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Abstract 
 

Genotype performance in multienvironment trials (METs) are usually analyzed by parametric 
analysis of variance (ANOVA) and stability models. The results of these models can give 
misleading inferences when some sensitive assumptions are not satisfied. In this paper, assumptions 
of combined ANOVA are scrutinized in detail to justify the validity of use of 5 nonparametric 
stability methods (Si

(1), Si
(2), Si

(3), Si
(6) and YSi

(1), YSi
(2)) applied to 20 genotypes grown in 40 

hetroscedastic and nonnormal  environments in Pakistan for the year 2004-05. There is a severe 
heterogeneity problem in the data because the ratio of the largest estimated mean squares error 
(MSE) for individual environments randomized complete block design (RCBD) to the smallest 
MSE is approximately (1.00/0.02=50). Out of 40 environments individual coefficients of 
determination (R2), 27 are less than 0.70. This leads to violation of linearity assumption in the 
model. Standardized residual plots vs. individual environments plots and normal probability plot 
are indicators of the violation of homogeneity, normality assumptions and absence of outliers. No 
linear relationship was established between the natural logs of the error variance and the natural log 
of environments’ mean, which again violates coefficient of variation (CV) assumption. Remedial 
transformations as suggested in literature were not successful to stabilize environments MSEs and 
could not normalize the data, so as a last resort in this regard nonparametric stability methods seem 
to justify the analysis of genotype x environment interactions (GEI). The low values of modified 
rank-sum statistics YSi

(1) and YSi
(2) were positively and significantly associated with mean yield but 

the other nonparametric methods were not correlated with mean yield. The results of principal 
component analysis and correlation analysis of nonparametric stability methods indicate that the 
use of modified rank-sum method would be justifiable for simultaneous selection for high yield and 
stability. Using modified rank-sum method, the genotypes G7, G3, G15, G5 and G12 were found to 
be the most stable with yield, whereas G14 and G19 were the least stable genotypes. 
 

Introduction  
 

One of the most challenging issues in plant breeding process to accurately analyze 
genotype x environment interaction (GEI) is based on data from multienvironment trials. 
GEI is a universal issue that relating to all living organisms, from humans to plants and 
bacteria (Kang, 1998). Usually GEI is the nonadditive component of two or more 
experiments with the same genotypes combined over environments. The process for 
selecting high yield and stable genotypes usually involves three stages of 
experimentation: At stage-1, genotypes are tested at a single location; at stage-2, the 
selected genotypes are tested in a multilocation trials (genotype x location); and finally at 
stage-3, the most promising genotypes with new set of genotypes are tested for several 
years under a range of locations (genotype x location x year) (Linn & Binns, 1994). 
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Genotype performance trials are usually analyzed by various ANOVA models which 

are based on assumptions that may often not be satisfied. Departure from one or more 

assumptions can affect both the type-1 error and the sensitivity of F or t tests. Excellent 

and detailed discussions about assumptions, the consequences their invalidates and 

remedial steps involved for ANOVA are described by some classic papers (Eisenhart, 

1947; Cochran, 1947).    
The primary goal of most plant breeders is to identify stable genotypes, whose yield 

performance remains high across a range of environmental conditions. Stability analysis 

is only relevant if GEI is present (Hussain et al., 2000). Basically there are two broad 

categories of GEI: crossover and noncrossover (usual) interaction. A crossover 

interaction (discordance) exists if the ranking of the genotypes is not identical in different 

environments. If the ranking is identical, crossover interaction is nonexistent 

(concordance) (de Kroon & Laan 1981; Truberg & Huehn, 2000). Measures of GEI and 

stability are common tools applied by biometricians who have developed numerous 

methods to analyze it (Lin et al., 1986; Becker & Leon 1988; Flores et al., 1998; 

Mohammadi & Amri, 2008). 

Huehn (1996) indicated that there are two major approaches for studying GEI to 

determine the adaptation characterization of genotypes. The first and most common 

approach is parametric, which relies heavily on distributional assumptions about 

genotypic, environmental, and G x E effects. The second approach is the nonparametric 

approach (rank-based methods), based on weak assumptions. Numerous univariate and 

multivariate (parametric and nonparametric) methods have been developed by 

statisticians and applied by plant breeders to analyze GEI at the end of plant breeding 

programs.  

The univariate parametric stability statistics are commonly used by plant breeders to 

analyze GEI. The essential ideas of stability analysis are described in Lin et al., (1986); 

Hussain et al., (2000) and Backer & Leon (1988) are concerned with describing as to 

how a genotype responds to differing environmental conditions. The parametric stability 

methods have good properties under statistical assumptions of a normal distribution of 

independent errors with homogenous variance and no outliers. However, many of these 

measures may not perform well if any or all of these assumptions are violated, 

specifically the assumptions of homogeneity of mean square errors (MSEs), nonmixture 

of normal distributions and data having no outliers (Huehn, 1990). Due to GEI the 

relative differences among genotypes render performance over environments 

inconsistent. MSEs are rarely homogeneous in multienvironment or regional yield trials. 

MSEs are influenced by specific circumstances and tend to be lower in low yielding 

environments (Bowman & Watson, 1997). 

Thus it is advisable to search for alternative approaches such as nonparametric 

methods that are more robust and are valid in the absence of variance homogeneity, no 

outliers and normality assumptions. The importance of nonparametric methods in modern 

statistics has been growing dramatically since their inception in the mid-1930s. Requiring 

few or no assumptions about the populations from which the data is obtained, 

nonparametric methods emerged as a very useful methodology among statisticians and 

researchers performing data analyses. Today, these techniques are being applied to an 

ever-growing variety of experimental designs in the social, behavioral, biological and 

physical sciences (Hollander & Wolfe, 1999). These methods are based on the ranks of 

original observations or residuals of combined ANOVA model.  
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Huehn (1979) and Nassar & Huehn (1987) proposed four nonparametric indices of 

stability which are: (1) Si
(1) is the mean of absolute rank differences of a genotype over 

environments, (2) Si
(2) is the variance among the ranks over the environments, (3) Si

(3) and 

Si
(6) are the sum of the absolute deviations and sum of squares of ranks for each genotype 

relative to the mean of ranks respectively. 

