of one or few genotypes do not cause much
variation in the results. There is theoretical justification for the use of nonparametric
methods in the assessment of yield stability analysis of combined heteroscedastic and
nonnormal ANOVA. The parametric procedures are not robust specifically when the
distribution of data is nonnormal, heteroscedastic and mixture of normal distributions. It
is a known fact that the parametric methods have large power values than their
nonparametric counterparts when all classical assumptions hold. But the adequate
application of parametric methods need fulfillment of some strict statistical assumptions.
Interestingly, there has been no report of using nonparametric stability methods applied
on multienvironmental crop data analyzing GEI in Pakistan. Most stability analysis
methods are based on joint linear regression of genotype yield on an environmental index
derived from the average performance of all genotypes in an environment (Finlay &
Wilconsin, 1963; Eberhart & Russell, 1966) used by Imtiaz et al., (1988); Khan et al.,
(1988); Sial et al., (2000) and Javaid et al., (2006).

This paper attempts to diagnose as thoroughly as possible the assumptions of
parametric combined ANOVA by using plots and statistical tests, with a view to
justifying the use of nonparametric stability statistics and the relationship among
nonparametric stability methods and to identify the most stable and the least preferred
wheat genotypes by using 5 nonparametric stability methods and graphs.

Materials and Methods

Statistical analysis was performed on grain yield data of 20 wheat genotypes
collected from 40 heteroscedastic environments in Pakistan for the year 2004-05. The
National Uniformity Wheat Yield Trials (NUWYT) was conducted at various agro
climatic regions of the country and coordinated by National Agricultural Research
Centre, Wheat Program, Islamabad, Pakistan. The descriptive statistics of the
environments are given in Table 1.
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Table 1. Mean square error (MSE), mean, coefficient of variation, coefficient of
determination, superiority measure Pj, maximum, minimum and range, for
the wheat data across 40 heteroscedastic environments.
Code Environments MSE Mean CV (%) R?(%) Pj MAX  MIN Range

E1 Quetta 0.54 3.19 23.13 4278 0.33 3.88 2.17 1.71
E2 Dhadar Bolan  1.00 3.59 2781 39.18 099 484 2.58 2.26
E3 Tandojam 0.09 4.72 6.50 9235 1.22 6.00 2.81 3.19
E4 Dadu 0.04 1.92 10.37 59.04 0.12 2.38 1.60 0.78
E5 Sanghar 0.14 4.45 833 9273 318 6.72 3.18 3.54
E6 Sakrand 0.43 4.00 16.40 6044 050 475 2.54 2.21
E7 Larkana 0.08 3.49 819 6846 024 4.09 2.96 1.13
E8  Sukkur 0.16 2.67 1489 6395 0.26  3.27 1.75 1.52

E9 R.Y.Khanl 0.22 454 1031 69.89 084  5.69 2.99 2.70
E10 R.Y.Khan2 0.08 3.94 730 78.05 053 486 2.99 1.87
E1l Bahawalpur 0.14 4.39 839 80.78 047 513 2.83 2.30
E12 Haroonabad 0.16 3.30 1195 89.09 1.67 4.86 1.24 3.62

E13 Lodhran 0.33 2.98 19.39 3940 055 396 1.94 2.02
E14 Multan 0.43 3.33 19.70 4506 059 4.29 2.21 2.08
E15 Vehari 0.12 3.16 11.14 6418 014 354 2.00 1.54

E16 Khanewall 0.09 2.73 11.01 7386 040 352 1.73 1.79
E17 Khanewal2 0.10 2.84 11.17 6414 040  3.67 1.90 1.77
E18 Layyah 0.26 3.03 16.90 4259 0.14  3.46 2.21 1.25
E19 Bhakkar 0.13 4.25 844 8204 130 573 3.15 2.58
E20 D.G. Khan 0.10 3.83 819 8247 041 455 2.43 2.12
E21 Muzaffargarh  0.09 4.08 738 79.95 040 4.83 3.02 1.81

E22 Piplan 0.16 3.03 1320 5450 034 3.77 2.13 1.64
E23 Jhang 0.13 4.33 831 8393 0.93 5.52 3.17 2.35
E24 Gojra 0.05 3.43 6.53 73.06 018 3.9 2.75 1.20

E25 Faisalabadl 0.21 4.57 10.13 69.06 042 529 3.30 1.99
E26 Faisalabad2 0.07 4.40 6.03 72.67 0.13 476 3.39 1.37
E27 Yousaf Wala 0.16 4.76 828 79.25 0.68 5.73 2.83 2.9

