

SPATIO-TEMPORAL EFFECTS ON ASSOCIATION OF PLANT SPECIES IN SOONE VALLEY OF PAKISTAN

IFTIKHAR AHAMAD, MUMTAZ HUSSAIN, MUHAMMAD SAJID
AQEEL AHMAD* AND MANSOOR HAMEED

Department of Botany,
University of Agriculture, Faisalabad, Pakistan, Pakistan
Corresponding author: sajidakeel@yahoo.com

Abstract

Six ecologically diverse study sites viz., Khabeki, Khoora, Dape Sharif, Anga, Knotti Garden and Jallar were selected mainly on the basis of differences in their environmental attributes especially variations in elevation, slope, aspect, altitude, topography, soil composition, habitat, vegetation type and plant community. The available plant species at selected sites were enlisted. The ecological data was recorded during all the four seasons (autumn, winter, spring and summer) using quadrat sampling method. Soil physical and chemical properties of each site had their own impacts on the species association but seasonal effects, which were particularly due to different temperature and rain falls during different seasons of the year, were more pronounced. Most of the herbaceous species were frequent during summer and autumn due to suitable temperature and availability of moisture and nutrients. However during winter sparse vegetation did not show grouping of plants due to severe cold temperature. Availability of different nutrients at different sites and similar ability of some species to absorb these nutrients also had significant effect on association of species. Species sharing similar habitat were mostly associated as moisture loving species were grouped around water springs of Knotti Garden and Dape Sharif. Salt tolerant species were associated at Jaller site. Species which can tolerate both high salinity and pH were associated at Anga and Khoora sites.

Introduction

The Salt Range in the Punjab province of Pakistan is a 175 km thrust between the foot hills of Himalayan Mountains and Indus plains extending from the Jhelum River near Tilla Jogian in the east to the Indus River near Kalabagh in the west (Frisina *et al.*, 2001). Geographically it is located between longitudes 71°00' and 74°00' E and latitudes 32°10' and 33°15' N, covering an area of 10,529 km² (Afzal *et al.*, 1999). The vegetation of the Salt range varies with elevation soil type and precipitation. It is predominantly comprised of coarse grasses and scrub plants and has been placed under the division of sub-tropical dry thorny forests. *Acacia modesta* Wall and *Olea ferruginea* Royale have been recorded as the two distinguishing trees of this region (Champion, 1936). However, the vegetation of the entire region is exposed to severe habitat losses resulting in accelerated depletion of natural resources particularly plant diversity (Ahmad & Waseem, 2004).

Soone Valley, lying in the center of the Salt Range is regarded as the heart of Salt Range. It covers an area of 300 km², and comprised of many undulating lands, brine lakes, and natural fountains. The highest peak of the Salt Range i.e., Skaser top (1522 m) also exists in the Soone Valley (Afzal *et al.*, 1999). All these aspects impart it a special ecology in the region which is not only well reflected in the variation in the prevailing natural vegetation but also fully exploited by the local people in growing some out of season vegetables i.e., cauliflower and tomato, which earn a good price in the markets of nearby

cities. However, the extensive cultivation of vegetable crops accompanied by low rainfall during the past few years has drastically depleted the aquifer of the valley (Hussain, 2002). As a consequence, the unique wetlands i.e., Khabbeki (a Ramsor site) and Ucchali complex, of the valley are totally dried. Owing to these altered environmental changes and some anthropogenic disturbances i.e., overgrazing, lopping of woods for browsers and logging of woods for fuel and furniture needs, the natural vegetation of the Soone valley is highly threatened and is expected to display much spatio-temporal variation in its composition (Ahmad *et al.*, 2007, Ahmad *et al.*, 2008a & b).

The abundance of different plant species at a site depends on the amount of available soil moisture and mineral contents essential for plant growth and development. The differences in the species composition and their distribution pattern are also controlled by mean annual temperature, annual precipitation and the length of dry season (Skarpe, 1990). Sometimes, a group of species depends on each other and on a specific set of physical conditions for their existence. Different species showing similar distribution pattern along any environmental gradient are said to be associated and constitute the dominant vegetation type (Varghese & Murthy, 2006). Hence the objective of this study was to determine the spatio-temporal variation in the species association in the vegetation of Soone Valley in the Salt Range of Pakistan.

Materials and Methods

The studies were conducted during 2005 and 2006 to determine association pattern of plant species at different sites and seasons. For this purpose, the valley was extensively surveyed and the available species at selected sites were enlisted. Six ecologically diverse study sites viz., Khabeki, Khoora, Dape Sharif, Anga, Knotti Garden and Jallar were selected mainly on the basis of differences in their environmental attributes especially variations in elevation, slope, aspect, altitude, topography, soil composition, habitat, vegetation type and plant community (Tables 1 & 2).

Association of species: The ecological data collected were organized in contingency Tables with 2 plant species appearing binomially distributed (present or absent) in the table to calculate association between them (Hubalek, 1982). A chi-square test was then applied to the tables in order to test the significance of the pair-wise associations (Dice, 1945; Ludwig & Reynolds, 1988).