Kang (1988) proposed the rank sum method which integrates yield and Shukla’s 

stability unbiased variance in one index (Shukla, 1972). In this study, method used for 

selecting high yielding and stable genotypes was the consideration of yield and Huehn’s 

first two stability statistics (Si
(1) and Si

(2)) are used as selection criteria. Based on this 

method, ranks are assigned for mean yield, with the genotype with highest yield receiving 

the rank of I. Similarly the ranks are assigned for Si
(1) and Si

(2) with lowest estimated value 

receiving the rank of I and they are denoted by YSi
(1) and YSi

(2). The two ranks for each 

genotype are summed and the lowest rank sum is regarded as most stable. 

According to Huehn (1990) the nonparametric procedures have a number of 

advantages over parametric stability methods e.g., they reduce the bias caused by outliers, 

no assumptions are needed about the distribution of the observed values, they are easy to 

use and interpret, and additions or deletions of one or few genotypes do not cause much 

variation in the results. There is theoretical justification for the use of nonparametric 

methods in the assessment of yield stability analysis of combined heteroscedastic and 

nonnormal ANOVA. The parametric procedures are not robust specifically when the 

distribution of data is nonnormal, heteroscedastic and mixture of normal distributions. It 

is a known fact that the parametric methods have large power values than their 

nonparametric counterparts when all classical assumptions hold. But the adequate 

application of parametric methods need fulfillment of some strict statistical assumptions. 

Interestingly, there has been no report of using nonparametric stability methods applied 

on multienvironmental crop data analyzing GEI in Pakistan. Most stability analysis 

methods are based on joint linear regression of genotype yield on an environmental index 

derived from the average performance of all genotypes in an environment (Finlay & 

Wilconsin, 1963; Eberhart & Russell, 1966) used by Imtiaz et al., (1988); Khan et al., 

(1988); Sial et al., (2000) and Javaid et al., (2006). 

This paper attempts to diagnose as thoroughly as possible the assumptions of 

parametric combined ANOVA by using plots and statistical tests, with a view to 

justifying the use of nonparametric stability statistics and the relationship among 

nonparametric stability methods and to identify the most stable and the least preferred 

wheat genotypes by using 5 nonparametric stability methods and graphs. 

 

Materials and Methods 

 

Statistical analysis was performed on grain yield data of 20 wheat genotypes 

collected from 40 heteroscedastic environments in Pakistan for the year 2004-05. The 

National Uniformity Wheat Yield Trials (NUWYT) was conducted at various agro 

climatic regions of the country and coordinated by National Agricultural Research 

Centre, Wheat Program, Islamabad, Pakistan. The descriptive statistics of the 

environments are given in Table 1. 
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Table 1. Mean square error (MSE), mean, coefficient of variation, coefficient of 

determination, superiority measure Pj, maximum, minimum and range, for  

the wheat data across 40 heteroscedastic environments. 