E28 Kasurl 0.18 4.58 934 7551 080 5.69 2.71 2.98
E29 Kasur2 0.20 4.10 11.04 5790 032 4.77 3.15 1.62
E30 Sheikhupura 0.12 4.16 830 63.13 022 471 3.33 1.38
E31 Sargodha 0.11 2.44 13.85 7091 030 3.10 1.75 1.35
E32 Pindi 0.30 2.62 21.04 36.87 0.17 3.13 2.06 1.07
E33 Gujranwala 0.10 3.71 8.350 7221 0.24 427 2.58 1.69
E34 Bhimber 0.02 3.90 3.71 5281 0.06 4.24 3.65 0.59
E35 Islamabad 0.16 2.30 1757 6025 0.21 2.87 1.62 1.25
E36 D.l. Khan 0.34 3.10 18.69 43.87 0.26 3.69 1.83 1.86
E37 Tarnab 0.26 3.75 13.65 6565 051 458 2.22 2.36
E38 Pirsabak 0.51 3.61 19.68 5328 0.79 4.70 2.47 2.23
E39 Mardan 0.33 4.08 1411 62.84 0.66 5.07 2.99 2.08
E40 Charsada 0.34 5.14 1139 7492 168 6.78 3.53 3.25

This study was conducted using 20 wheat genotypes, i.e. G1(V-01078),
G2(99B4012), G3(Wafaq 2001), G4(RWM-9313), G5(V-00125), G6(DIAMOND),
G7(PR-84), G8(TW 0135), G9(V-00055), G10(99B2278), G11(KT-7), G12(V-01180),
G13(DN-47), G14(V-9021), G15(CT-00062), G16(7-03), G17(PR-86), G18(V-02192),
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G19(V-002493) and G20(L. Check). These genotypes were developed by various plant
breeders at different research institutes/stations of Pakistan. The most widely grown
bread wheat genotype Wafaq 2001 was included as National check alongwith one local
check at each environment. Of 20 genotypes used, 10 were from Punjab, 5 from NWFP,
3 from Sindh provinces, one from National Agricultural Research Centre and one local
check was a variety already being used in that environment by the farmers. At each
environment 20 genotypes were grown in a randomized complete block design (RCBD)
with 4 replications. Grain yield was obtained by expressing plot grain yields and
converting them on hectare basis (t ha™). In this paper superiority measure (Linn &
Binns, 1988) was used to assess the stability of environment’s yield performance and
identify those environments having outliers. Superiority measure (P;) was defined as the
distance mean square between the environment’s response and the maximum response
over genotypes. Bartlett’s, Hartley’s and Cochran’s tests and standardized residuals vs.
environment plots, as described by Snedecor & Cochran (1980) Zar, (1996) and Kuehl,
(2000), were performed to asses the homogeneity of variances prior to using combined
analysis. If the homogeneity tests and plots show that MSEs are severely heterogeneous
the validity and accuracy of using the classical F-test of GEI is in question (Yates &
Cochran, 1938). Several diagnostic plots are recommended by statisticians for detecting
failures in the assumptions (unusual observations, nonnormality, heterogeneity) and other
inadequacies in the combined ANOVA. Examination of the assumptions through
statistical tests and residual plots should be an automatic part of any ANOVA before
using parametric stability methods, ignored by the researchers in most of the genotype
performance trails. In the combined experiment analysis, genotypes and environments
were considered fixed while blocks assumed random.
A combined two factor linear analysis of variance model was used on the data:

Yig =HA OBy afiy Pyt g, g j=12,...,e:k=12,...,r

where Yij; observation on the ith genotype in the jth in the kth block, p; overall mean, ai;
fixed effect of genotype i, Bj; fixed effect of environment j, ofij; fixed interaction effect of
genotype i and environment j, pkj); random block within environment effect, eij;
experimental error are assumed to be randomly distributed with zero mean and
homogeneous variance 2. If these assumptions hold true, the model may be analyzed by
combined ANOVA. Such an ANOVA is naturally the first step if we want to find out if
GEIl exists in combined experiment.

Nonparametric stability analyses were performed to identify the stable and unstable
genotypes across heteroscedastic environments. Five nonparametric stability statistics
were used to assay the combined data. Four of these were proposed by Huehn, (1979) and
Nassar & Huehn (1987), which combine mean yield and stability. The data was arranged
in a two way table with g rows (genotypes) and e columns (environments). We denote rj;
be the rank of ith genotype in jth environment and r; as the mean rank across all
environments for the ith genotype under the null hypothesis of maximum stability. Huehn
stability statistics was computed by using the ranks rjj of the aligned observations (Y"jj = Yj
~Yi—Y), where, Y;is the mean yield of the ith genotype, Yij; is the yield of ith genotype in
the jth environment and Y _ is the grand average across all environments. The correction
has been proposed to get independence from genotypic effects, i.e., to reflect the rank of
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interaction effect plus experimental error (Nassar & Huehn, 1987). The statistics based
on aligned yield ranks of genotypes in each environment are expressed as follows:

Si(3) == =
Fi,
€
P
Si(ﬁ) _ i -

The lowest value for each of these statistics indicates maximum stability for the
genotype. According to Huehn (1990), the use of SiV was preferred to Si{® for many
practical considerations reported to be easy to calculate, interpret and is an efficient for
test of significance. These statistics do not require homogeneity of variances assumption
and was developed for determining stability of genotypes in nonnormal and
heteroscedastic data. In this study, few values were missing for certain genotypes at
certain environments. Use of nonparametric stability statistics is theoretically robust for
missing values. Missing value was replaced with the average rank of the genotype for the
environments (Huehn, 1990).

Nassar & Huehn (1987) and Huehn & Nassar (1989) proposed two tests of significance
for Si® and Si® The explicit formulae for means E(Si{®) and variances var(Si¥) are
respectively:

E{Siu)}:g;g—l Var{si(l)}: (92 _111(195; 2—6?-}51-)3)4- 30]
21 _(9*1)[g® -4 g°-1
Eli?)- g12 Varlst® = e { 5 +2(e—1)}

The approximate statistical tests of significance and properties of Si® and S;®® were
developed from Nassar & Huehn, (1987) and Huehn & Nassar (1989; 1991) based on the
normal distribution under the null hypothesis of no genotype environment interaction
effects. The statistic Z{® = [Si® — E(S;®)]?/var(Si¥W) and here k = 1, 2; has an

© _N 70
approximate 2 distribution with 1 degrees of freedom and the statistic Si® =" & k =

1,2; may be approximated by a y2distribution with g degrees of freedom.

Kang’s (1988) rank-sum-method as modified by Yue at el., (1997) is the fifth
nonparametric stability statistic which selects simultaneously a genotype with high and stable
yield across environments. The modified rank-sum method in which both yield (in ranks) and
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first two Huehn (1987) nonparametric stability statistics Si® and Si@ (in ranks) are combined,
was used to evaluate the characteristics of 20 wheat genotypes. These two rank-sum statistics
YS® and YS® computed as Rank-sum (yield rank + ranks of the rank-based stability
statistic, Si® and Si®). This method assumes equal weight for yield and stability statistics for
YS®and YSi®. The modified rank-sums provide a compromise statistic when both yield and
stability are considered essential in a breeding programme. However, plant breeders may
prefer to assign more weight to yield than to stability statistics.

The stability statistics were compared using Spearman’s rank correlation coefficient.
Spearman’s rank correlation coefficient, as calculated from the ranks of 5 nonparametric
stability statistics results in measuring the linear relationship between the 5 methods.
Principal component analysis (PCA) method was used for stratifying nonparametric
stability methods and genotypes. The combined experimental yield data were statistically
analyzed using SPSS version 15.0 (2006) for plots and correlation matrix and MS EXCEL
(version 2003) for nonparametric stability methods with spreadsheet formulae commands.

Results and Discussion

In this study at each environment, a randomized complete block design (RCBD) with
4 replicates was separately analyzed before pooling the parametric combined experiment.
The environments MSEs results were obtained across 40 different environments for yield
variable ranged from 0.02 to 1.00. The most noticeable feature of the separate analyses
was that the largest mean squares error (MSE) at environment 2 is 1.00 and the smallest
one as computed for environment number 34 was 0.02. This is indicator of wide
variation. Out of 40 MSE values, 31 range between 0.02 and 0.30, while the remaining
are 0.33, 0.33, 0.34, 0.34, 0.43, 0.43, 0.51, 0.54 and 1 (Table 1). The ratio of the largest
MSE to the smallest MSE is (1.00/.02=50). There were wide and severe variations among
MSEs across heteroscedastic environments, which explicitly pinpoint that the
experimental conditions differ among environments and also indicate that when
combined for parametric stability analysis the experimental data becomes heteroscedastic
and thus we have problem in data. Rogan & Kaselman (1977) have reported that the rate
of type 1 error varies as a function of degree of variance heterogeneity and, consequently
it should not be assumed that the ANOVA F-test is always robust to variance
heterogeneity even when design is balanced. Cochran (1947) and Eisenhart (1947)
reported that nonhomogeneous variances had a greater impact on the estimates of
treatments effects and their variances than on tests of significance. Improper blocking
usually inflates experimental variance (Warren & Mendez, 1982) which may result in
acceptance of false null hypothesis or rejection of true null hypothesis. Experimental
MSEs (mixture of various levels of variations) across 40 environments were found to be
heterogeneous even at p< 0.001 using Bartlett’s test, Cochran’s test and Hartley’s test
(Table 2). The Z score (standardized residual) method establishes rule-of-thumb limits
outside of which an observation is deemed to be an outlier i.e., according to standard
normal distribution criterion observations with Z scores greater than 3 in absolute values
are considered outliers (improbable). For some highly skewed multienvironment data
sets, observations with Z scores greater than 1 in absolute value may be outlier
(Rousseeuw & Leroy 1987). Figure 1 explicitly indicates severe heteroscedastic problem
across environments along with ample outliers. However, by their nature majority of
multienvironmental experimental MSEs were heterogeneous.
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Table 2. Bartlett, Hartley and Cochran tests for homogeneous MSEs of 40 individual
environments with 4 blocks and 20 genotypes.