Code Environments MSE Mean CV (%) R2 (%) Pj MAX MIN Range 

E1 Quetta 0.54 3.19 23.13 42.78 0.33 3.88 2.17 1.71 

E2 Dhadar Bolan 1.00 3.59 27.81 39.18 0.99 4.84 2.58 2.26 

E3 Tandojam 0.09 4.72 6.50 92.35 1.22 6.00 2.81 3.19 

E4 Dadu 0.04 1.92 10.37 59.04 0.12 2.38 1.60 0.78 

E5 Sanghar 0.14 4.45 8.33 92.73 3.18 6.72 3.18 3.54 

E6 Sakrand 0.43 4.00 16.40 60.44 0.50 4.75 2.54 2.21 

E7 Larkana 0.08 3.49 8.19 68.46 0.24 4.09 2.96 1.13 

E8 Sukkur 0.16 2.67 14.89 63.95 0.26 3.27 1.75 1.52 

E9 R.Y. Khan1 0.22 4.54 10.31 69.89 0.84 5.69 2.99 2.70 

E10 R.Y. Khan2 0.08 3.94 7.30 78.05 0.53 4.86 2.99 1.87 

E11 Bahawalpur 0.14 4.39 8.39 80.78 0.47 5.13 2.83 2.30 

E12 Haroonabad 0.16 3.30 11.95 89.09 1.67 4.86 1.24 3.62 

E13 Lodhran 0.33 2.98 19.39 39.40 0.55 3.96 1.94 2.02 

E14 Multan 0.43 3.33 19.70 45.06 0.59 4.29 2.21 2.08 

E15 Vehari 0.12 3.16 11.14 64.18 0.14 3.54 2.00 1.54 

E16 Khanewal1 0.09 2.73 11.01 73.86 0.40 3.52 1.73 1.79 

E17 Khanewal2 0.10 2.84 11.17 64.14 0.40 3.67 1.90 1.77 

E18 Layyah 0.26 3.03 16.90 42.59 0.14 3.46 2.21 1.25 

E19 Bhakkar 0.13 4.25 8.44 82.04 1.30 5.73 3.15 2.58 

E20 D.G. Khan 0.10 3.83 8.19 82.47 0.41 4.55 2.43 2.12 

E21 Muzaffargarh 0.09 4.08 7.38 79.95 0.40 4.83 3.02 1.81 

E22 Piplan 0.16 3.03 13.20 54.50 0.34 3.77 2.13 1.64 

E23 Jhang 0.13 4.33 8.31 83.93 0.93 5.52 3.17 2.35 

E24 Gojra 0.05 3.43 6.53 73.06 0.18 3.95 2.75 1.20 

E25 Faisalabad1 0.21 4.57 10.13 69.06 0.42 5.29 3.30 1.99 

E26 Faisalabad2 0.07 4.40 6.03 72.67 0.13 4.76 3.39 1.37 

E27 Yousaf Wala 0.16 4.76 8.28 79.25 0.68 5.73 2.83 2.9 

E28 Kasur1 0.18 4.58 9.34 75.51 0.80 5.69 2.71 2.98 

E29 Kasur2 0.20 4.10 11.04 57.90 0.32 4.77 3.15 1.62 

E30 Sheikhupura 0.12 4.16 8.30 63.13 0.22 4.71 3.33 1.38 

E31 Sargodha 0.11 2.44 13.85 70.91 0.30 3.10 1.75 1.35 

E32 Pindi  0.30 2.62 21.04 36.87 0.17 3.13 2.06 1.07 

E33 Gujranwala 0.10 3.71 8.350 72.21 0.24 4.27 2.58 1.69 

E34 Bhimber 0.02 3.90 3.71 52.81 0.06 4.24 3.65 0.59 

E35 Islamabad 0.16 2.30 17.57 60.25 0.21 2.87 1.62 1.25 

E36 D.I. Khan 0.34 3.10 18.69 43.87 0.26 3.69 1.83 1.86 

E37 Tarnab 0.26 3.75 13.65 65.65 0.51 4.58 2.22 2.36 

E38 Pirsabak 0.51 3.61 19.68 53.28 0.79 4.70 2.47 2.23 

E39 Mardan 0.33 4.08 14.11 62.84 0.66 5.07 2.99 2.08 

E40 Charsada 0.34 5.14 11.39 74.92 1.68 6.78 3.53 3.25 

 

This study was conducted using 20 wheat genotypes, i.e. G1(V-01078), 

G2(99B4012), G3(Wafaq 2001), G4(RWM-9313), G5(V-00125), G6(DIAMOND), 

G7(PR-84), G8(TW 0135), G9(V-00055), G10(99B2278), G11(KT-7), G12(V-01180), 

G13(DN-47), G14(V-9021), G15(CT-00062), G16(7-03), G17(PR-86), G18(V-02192), 
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G19(V-002493) and G20(L. Check). These genotypes were developed by various plant 

breeders at different research institutes/stations of Pakistan. The most widely grown 

bread wheat genotype Wafaq 2001 was included as National check alongwith one local 

check at each environment. Of 20 genotypes used, 10 were from Punjab, 5 from NWFP, 

3 from Sindh provinces, one from National Agricultural Research Centre and one local 

check was a variety already being used in that environment by the farmers. At each 

environment 20 genotypes were grown in a randomized complete block design (RCBD) 

with 4 replications. Grain yield was obtained by expressing plot grain yields and 

converting them on hectare basis (t ha-1). In this paper superiority measure (Linn & 

Binns, 1988) was used to assess the stability of environment’s yield performance and 

identify those environments having outliers. Superiority measure (Pj) was defined as the 

distance mean square between the environment’s response and the maximum response 

over genotypes. Bartlett’s, Hartley’s and Cochran’s tests and standardized residuals vs. 

environment plots, as described by Snedecor & Cochran (1980) Zar, (1996) and Kuehl, 

(2000), were performed to asses the homogeneity of variances prior to using combined 

analysis. If the homogeneity tests and plots show that MSEs are severely heterogeneous 

the validity and accuracy of using the classical F-test of GEI is in question (Yates & 

Cochran, 1938). Several diagnostic plots are recommended by statisticians for detecting 

failures in the assumptions (unusual observations, nonnormality, heterogeneity) and other 

inadequacies in the combined ANOVA. Examination of the assumptions through 

statistical tests and residual plots should be an automatic part of any ANOVA before 

using parametric stability methods, ignored by the researchers in most of the genotype 

performance trails. In the combined experiment analysis, genotypes and environments 

were considered fixed while blocks assumed random. 

A combined two factor linear analysis of variance model was used on the data: 

 

ijkjKijjiijkY   )(   i = 1,2, … ,g  ;    j = 1,2, … , e  ; k = 1,2, … , r 

 

where Yijk; observation on the ith genotype in the jth in the kth block, μ; overall mean, αi; 

fixed effect of genotype i, βj; fixed effect of environment j, αβij; fixed interaction effect of 

genotype i and environment j, ρk(j); random block within environment effect, εijk; 

experimental error are assumed to be randomly distributed with zero mean and 

homogeneous variance σ2. If these assumptions hold true, the model may be analyzed by 

combined ANOVA. Such an ANOVA is naturally the first step if we want to find out if 

GEI exists in combined experiment. 

Nonparametric stability analyses were performed to identify the stable and unstable 

genotypes across heteroscedastic environments. Five nonparametric stability statistics 

were used to assay the combined data. Four of these were proposed by Huehn, (1979) and 

Nassar & Huehn (1987), which combine mean yield and stability. The data was arranged 

in a two way table with g rows (genotypes) and e columns (environments). We denote rij 

be the rank of ith genotype in jth environment and ri as the mean rank across all 

environments for the ith genotype under the null hypothesis of maximum stability. Huehn 

stability statistics was computed by using the ranks rij of the aligned observations (Y*
ij = Yij 

– Yi – Y), where, Yi is the mean yield of the ith genotype, Yij is the yield of ith genotype in 

the jth environment and Y.. is the grand average across all environments. The correction 

has been proposed to get independence from genotypic effects, i.e., to reflect the rank of 
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interaction effect plus experimental error (Nassar & Huehn, 1987).  The statistics based 

on aligned yield ranks of genotypes in each environment are expressed as follows: 
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The lowest value for each of these statistics indicates maximum stability for the 

genotype. According to Huehn (1990), the use of Si
(1) was preferred to Si

(2) for many 

practical considerations reported to be easy to calculate, interpret and is an efficient for 

test of significance.  These statistics do not require homogeneity of variances assumption 

and was developed for determining stability of genotypes in nonnormal and 

heteroscedastic data. In this study, few values were missing for certain genotypes at 

certain environments. Use of nonparametric stability statistics is theoretically robust for 

missing values. Missing value was replaced with the average rank of the genotype for the 

environments (Huehn, 1990).  