Untransformed = Yield (t ha) Transformed = log Yield (t hal)

Variance
homogeneity tests

Bartlett 7P=633.24%* 7P=812.31**
Hartley Ha = 50** H = 58.33**
Cochran Cb=0.12** C=0.12**

** Significant at p = 0.01
2H = (Largest of 40 MSEs) / (Smallest of 40 MSEs)
P C = (Largest MSE) / (EMSE;)

Transformation approach was used to decide the appropriate transformation type
(power or root) of response variable Y* to stabilize MSEs and normalize the data (Box &
Cox, 1964). In our study using Box-Cox transformation method the maximum likelihood

estimate was 4 =0.12 (or/1 close to 0) which suggests and that transformed response
variable (yield) is either logarithmic or Y%!? Results also suggest that after
transformation Bartlett’s test, Cochran’s test and Hartley’s test values further increased
(Table 2). But both of these transformations were not successful in sufficiently stabilizing
MSEs and bringing the distribution of the observations close enough to normality to meet
the robustness properties of the parametric inference procedures. It was therefore
necessary that as a last resort we make use of nonparametric stability methods were for
analyzing GEI. Bradley (1982) stated that if the response variable consists of mixture of
normal distributions or there is major departure from model’s assumptions, then such
transformation will not be helpful. In this study, the other reason of failure of
transformation is that the combined experimental data has no patternoized relationship
between environments’ mean and variance (MSE) as shown in Fig. 3.

The coefficient of determination (R?), coefficient of variation (CV), superiority
measure (P;) and range values (Table 1) and plots shown in Figs. 1 & 2 clearly indicate
that combined experimental data is problematic (hetroscedastic, nonnormal and ample
outliers). Data have been drawn from populations that are heterogeneous, mixture of
normal distributions, skewed, or have more observations in their tails than is true of the
normal distribution (heavy-tailed distributions). According to Linn & Binns (1988) the
modified stability measure (P;) of the environments E34, E4, E26 E15, E18, E32 and E24
with low (P;) values indicated high relative stability and these environments had lowest
yield performance except E26. Whereas E5, E40, E12, E19, E3, E2 and E23 with high
(P;) values revealed that these environments were problematic and had highest average
yields except for E12. All environments had irregular hetroscedasticity irrespective of
high or low mean (Table 1).

Agricultural scientists use the coefficient of variation (CV) as a measure of population
variability. They use the CV to accept or reject the validity of trials. Use of CV is valid only
when the simple regression coefficient b value of the regression of the natural log of the
environments’ MSE on the natural log of the environments’ mean equals 2.0 (Bowman &
Watson, 1997). In the proposed study of 40 hetroscedastic environment’s data sets of wheat
crop data revealed no linear relationship i.e., because the estimate of b=0.014 between
natural log of MSE and natural log of the mean, which bring the use of the CV for checking
validity of crop performance trials into question. Again use of CV may affect the validity of
trials due to heterogeneity of MSEs or because of existence of outliers in individual RCBD
data across heterogeneous environments.
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For more than 50% environments, R? are less than 0.70. The results reported in Table
1 are indicator of violation of strong linearity assumption in the model. Cornell & Berger
(1987) point out some factors in the data set that lower the value of R2 One of these
factors which is relevant to our study, is that response variable yield contains ample
outliers within the range of environments means (Fig. 1). The outlier observation will
have larger residual than the other observations. The residuals of outliers made both SSE
and SSY large. As a result R? = 1- SSE/SSY approaches zero. Hence, outlier observations
within the range of environment means have a reducing effect on R? and change strong
linear association into moderate linear relationship. In particular, the linearity of
response has been convincingly shown not to hold in many international
multienvironment trials (Byth et al., 1976), including even for IMETs with carefully
managed environments (Chapman et al., 1996).

It is a common practice among agricultural scientists that they usually ignore some
strict and sensitive parametric assumptions e.g., homogeneity, normality and no outlier
assumptions prior to undertaking the combined experiments. Any misunderstanding of
statistics and statistical methods might lead to misleading and invalid inferences.