Nassar & Huehn (1987) and Huehn & Nassar (1989) proposed two tests of significance 

for Si
(1) and Si

(2) The explicit formulae for means E(Si
(k)) and variances var(Si

(k)) are 

respectively: 
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The approximate statistical tests of significance and properties of Si
(1) and Si

(2) were 

developed from Nassar & Huehn, (1987) and Huehn & Nassar (1989; 1991) based on the 

normal distribution under the null hypothesis of no genotype environment interaction 

effects. The statistic Zi
(K) = [Si(k) – E(Si

(k))]2/var(Si
(k)) and here k = 1, 2; has an 

approximate 2 distribution with 1 degrees of freedom and the statistic Si
(k) = 




g

i

k

i

k

i ZS
1

)()(

, k = 

1,2; may be approximated by a 2distribution with g degrees of freedom. 

  Kang’s (1988) rank-sum-method as modified by Yue at el., (1997) is the fifth 

nonparametric stability statistic which selects simultaneously a genotype with high and stable 

yield across environments. The modified rank-sum method in which both yield (in ranks) and 
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first two Huehn (1987) nonparametric stability statistics Si
(1) and Si

(2) (in ranks) are combined, 

was used to evaluate the characteristics of 20 wheat genotypes. These two rank-sum statistics 

YSi
(1) and YSi

(2) computed as Rank-sum (yield rank + ranks of the rank-based stability 

statistic, Si
(1) and Si

(2)). This method assumes equal weight for yield and stability statistics for 

YSi
(1) and YSi

(2). The modified rank-sums provide a compromise statistic when both yield and 

stability are considered essential in a breeding programme. However, plant breeders may 

prefer to assign more weight to yield than to stability statistics. 

 The stability statistics were compared using Spearman’s rank correlation coefficient. 

Spearman’s rank correlation coefficient, as calculated from the ranks of 5 nonparametric 

stability statistics results in measuring the linear relationship between the 5 methods. 

Principal component analysis (PCA) method was used for stratifying nonparametric 

stability methods and genotypes. The combined experimental yield data were statistically 

analyzed using SPSS version 15.0 (2006) for plots and correlation matrix and MS EXCEL 

(version 2003) for nonparametric stability methods with spreadsheet formulae commands.  
 

Results and Discussion 
 

  In this study at each environment, a randomized complete block design (RCBD) with 

4 replicates was separately analyzed before pooling the parametric combined experiment. 

The environments MSEs results were obtained across 40 different environments for yield 

variable ranged from 0.02 to 1.00. The most noticeable feature of the separate analyses 

was that the largest mean squares error (MSE) at environment 2 is 1.00 and the smallest 

one as computed for environment number 34 was 0.02. This is indicator of wide 

variation. Out of 40 MSE values, 31 range between 0.02 and 0.30, while the remaining 

are 0.33, 0.33, 0.34, 0.34, 0.43, 0.43, 0.51, 0.54 and 1 (Table 1). The ratio of the largest 

MSE to the smallest MSE is (1.00/.02=50). There were wide and severe variations among 

MSEs across heteroscedastic environments, which explicitly pinpoint that the 

experimental conditions differ among environments and also indicate that when 

combined for parametric stability analysis the experimental data becomes heteroscedastic 

and thus we have problem in data. Rogan & Kaselman (1977) have reported that the rate 

of type 1 error varies as a function of degree of variance heterogeneity and, consequently 

it should not be assumed that the ANOVA F-test is always robust to variance 

heterogeneity even when design is balanced. Cochran (1947) and Eisenhart (1947) 

reported that nonhomogeneous variances had a greater impact on the estimates of 

treatments effects and their variances than on tests of significance. Improper blocking 

usually inflates experimental variance (Warren & Mendez, 1982) which may result in 

acceptance of false null hypothesis or rejection of true null hypothesis. Experimental 

MSEs (mixture of various levels of variations) across 40 environments were found to be 

heterogeneous even at p< 0.001 using Bartlett’s test, Cochran’s test and Hartley’s test 

(Table 2). The Z score (standardized residual) method establishes rule-of-thumb limits 

outside of which an observation is deemed to be an outlier i.e., according to standard 

normal distribution criterion observations with Z scores greater than 3 in absolute values 

are considered outliers (improbable). For some highly skewed multienvironment data 

sets, observations with Z scores greater than 1 in absolute value may be outlier 

(Rousseeuw & Leroy 1987). Figure 1 explicitly indicates severe heteroscedastic problem 

across environments along with ample outliers. However, by their nature majority of 

multienvironmental experimental MSEs were heterogeneous.  
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Table 2. Bartlett, Hartley and Cochran tests for homogeneous MSEs of 40 individual 

environments with 4 blocks and 20 genotypes. 

Variance 

homogeneity tests 
Untransformed  = Yield (t ha-1) Transformed = log Yield ( t ha-1) 

Bartlett 2= 633.24** 2= 812.31** 

Hartley Ha = 50** H = 58.33** 

Cochran Cb = 0.12** C = 0.12** 
** Significant at p = 0.01 
a H = (Largest of 40 MSEs) / (Smallest of 40 MSEs) 
b C = (Largest MSE) / (ΣMSEj) 

 

Transformation approach was used to decide the appropriate transformation type 

(power or root) of response variable Y to stabilize MSEs and normalize the data (Box & 

Cox, 1964).  In our study using Box-Cox transformation method the maximum likelihood 

estimate was ̂ =0.12 (or ̂  close to 0) which suggests and that transformed response 

variable (yield) is either logarithmic or Y0.12. Results also suggest that after 

transformation Bartlett’s test, Cochran’s test and Hartley’s test values further increased 

(Table 2). But both of these transformations were not successful in sufficiently stabilizing 

MSEs and bringing the distribution of the observations close enough to normality to meet 

the robustness properties of the parametric inference procedures. It was therefore 

necessary that as a last resort we make use of nonparametric stability methods were for 

analyzing GEI. Bradley (1982) stated that if the response variable consists of mixture of 

normal distributions or there is major departure from model’s assumptions, then such 

transformation will not be helpful. In this study, the other reason of failure of 

transformation is that the combined experimental data has no patternoized relationship 

between environments’ mean and variance (MSE) as shown in Fig. 3. 