In many environments, problems encountered are in connection with the design of
field experiments. There are a number of factors such as insect or bird attacks, crop
diseases, lack of management, improper blocking and other accidental causes, especially
in developing countries like Pakistan, may affect plots of some blocks of the small single
RCBD experiments and may contribute to low yield of one or two genotypes (outliers) in
comparison to others.

It is an invariable fact that in the METs the relative differences among genotypes
across environments are inconsistent due to GEI. The differences in ranks of the 20
genotypes across 40 heteroscedastic environments indicated the existence of GEI (data
not shown). The mean grain yield of 20 genotypes across 40 environments varied from
2.74 (t hat) (G11) to 4.01 (t ha) (G1) is shown in Table 3. The genotypes of G1, G2,
G3, G5, G7, G9, G12, G16, G17, G18 and G20 had higher than grand mean grain yield
while the rest had equal or lower values than grand mean grain yield. Taking the top 20%
high yielding genotypes as a criterion for the assessment of the genotypes, G1, G2, G7
and G20 gave the best yields, with mean yields greater than 3.9 (t ha) (Table 3). The
environmental mean yield across the genotypes varied from 1.24 (t ha'*) in E12 to 6.78 (t
hal) in E40 respectively and closely followed by 6.72 (t ha) in E5 (Tablel). The mean
yield and estimates of the 5 nonparametric statistics for the evaluation of genotypes over
heteroscedastic environments are presented in Table 3.

The nonparametric statistics Si®, Si®@, S;{® and S;® values are based on transformed
yield values for each genotype. Genotypes with low S;®, S{®, S;® and Si® are considered
to have the high stability (Huehn, 1996). The statistical tests of significance S{® and S;®
were proposed by Nassar & Huehn (1987). For each ith genotype, Z;® k=1,2 values were
calculated based on the E(Si{®) and Var(Si®) under the null hypothesis Ho, that the mean
stability for the ith genotype is E(Si) against the alternative that the mean stability
deviates from this expectation. If Ho is rejected, the ith genotype may be stable [i.e., Si®
< E(Si™)]or unstable [i.e., Si® > E(Si®)] (Huehn & Nassar, 1991). As shown in Table 3
the two overall chi square tests (y%0.0s20) = 35.32, % 20.05(20) = 35.94) resulted in greater than
the tabulated value y%.0s200 = 31.41and there was sufficient evidence for significant
differences among the stability values of the 20 genotypes in our study.
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Table 3. Mean yield and 5 nonparametric statistics for wheat yield of 20 genotypes in
40 heteroscedastic environments in Pakistan.

Genotype (tY;:;ICli) Siha Ziob S@a  z@b  gRa  ga  yge ys;@e
Gl 401 7.05 0.66 3694 058 14517 21.69 17 17
G2 3.95 7.50 3.00 4213 338 17027 23.28 21 21
G3 3.75 5.93 2.13 2656 1.91 103.07 17.13 11 11
G4 3.56 6.83 0.13 3545 0.21 11715 17.25 27 28
G5 3.67 6.42 0.22 31.37 0.15 108.76 16.53 15 16
G6 3.6 6.49 0.11 3113 019 11815 1831 21 20
G7 391 5.43 6.16 2339 416 99.17 16.39 5 5
G8 3.29 7.27 1.61 39.12 147 13744 19.66 31 31
G9 3.88 6.80 0.09 3507 0.14 1309 19.89 17 18
G10 3.62 6.88 0.21 3522 0.17 136 19.78 27 26
Gl1 2.74 6.64 0.00 3292 0.00 1214 1825 25 25
G12 3.76 6.02 1.65 27.18 158 9401 1517 17 16
G13 3.66 6.80 0.09 3491 012 12813 20.05 26 25
Gl4 3.22 8.18 9.70 50.39 1258 172.78 22.07 36 36
G15 3.77 5.67 3.98 2418 352 8592 1449 15 15
G16 3.62 6.20 0.84 2840 1.01 10161 16.73 22 22
G17 3.76 6.66 0.00 3332 0.00 1226 1947 25 25
G18 3.85 7.02 0.57 36.64 049 14326 21.75 30 30
G19 3.66 7.42 2.45 4148 290 16099 22.92 34 34
G20 3.96 6.01 1.72 2757 1.38 109.15 16.62 20 21
Sum 35.32 35.94

E(Si®) 6.65 E(S®) 33.25
var(SiV) 024 Var(S®@) 23.36

755.05(20) =3141 2505(1) =3.84

a S{™ average absolute rank dispersion of a genotype over environments, S{® the variance among the ranks
over environments, S;© and S;® are the sum of absolute deviations and sum of squares of ranks for each
genotype relative to the mean of ranks respectively. b Z{® and Z;® are chi-square »*test statistics for S and
Si®@ ¢ YS;® and YS;@ are the modified rank-sum of Kang (1988) Statistics.