          The coefficient of determination (R2), coefficient of variation (CV), superiority 

measure (Pj) and range values (Table 1) and plots shown in Figs. 1 & 2 clearly indicate 

that combined experimental data is problematic (hetroscedastic, nonnormal and ample 

outliers). Data have been drawn from populations that are heterogeneous, mixture of 

normal distributions, skewed, or have more observations in their tails than is true of the 

normal distribution (heavy-tailed distributions). According to Linn & Binns (1988) the 

modified stability measure (Pj) of the environments E34, E4, E26 E15, E18, E32 and E24 

with low (Pj) values indicated high relative stability and these environments had lowest 

yield performance except E26. Whereas E5, E40, E12, E19, E3, E2 and E23 with high 

(Pj) values revealed that these environments were problematic and had highest average 

yields except for E12. All environments had irregular hetroscedasticity irrespective of 

high or low mean (Table 1). 
  Agricultural scientists use the coefficient of variation (CV) as a measure of population 
variability. They use the CV to accept or reject the validity of trials. Use of CV is valid only 
when the simple regression coefficient b value of the regression of the natural log of the 
environments’ MSE on the natural log of the environments’ mean equals 2.0 (Bowman & 
Watson, 1997). In the proposed study of 40 hetroscedastic environment’s data sets of wheat 
crop data revealed no linear relationship i.e., because the estimate of b=0.014 between 
natural log of MSE and natural log of the mean, which bring the use of the CV for checking 
validity of crop performance trials into question. Again use of CV may affect the validity of 
trials due to heterogeneity of MSEs or because of existence of outliers in individual RCBD 
data across heterogeneous environments. 
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Fig. 1. Standardized residuals against environments depicting heterogeneity among environments 

with ample outliers. 

 
Fig. 2. Normal probability plot showing major violation of the normality assumption and indicating 

the mixture of normal distributions with outliers (Minitab 13.20). 
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Fig. 3. Plot of environment’s MSEs versus Means for 20 genotypes across 40 hetroscedastics environments. 
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Fig. 4. Classification of 20 wheat genotypes based on the grain yield (t ha-1) and Si(1)( across 40 hetroscedastic 

environments. The grand mean for grain yield was 3.66 (t ha-1) and the mean of the Si(1) was 6.65. 
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For more than 50% environments, R2 are less than 0.70. The results reported in Table 

1 are indicator of violation of strong linearity assumption in the model.  Cornell & Berger 

(1987) point out some factors in the data set that lower the value of R2. One of these 

factors which is relevant to our study, is that response variable yield contains ample 

outliers within the range of environments means (Fig. 1). The outlier observation will 

have larger residual than the other observations. The residuals of outliers made both SSE 

and SSY large. As a result R2 = 1- SSE/SSY approaches zero. Hence, outlier observations 

within the range of environment means have a reducing effect on R2 and change strong 

linear association into moderate linear relationship.  In particular, the linearity of 

response has been convincingly shown not to hold in many international 

multienvironment trials (Byth et al., 1976), including even for IMETs with carefully 

managed environments (Chapman et al., 1996).  

 It is a common practice among agricultural scientists that they usually ignore some 

strict and sensitive parametric assumptions e.g., homogeneity, normality and no outlier 

assumptions prior to undertaking the combined experiments. Any misunderstanding of 

statistics and statistical methods might lead to misleading and invalid inferences. 

 In many environments, problems encountered are in connection with the design of 

field experiments. There are a number of factors such as insect or bird attacks, crop 

diseases, lack of management, improper blocking and other accidental causes, especially 

in developing countries like Pakistan, may affect plots of some blocks of the small single 

RCBD experiments and may contribute to low yield of one or two genotypes (outliers) in 

comparison to others. 

 It is an invariable fact that in the METs the relative differences among genotypes 

across environments are inconsistent due to GEI. The differences in ranks of the 20 

genotypes across 40 heteroscedastic environments indicated the existence of GEI (data 

not shown). The mean grain yield of 20 genotypes across 40 environments varied from 

2.74 (t ha-1) (G11) to 4.01 (t ha-1) (G1) is shown in Table 3. The genotypes of G1, G2, 

G3, G5, G7, G9, G12, G16, G17, G18 and G20 had higher than grand mean grain yield 

while the rest had equal or lower values than grand mean grain yield. Taking the top 20% 

high yielding genotypes as a criterion for the assessment of the genotypes, G1, G2, G7 

and G20 gave the best yields, with mean yields greater than 3.9 (t ha-1) (Table 3). The 

environmental mean yield across the genotypes varied from 1.24 (t ha-1) in E12 to 6.78 (t 

ha-1) in E40 respectively and closely followed by 6.72 (t ha-1) in E5 (Table1). The mean 

yield and estimates of the 5 nonparametric statistics for the evaluation of genotypes over 

heteroscedastic environments are presented in Table 3. 

  The nonparametric statistics Si
(1), Si

(2), Si
(3) and Si

(6) values are based on transformed 

yield values for each genotype. Genotypes with low Si
(1), Si

(2), Si
(3) and Si

(6) are considered 

to have the high stability (Huehn, 1996). The statistical tests of significance Si
(1) and Si

(2) 

were proposed by Nassar & Huehn (1987). For each ith genotype, Zi
(k) k=1,2 values were 

calculated  based on the E(Si
(k)) and  Var(Si

(k)) under the null hypothesis H0, that the mean 

stability  for the ith genotype is E(Si
(k)) against the alternative that the mean stability 

deviates  from this expectation. If H0 is rejected, the ith genotype may be stable [i.e., Si
(k) 

< E(Si
(k))]or unstable [i.e., Si

(k) > E(Si
(k))] (Huehn & Nassar, 1991). As shown in Table 3 

the two overall chi square tests (2
0.05(20) = 35.32, 2

0.05(20) = 35.94) resulted in greater than 

the tabulated value 2
0.05(20) = 31.41and there was sufficient evidence for significant 

differences among the stability values of the 20 genotypes in our study. 
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 Table 3. Mean yield and 5 nonparametric statistics for wheat yield of 20 genotypes in 

40 heteroscedastic environments in Pakistan. 

Genotype 
Yield 

(t ha-1) 
Si

(1)a Zi
(1)b Si

(2)a Zi
(2)b Si

(3)a Si
(6)a YSi

(1)c YSi
(2)c 

G1 4.01 7.05 0.66 36.94 0.58 145.17 21.69 17 17 

G2 3.95 7.50 3.00 42.13 3.38 170.27 23.28 21 21 

G3 3.75 5.93 2.13 26.56 1.91 103.07 17.13 11 11 

G4 3.56 6.83 0.13 35.45 0.21 117.15 17.25 27 28 

G5 3.67 6.42 0.22 31.37 0.15 108.76 16.53 15 16 

G6 3.6 6.49 0.11 31.13 0.19 118.15 18.31 21 20 

G7 3.91 5.43 6.16 23.39 4.16 99.17 16.39 5 5 

G8 3.29 7.27 1.61 39.12 1.47 137.44 19.66 31 31 

G9 3.88 6.80 0.09 35.07 0.14 130.9 19.89 17 18 

G10 3.62 6.88 0.21 35.22 0.17 136 19.78 27 26 

G11 2.74 6.64 0.00 32.92 0.00 121.4 18.25 25 25 

G12 3.76 6.02 1.65 27.18 1.58 94.01 15.17 17 16 

G13 3.66 6.80 0.09 34.91 0.12 128.13 20.05 26 25 

G14 3.22 8.18 9.70 50.39 12.58 172.78 22.07 36 36 

G15 3.77 5.67 3.98 24.18 3.52 85.92 14.49 15 15 

G16 3.62 6.20 0.84 28.40 1.01 101.61 16.73 22 22 

G17 3.76 6.66 0.00 33.32 0.00 122.6 19.47 25 25 

G18 3.85 7.02 0.57 36.64 0.49 143.26 21.75 30 30 

G19 3.66 7.42 2.45 41.48 2.90 160.99 22.92 34 34 

G20 3.96 6.01 1.72 27.57 1.38 109.15 16.62 20 21 

Sum   35.32  35.94     

 E(Si
(1)) 6.65 E(Si

(2)) 33.25      

 Var(Si
(1)) 0.24 Var(Si

(2)) 23.36      

 41.312

)20(05.0 
 

84.32

)1(05.0 
 

     

a Si
(1) average absolute rank dispersion of a genotype over environments, Si

(2) the variance among the ranks 

over environments, Si
(3) and Si

(6) are the sum of absolute deviations and sum of squares of ranks for each 

genotype relative to the mean of ranks respectively. b Zi
(1) and Zi

(2) are chi-square χ2 test  statistics for Si
(1) and 

Si
(2) c YSi

(1) and YSi
(2) are the modified rank-sum of Kang (1988) Statistics. 

 

Corresponding to Huehn’s first two methods Si
(1) and Si

(2), G7 had the smallest 

changes in ranks and thus regarded as the most stable genotype unlike G14, which was 

significantly (p<0.005) unstable. The next most stable genotype was G15, followed by 

G3 (Table 3). The nonparametric statistics Si
(1) and Si

(2), are almost in complete linear 

agreement in ranking with 20 genotypes across environment as shown in Tables 4 & 5, 

while exact linear relationship was found in Sagherloo et al., (2008) and Rose IV et al., 

(2007). By using the Si
(3), the genotypes G15, G12 and G7 with minimum Si

(3) value 

under heteroscedastic environments were considered to be stable and the genotypes G14, 

G2 and G19 were unstable. According to Sj
(6) the genotypes G15, G12 and G7 with low 

Sj
(6) values were stable genotypes and the genotypes G2, G19 and G14 with high Sj

(6) 

values were unstable.  

 Rose IV et al., (2007) have reported that examination of the formulae for the Si
(1), 

Si
(2), Si

(3) and Si
(6) (rank-based statistics) revealed that small number of genotypes when 

assayed with these statistics have been found to be extremely sensitive but may give 

misleading results, whereas in our study a large number of genotypes with similar 

statistics gave valid results. 

  With reference  to Kang (1988) and Yue et al., (1997) stability statistics  YSi
(1) and 

YSi
(2) rank-sum of the 20 genotypes are shown in Table 4. The genotypes G7, G3 and 
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G15 with lower values of YSi
(1) and YSi

(2) were  considered to be stable while G14, G19 

and G8  with higher  YSi
(1) and YSi

(2) were considered to be unstable. The most unstable 

genotype according to Si
(1), Si

(2), YSi
(1) and YSi

(2) was G14, which ranked 19th for mean 

yield (Table 4). G1 had the highest mean yield and ranked 5th and 6th according to YSi
(1) 

and YSi
(2). It is pertinent to note that the stable genotypes identified by all 5 rank-based 

stability methods in this study had grain yields above the grand average. With reference 

to the 5 distributions free methods applied in our study G7 and G15 were identified as the 

most stable genotypes, and G14 and G19 as unstable ones. The remaining genotypes 

were intermediate between these two strata’s. As a result of this study, G7 was 

recommended for national release in Pakistan, as it adequately demonstrated stability 

across wide variety of environments and also ranked 4th in yield performance. 

 The rank correlation between mean yield was significantly and positively correlated 

with Kang’s (1988) modified rank-sum statistics (YSi
(1) and YSi

(2)) but it was not 

correlated with Si
(1), Si

(2), Si
(3) and Si

(6) (Table 5). The stability statistics Si
(1), Si

(2), Si
(3) and 

Si
(6) were positively and significantly correlated (p<0.01), indicating that the four 

statistics were similar in classifying the genotypes according to their stability  under 

heteroscedastic environmental conditions (Table 5). Consequently, only one of these 

statistics would be sufficient to select the stable genotype in a plant breeding program. 

Similar results were obtained by Mohammadi et al., (2008) in a study on wheat and 

(Sabaghnia et al., 2006) on lentil.  

 Among Huehn’s four rank-based stability statistics Si
(1), Si

(2), Si
(3) and Si

(6) the first 

two Si
(1) and Si

(2), were very much positively  linearly  associated  among themselves. 

Overall, all Si
(1), Si

(2), Si
(3) and Si

(6) could be highly satisfactory measures for stability, 

whereas Si
(1) was better than others (Huehn, 1990).  