Corresponding to Huehn’s first two methods Si® and Si®, G7 had the smallest
changes in ranks and thus regarded as the most stable genotype unlike G14, which was
significantly (p<0.005) unstable. The next most stable genotype was G15, followed by
G3 (Table 3). The nonparametric statistics S{® and S{®, are almost in complete linear
agreement in ranking with 20 genotypes across environment as shown in Tables 4 & 5,
while exact linear relationship was found in Sagherloo et al., (2008) and Rose IV et al.,
(2007). By using the Si®, the genotypes G15, G12 and G7 with minimum S;® value
under heteroscedastic environments were considered to be stable and the genotypes G14,
G2 and G19 were unstable. According to S;® the genotypes G15, G12 and G7 with low
S;® values were stable genotypes and the genotypes G2, G19 and G14 with high S;©
values were unstable.

Rose 1V et al., (2007) have reported that examination of the formulae for the S;®,
Si@, Si® and Si® (rank-based statistics) revealed that small number of genotypes when
assayed with these statistics have been found to be extremely sensitive but may give
misleading results, whereas in our study a large number of genotypes with similar
statistics gave valid results.

With reference to Kang (1988) and Yue et al., (1997) stability statistics YS;¥ and
YSi® rank-sum of the 20 genotypes are shown in Table 4. The genotypes G7, G3 and
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G15 with lower values of YSi{¥ and YS;® were considered to be stable while G14, G19
and G8 with higher YS® and YSi® were considered to be unstable. The most unstable
genotype according to S{®, i@, YS{® and YS;® was G14, which ranked 19th for mean
yield (Table 4). G1 had the highest mean yield and ranked 5th and 6th according to YS;®
and YS@. It is pertinent to note that the stable genotypes identified by all 5 rank-based
stability methods in this study had grain yields above the grand average. With reference
to the 5 distributions free methods applied in our study G7 and G15 were identified as the
most stable genotypes, and G14 and G19 as unstable ones. The remaining genotypes
were intermediate between these two strata’s. As a result of this study, G7 was
recommended for national release in Pakistan, as it adequately demonstrated stability
across wide variety of environments and also ranked 4th in yield performance.

The rank correlation between mean yield was significantly and positively correlated
with Kang’s (1988) modified rank-sum statistics (YSi® and YSi®) but it was not
correlated with S, S{@, S{® and Si® (Table 5). The stability statistics Si¥, S;{®, $;® and
Si® were positively and significantly correlated (p<0.01), indicating that the four
statistics were similar in classifying the genotypes according to their stability under
heteroscedastic environmental conditions (Table 5). Consequently, only one of these
statistics would be sufficient to select the stable genotype in a plant breeding program.
Similar results were obtained by Mohammadi et al., (2008) in a study on wheat and
(Sabaghnia et al., 2006) on lentil.

Among Huehn’s four rank-based stability statistics S;V, Si@, Si® and S;® the first
two Si® and Si®, were very much positively linearly associated among themselves.
Overall, all S{®, @, 5;® and S;® could be highly satisfactory measures for stability,
whereas SiY was better than others (Huehn, 1990).

As a simple but alternative graphical assessment of stability of genotypes was also
assessed by mean vs. Si® Plot. The 20 genotypes were then classified into the following
four groups on the basis of grain mean yield and SiV) across environments. This idea was
taken from (Francis & Kennenberg, 1978) in which they grouped genotypes on the basis
of mean yield and coefficient of variation across environments.

Group 1: High mean yield (above the average of all genotypes) and low S;® (below the
expected value of Si®)

Group 2: High mean and high S

Group 3: Low mean and low S;®:

Group 4: Low mean and high S;®;

According to these configurations, from Figure 4 genotypes falling in group 1 can be
considered as stable. Group 1 contains that G7, G15, G20, G3 and G12 are most stable,
and well adapted to all environments i.e., those have general adaptability (Fig. 4).
Genotypes G1, G2, G9 and G18 fall in group 2 that indicates increasing sensitivity to
environmental change and greater specificity of adaptability to high yielding
environments. Group 3 reflects poorly adapted genotypes to all environments. Only G16
falls in this group. Group 4, contains G6, G4, G11, G14 and G8. This group reflects
greater resistance to environmental fluctuation and increasing adaptability to low yielding
environments. Fig. 4 clearly indicates that G11 is an outlier genotype with reference to
the lowest mean yield while G14 is also outlier corresponding to low mean yield and the
highest value of average rank dispersion S;®.
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Table 4. Ranks of 20 wheat genotypes based on wheat yield and 5
nonparametric stability statistics.