As a simple but alternative graphical assessment of stability of genotypes was also 

assessed by mean vs. Si
(1) Plot.  The 20 genotypes were then classified into the following 

four groups on the basis of grain mean yield and Si
(1) across environments. This idea was 

taken from (Francis & Kennenberg, 1978) in which they grouped genotypes on the basis 

of mean yield and coefficient of variation across environments. 

Group 1: High mean yield (above the average of all genotypes) and low Si
(1) (below the 

expected value of Si
(1))  

Group 2: High mean and high Si
(1); 

Group 3: Low mean and low Si
(1): 

Group 4: Low mean and high Si
(1); 

 
According to these configurations, from Figure 4 genotypes falling in group 1 can be 

considered as stable. Group 1 contains that G7, G15, G20, G3 and G12 are most stable, 
and well adapted to all environments i.e., those have general adaptability (Fig. 4). 
Genotypes G1, G2, G9 and G18 fall in group 2 that indicates increasing sensitivity to 
environmental change and greater specificity of adaptability to high yielding 
environments. Group 3 reflects poorly adapted genotypes to all environments. Only G16 
falls in this group. Group 4, contains G6, G4, G11, G14 and G8. This group reflects 
greater resistance to environmental fluctuation and increasing adaptability to low yielding 
environments. Fig. 4 clearly indicates that G11 is an outlier genotype with reference to 
the lowest mean yield while G14 is also outlier corresponding to low mean yield and the 
highest value of average rank dispersion Si

(1). 
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Table 4. Ranks of 20 wheat genotypes based on wheat yield and 5  

nonparametric stability statistics. 

Genotype Yield Si
(1) Si

(2) Si
(3) Si

(6) 
Rank Sum 

YSi
(1) YSi

(2) 

G1 1 16 16 17 16 5 6 

G2 3 19 19 19 20 9 9 

G3 10 3 3 5 7 2 2 

G4 17 13 14 8 8 15 16 

G5 11 7 8 6 4 3 4 

G6 16 8 7 9 10 9 8 

G7 4 1 1 3 3 1 1 

G8 18 17 17 15 12 18 18 

G9 5 11 12 13 14 5 7 

G10 14 14 13 14 13 15 15 

G11 20 9 9 10 9 12 12 

G12 8 5 4 2 2 5 4 

G13 12 12 11 12 15 14 12 

G14 19 20 20 20 18 20 20 

G15 7 2 2 1 1 3 3 

G16 14 6 6 4 6 11 11 

G17 8 10 10 11 11 12 12 

G18 6 15 15 16 17 17 17 

G19 12 18 18 18 19 19 19 

G20 2 4 5 7 5 8 9 

 

Table 5. Mean values Y and 5 nonparametric stability statistics for grain yield of 

twenty wheat genotypes evaluated in 40 environments. 

 Y Si
(1) Si

(2) Si
(3) Si

(6) YSi
(1) YSi

(2) 

Y 1 0.027 0.013 -0.05 -0.068 0.647** 0.615** 

Si
(1) 0.027 1 .994** 0.947** 0.907** 0.748** 0.770** 

Si
(2) 0.013 0.994** 1 0.943** 0.893** 0.730** 0.765** 

Si
(3) -0.05 0.947** 0.943** 1 0.965** 0.661** 0.687** 

Si
(6) -0.068 0.907** 0.893** 0.965** 1 0.630** 0.640** 

YSi
(1) 0.647** 0.748** 0.730** 0.661** 0.630** 1 0.990** 

YSi
(2) 0.615** 0.770** 0.765** 0.687** 0.640** 0.990** 1 

** Correlation is significant at the 0.01 level (2-tailed). 

 

Prior to selection, it is quite crucial to be aware of genotypes ranking in each 

environment and Figure 4 provided mean yield (t ha-1) vs. Si
(1) values accordingly. G7 and 

G15 are the most stable and well adopted across heteroscedastic environments. G15 has the 

highest mean rank, while G11 the lowest one. However G7 has larger mean yield than G15.  

 To understand the relationships among the rank-based statistics, principal component 

analysis (PCA) was performed on the rank correlation matrix (Table 5). PCA is a 

multivariate statistical technique which can be used for simplification and dimensionality 

reduction in a data set by retaining  those characteristics that contribute most to its 

variation. In this regard lower-order principal components are retained and higher order 

ones are ignored. 



NON-PARAMETRIC METHODS FOR STABILITY OF WHEAT GENOTYPES  

 

725 

The results reported in Table 6 indicate that the loadings of the first two PCAs which 

explained 93% (74% and 19% by PCA1 and PCA2 respectively) of the variation of 

original variables. PCA1 is primarily stability and PCA2 is mostly yield. The 

relationships among the different nonparametric stability statistics are graphically 

displayed in a biplot of PCA1 versus PCA2 in Fig. 5, where both axes were considered 

simultaneously. Three groups in Fig. 5 can be defined as; 

Group 1: Si
(1), Si

(2), Si
(3) and Si

(6)  

Group 2: YSi
(1) and YSi

(2)  

Group 3: Mean yield (Y) 

 

Group 1 that included (Huehn 1979) four stability statistics Si
(1), Si

(2), Si
(3) and Si

(6) 

are shown in Fig. 5. These nonparametric methods were positively linearly correlated 

with each other and with: YSi
(1) and YSi

(2) (p<0.01) but not with mean yield (as reported 

in Table 4). Huehn (1979) stability statistics Si
(1), Si

(2), Si
(3) and Si

(6) provide a measure of 

stability in the static sense, since a genotype showing a constant performance in all 

environments does not necessarily respond to improved growing conditions with 

increased yield.  Therefore, stable genotypes according to these methods are adapted for 

those regions where growing conditions are unfavorable. 

Group 2, which contains rank-sum YSi
(1) and YSi

(2) were found to be positively and 

significantly correlated (p<0.01) to each other while moderately positively correlated 

with mean yield. This group consists of statistics that were influenced simultaneously by 

both mean yield and stability. The statistic rank-sum is related to dynamic stability, while 

the remaining procedures are associated with static stability. 

 Yue at el., (1996) and Yue at el., (1997) have reported that the rank-sum is related to 

high yield performance. Therefore rank-sum stability statistics (YSi
(1) and YSi

(2)) are related 

to dynamic concept. Becker & Leon (1988) suggested that a dynamic concept of stability 

does not require the genotypic response to environmental conditions to be equal for all 

genotypes. Group 3 contains mean yield separated by the two PCAs axes from the rank-

sum methods YSi
(1) and YSi

(2) (Group2) (Fig.4). The stability methods Si
(1), Si

(2), Si
(3) and 

Si
(6) were positively linearly  and significantly correlated (P<0.01), indicating that the four 

statistics were similar under heteroscedastic environmental  conditions (Table 5). As a 

result, only one of these statistics would be sufficient to select stable genotypes in a 

breeding program. Scapim et al., (2000) found significantly positive correlations between 

Si
(1) and Si

(2) in maize. Flores et al., (1998) also stated high positive rank correlation 

between Si
(1) and Si

(2) in fababean and peas. Piepho & Lotito (1992) have reported that 

generally, the results for the large data sets are more constant than for the small data sets 

and they found strong positive linear relation between Si
(1) and Si

(2) in sugar beet (p<0.001). 

The results of PC analysis performed for the ranks of genotypes according to 5 rank-

based methods are shown in the transpose of Table 5. The biplot explained 81% of the 

variation of the original variables in study 53% and 28% by PCA1 and PCA2, respectively 

(Table 7). A biplot based on first two PCAs applied to detect locations of genotypes (Fig. 

6). Genotypes that had PCA1 Scores <0 were identified as higher yielding (except G14 

near- zero PCA1 score) and those that had PCA1 scores > 0 were identified as lower 

yielding (G12 and G15). However genotypes G7 and G3 are high yielding and stable but 

having moderate and identical both PCAs scores (Fig. 6). In the biplot it is noticeable that 

the genotype 14 (G14) is most unstable and outlier genotype across environments, and G13 

with scores for axis 1 and 2 close to zero, showed the smallest interaction. 
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Fig. 5. Biplot of the first two principle component of ranks of stability of yield, estimated by 5 

rank-based methods using yield data from 20 genotypes across 40 environments. 
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Fig. 6. Biplot of first two principal components for studied genotypes. 
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Table 6. Loadings of rank derived from different nonparametric 

stability measures for PCA 1 and PCA 2. 

Stability statistics 
Principal component 

PCA1        PCA2 

Yield -0.37 0.14 

Si(1) -0.97 -0.03 

Si(2) -0.96 -0.03 

Si(3) -0.93 -0.06 

Si(6) -0.89 -0.06 

YSi(1) -0.88 0.07 

YSi(2) -0.89 0.06 

Variance explained (%) 74 19 

 

Table 7. First two principal components loadings of ranks obtained from 5 rank-

based methods used to analyze G X E interaction of wheat genotype yields. 

Genotypes 
Principal component axis 

PCA1 PCA2 

V-01078 (G1) -0.81 -0.46 

99B4012 (G2) -0.85 -0.43 

Wafaq 2001 (G3) 0.60 -0.75 

RWM-9313 (G4) 0.71 0.60 

V-00125 (G5) 0.69 -0.45 

DIAMOND (G6) 0.86 -0.38 

PR-84 (G7) 0.46 -0.72 

TW 0135 (G8) 0.56 0.73 

V-00055 (G9) -0.74 -0.64 

99B2278 (G10) 0.22 0.85 

KT-7 (G11) 0.97 0.02 

V-01180 (G12) 0.92 0.19 

DN-47 (G13) -0.24 -0.14 

V-9021 (G14) -0.12 0.70 

CT-00062 (G15) 0.99 0.10 

7_03 (G16) 0.83 0.41 

PR-86 (G17) -0.71 0.57 

V-02192 (G18) -0.92 0.33 

V-002493 (G19) -0.92 0.34 

L. Check (G20) -0.54 0.70 

Eigenvalue 10.58 5.62 

Variance Explained (%) 53 28 

 

In this study environmental conditions i.e., MSEs are severely different 

(heteroscedastic) as presented in Table 1. This is very true of Pakistan because climatic 

conditions differ from province to province and within the provinces as well. Moreover the 

quality of management also differs among the cultivars as well as among the experimental 

stations situated in various provinces of Pakistan. Thus, stable genotypes as detected in this 

study recommended for those Pakistani regions, where multienvironmental trials growing 

conditions are widely different.  
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Conclusions 

 

The most widely used stability parametric methods may be sensitive to violation of 

normality, homogeneity, no mixture of normal distributions and absence of many 

outliers’ assumptions in combined analysis of variance model. Violation of these 

assumptions may make point and interval estimation, and testing of hypothesis difficult. 

There is general agreement among researchers about superiority of parametric methods 

over nonparametric methods in terms of power; but if one or more of the underlying 

parametric assumptions are severely violated, the power advantage may not be there.  For 

retaining parametric stability measures, various transformations (logarithms and roots) 

can be applied to rectify the violation of these assumptions, but none of these could be 

successful. As a last resort under such situations, most of the researchers prefer the use of 

appropriate nonparametric stability methods. In the present study 5 most widely applied 

nonparametric stability measures were applied to 20 genotypes grown across 40 

hetroscedastic environments. The focus of the present study was thoroughly testing 

parametric combined ANOVA model assumptions, rectification and justification of 

nonparametric stability methods and their application to the data from NUWYT 

experiments in Pakistan for the year (2004-05). The results of the study revealed severe 

violation of assumptions that justify the use of nonparametric stability methods to analyze 

GEI in METs. The results of the study using graphical, tabular and statistical tests 

explicitly indicate that these METs data are not suitable for parametric stability methods 

and therefore recommendations based on those methods may be seriously misleading. 

However, recommendations based on the above suggested non-parametric methods 

combined with multivariate methods can be used to formulate more plausible 

recommendations which are based on the evidence from the data and less relying on the 

assumptions. 
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