. Rank Sum
Genotype | Yield Si® Si@ Si® Si® YSO | YS®
Gl 1 16 16 17 16 5 6
G2 3 19 19 19 20 9 9
G3 10 3 3 5 7 2 2
G4 17 13 14 8 8 15 16
G5 11 7 8 6 4 3 4
G6 16 8 7 9 10 9 8
G7 4 1 1 3 3 1 1
G8 18 17 17 15 12 18 18
G9 5 11 12 13 14 5 7
G10 14 14 13 14 13 15 15
Gl1 20 9 9 10 9 12 12
G12 8 5 4 2 2 5 4
G13 12 12 11 12 15 14 12
Gl4 19 20 20 20 18 20 20
G15 7 2 2 1 1 3 3
G16 14 6 6 4 6 11 11
G17 8 10 10 11 11 12 12
G18 6 15 15 16 17 17 17
G19 12 18 18 18 19 19 19
G20 2 4 5 7 5 8 9

Table 5. Mean values Y and 5 nonparametric stability statistics for grain yield of
twenty wheat genotypes evaluated in 40 environments.

Y Si® Si@ Si® Si® YSi® YSi®
Y 1 0.027 0.013 -0.05 -0.068  0.647** 0.615**
Si® 0.027 1 994**  0.947**  0.907** 0.748** 0.770**
Si® 0.013  0.994** 1 0.943**  0.893** 0.730** 0.765**
Si® -0.05 0.947**  0.943** 1 0.965** 0.661** 0.687**
Si® -0.068  0.907** 0.893** 0.965** 1 0.630**  0.640**

YSi® 0.647** 0.748** 0.730** 0.661** 0.630** 1 0.990**
YS@ 0.615** 0.770** 0.765** 0.687** 0.640** 0.990** 1
** Correlation is significant at the 0.01 level (2-tailed).

Prior to selection, it is quite crucial to be aware of genotypes ranking in each
environment and Figure 4 provided mean yield (t ha) vs. Si® values accordingly. G7 and
G15 are the most stable and well adopted across heteroscedastic environments. G15 has the
highest mean rank, while G11 the lowest one. However G7 has larger mean yield than G15.

To understand the relationships among the rank-based statistics, principal component
analysis (PCA) was performed on the rank correlation matrix (Table 5). PCA is a
multivariate statistical technique which can be used for simplification and dimensionality
reduction in a data set by retaining those characteristics that contribute most to its
variation. In this regard lower-order principal components are retained and higher order
ones are ignored.
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The results reported in Table 6 indicate that the loadings of the first two PCAs which
explained 93% (74% and 19% by PCAL and PCAZ2 respectively) of the variation of
original variables. PCAL is primarily stability and PCA2 is mostly yield. The
relationships among the different nonparametric stability statistics are graphically
displayed in a biplot of PCAL versus PCA2 in Fig. 5, where both axes were considered
simultaneously. Three groups in Fig. 5 can be defined as;

Group 1: Si®, 5@, 5{® and S;®
Group 2: YS{®and YS;®
Group 3: Mean yield (Y)

Group 1 that included (Huehn 1979) four stability statistics S;9, S{@, S and S;®
are shown in Fig. 5. These nonparametric methods were positively linearly correlated
with each other and with: YSi®™ and YSi® (p<0.01) but not with mean yield (as reported
in Table 4). Huehn (1979) stability statistics S;®, S;@, $;® and Si® provide a measure of
stability in the static sense, since a genotype showing a constant performance in all
environments does not necessarily respond to improved growing conditions with
increased yield. Therefore, stable genotypes according to these methods are adapted for
those regions where growing conditions are unfavorable.

Group 2, which contains rank-sum YS;¥ and YS;i® were found to be positively and
significantly correlated (p<0.01) to each other while moderately positively correlated
with mean yield. This group consists of statistics that were influenced simultaneously by
both mean yield and stability. The statistic rank-sum is related to dynamic stability, while
the remaining procedures are associated with static stability.

Yue at el., (1996) and Yue at el., (1997) have reported that the rank-sum is related to
high yield performance. Therefore rank-sum stability statistics (YSi® and YSi®) are related
to dynamic concept. Becker & Leon (1988) suggested that a dynamic concept of stability
does not require the genotypic response to environmental conditions to be equal for all
genotypes. Group 3 contains mean yield separated by the two PCAs axes from the rank-
sum methods YSi® and YSi® (Group2) (Fig.4). The stability methods Si®, Si®, S and
Si® were positively linearly and significantly correlated (P<0.01), indicating that the four
statistics were similar under heteroscedastic environmental conditions (Table 5). As a
result, only one of these statistics would be sufficient to select stable genotypes in a
breeding program. Scapim et al., (2000) found significantly positive correlations between
Si® and Si@ in maize. Flores et al., (1998) also stated high positive rank correlation
between S and S{® in fababean and peas. Piepho & Lotito (1992) have reported that
generally, the results for the large data sets are more constant than for the small data sets
and they found strong positive linear relation between S{® and Si® in sugar beet (p<0.001).

The results of PC analysis performed for the ranks of genotypes according to 5 rank-
based methods are shown in the transpose of Table 5. The biplot explained 81% of the
variation of the original variables in study 53% and 28% by PCAL and PCA2, respectively
(Table 7). A biplot based on first two PCAs applied to detect locations of genotypes (Fig.
6). Genotypes that had PCA1 Scores <0 were identified as higher yielding (except G14
near- zero PCAL score) and those that had PCAL scores > 0 were identified as lower
yielding (G12 and G15). However genotypes G7 and G3 are high yielding and stable but
having moderate and identical both PCAs scores (Fig. 6). In the biplot it is noticeable that
the genotype 14 (G14) is most unstable and outlier genotype across environments, and G13
with scores for axis 1 and 2 close to zero, showed the smallest interaction.
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Fig. 5. Biplot of the first two principle component of ranks of stability of yield, estimated by 5
rank-based methods using yield data from 20 genotypes across 40 environments.
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Fig. 6. Biplot of first two principal components for studied genotypes.
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Table 6. Loadings of rank derived from different nonparametric
stability measures for PCA 1 and PCA 2,

Stability statistics

Principal component

PCAl PCA2
Yield -0.37 0.14
Si(1) -0.97 -0.03
Si(2) -0.96 -0.03
Si(3) -0.93 -0.06
Si(6) -0.89 -0.06
YSi(1) -0.88 0.07
YSi(2) -0.89 0.06
Variance explained (%) 74 19
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Table 7. First two principal components loadings of ranks obtained from 5 rank-

based methods used to analyze G X E interaction of wheat genotype yields.

Principal component axis

Genotypes PCAL | PCA2
V-01078 (G1) -0.81 -0.46
99B4012 (G2) -0.85 -0.43
Wafaq 2001 (G3) 0.60 -0.75
RWM-9313 (G4) 0.71 0.60
V-00125 (G5) 0.69 -0.45
DIAMOND (G6) 0.86 -0.38
PR-84 (G7) 0.46 -0.72
TW 0135 (G8) 0.56 0.73
V-00055 (G9) -0.74 -0.64
99B2278 (G10) 0.22 0.85
KT-7 (G11) 0.97 0.02
V-01180 (G12) 0.92 0.19
DN-47 (G13) -0.24 -0.14
V-9021 (G14) -0.12 0.70
CT-00062 (G15) 0.99 0.10
7_03 (G16) 0.83 0.41
PR-86 (G17) -0.71 0.57
V-02192 (G18) -0.92 0.33
V-002493 (G19) -0.92 0.34
L. Check (G20) -0.54 0.70
Eigenvalue 10.58 5.62
Variance Explained (%) 53 28
In this study environmental conditions i.e., MSEs are severely different

(heteroscedastic) as presented in Table 1. This is very true of Pakistan because climatic
conditions differ from province to province and within the provinces as well. Moreover the
quality of management also differs among the cultivars as well as among the experimental
stations situated in various provinces of Pakistan. Thus, stable genotypes as detected in this
study recommended for those Pakistani regions, where multienvironmental trials growing
conditions are widely different.
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Conclusions

The most widely used stability parametric methods may be sensitive to violation of
normality, homogeneity, no mixture of normal distributions and absence of many
outliers’ assumptions in combined analysis of variance model. Violation of these
assumptions may make point and interval estimation, and testing of hypothesis difficult.
There is general agreement among researchers about superiority of parametric methods
over nonparametric methods in terms of power; but if one or more of the underlying
parametric assumptions are severely violated, the power advantage may not be there. For
retaining parametric stability measures, various transformations (logarithms and roots)
can be applied to rectify the violation of these assumptions, but none of these could be
successful. As a last resort under such situations, most of the researchers prefer the use of
appropriate nonparametric stability methods. In the present study 5 most widely applied
nonparametric stability measures were applied to 20 genotypes grown across 40
hetroscedastic environments. The focus of the present study was thoroughly testing
parametric combined ANOVA model assumptions, rectification and justification of
nonparametric stability methods and their application to the data from NUWYT
experiments in Pakistan for the year (2004-05). The results of the study revealed severe
violation of assumptions that justify the use of nonparametric stability methods to analyze
GEI in METs. The results of the study using graphical, tabular and statistical tests
explicitly indicate that these METS data are not suitable for parametric stability methods
and therefore recommendations based on those methods may be seriously misleading.
However, recommendations based on the above suggested non-parametric methods
combined with multivariate methods can be used to formulate more plausible
recommendations which are based on the evidence from the data and less relying on the
assumptions.
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