Results and Discussion

Three tree species were recorded from the Khabeki site viz., *Acacia modesta*, *A. nilotica*, and *Olea ferruginea* along with one large shrub *Ziziphus nummularia*. *Acacia modesta* has an umbrella-like canopy, and it seems to be restricted the growth of other plant species as it was associated positively with only herbaceous *Solanum nigrum*. *Acacia nilotica*, on the other hand was associated with a number of species. It was positively associated with a perennial shrub *Justicia adhatoda* in three seasons, but with *Salvia virgata* in autumn, with *Achyranthes aspera* and *Solanum incanum* in winter and spring, with *Solanum nigrum* in spring and with *Peganum harmala* in summer (Table 3). It seems to facilitate the presence of these species as reported by Connell & Slatyer (1977) and Langenheim *et al.*, (1984).

Table 1. Geographical aspects of the sites selected in the Soone Valley of the Salt Range.

Sites	Coordinates	Elevation (m)	Slope (%)	Aspect
Khabeki	32.35N and 72.12 E	774	30-35	Western
Khoora	32.23N and 72.11 E	866	40-45	Northern
Dape Sharif	32.30N and 72.04 E	890	35-40	Western
Anga	32.35N and 72.05 E	821	30-35	Northern
Knotti Garden	32.40N and 72.14 E	783	30-35	Northern
Jaller	32.27N and 72.09 E	996	50-60	Eastern

Table 2. Plant community structure of the sites selected in the Soone Valley of the Salt Range.

Sites	Habitat description	Vegetation type	Plant community
Khabeki	Moderate slopes	Dominant large shrubs with grasses	<i>Justicia adhatoda</i>
Khoora	Hills with steep slopes	Shrubs herbs and grasses	<i>Dodonea viscosa</i>
Dape Sharif	Almost Plain area	Shrubs and grasses	<i>Dodonea viscosa</i>
Anga	Hills with steep slopes	Dominant grasses with shrubs	<i>Acacia modesta</i>
Knotti Garden	Hills with steep slopes	Mixture of herbs grasses and shrubs	<i>Justicia adhatoda</i> and <i>Acacia fernesiana</i>
Jaller	Pass through the Hills	Grasses herbs and shrubs along the pass between the hills.	<i>Acacia modesta</i> and <i>Justicia adhatoda</i>

At Khoora site, vegetation was dominated by shrubby vegetation, with tall shrubs like *Ziziphus nummularia* and *Acacia modesta* and single tree *Olea ferruginea* at scattered places (Table 4). Few dominant species at this site may be due to specific environmental conditions as reported by Clark & Clark (1992). Such habitat requirements for the establishment of few species could potentially have been constrained to specific areas of this site that support those requirements. All shrubby and tree species associated with very few species at this site; however this association varied with the season. *Cynodon dactylon*, however was associated with the maximum number of species, most of them were shrubs like *Ziziphus nummularia*, *Buxus pappilosa*, and *Dodonaea viscosa*. This species dominated the Khoora site among grasses. As mentioned earlier that this species can tolerate a number of environmental stresses and spread over different habitat types (Speranza, 1995), there is a good chance of its association with a number of species.

Dape Sharif showed the maximum species richness and diversity. Among trees, *Ziziphus mauritiana* showed association with the maximum number of species. Only *Z. nummularia* was the large shrubby species that had positive association with *Z. mauritiana*, and that may have been due to the possession of similar habitat conditions (Qaiser & Nazimuddin, 1996). *Acacia nilotica* had positive association with herbs and under-shrubs only except a shrubby *Dodonaea viscosa*. At this site *Cynodon dactylon* was associated with few species only and this association was found only in autumn season. This was an indication of its seasonal spread, which is more in the autumn season. At Dape Sharif, *Prosopis glandulosa* also seemed to facilitate the growth of a number of species as it showed association with mostly herbaceous species along with shrub *Dodonaea viscosa* and tall grass *Saccharum griffithii* (Table 5).

Table 3. Association of plant species at Khabeki site during different seasons.

Plant species	Abr.	Autumn	Winter	Spring	Summer
<i>Achyranthes aspera</i>	Aa	Os, Sc, Si	An, Sv	An, Zn	An, Sv
<i>Acacia modesta</i>	Ac		Sn		
<i>Acacia nilotica</i>	An	Ja, Sv	Aa, Si	Aa,Ja, Si, Sn	Aa, Ja,Ph.
<i>Adiantum capillus-veneris</i>	Ac				
<i>Albizia lebbeck</i>	Al				
<i>Alternanthera sessilis</i>	As				
<i>Barleria cristata</i>	Bc				
<i>Boerhavia procumbens</i>	Bp				
<i>Buxus papillosa</i>	Bpa				
<i>Cannabis sativa</i>	Cs				
<i>Capparis deciduas</i>	Cde				
<i>Conzya ambigua</i>	Ca				
<i>Cynodon dactylon</i>	Cd	Dbi, Dv, Pp		Db, Os	Os
<i>Cynoglossum lanceolatum</i>	Cl				
<i>Cyperus rotundus</i>	Cr				
<i>Datura metel</i>	Dm				
<i>Desmostachya bipinnata</i>	Dbi	Cd, Ja			Ja
<i>Dicliptera bupleuroides</i>	Db	Ja, Sc		Ca	Pp
<i>Dodonaea viscosa</i>	Dv	Cd			
<i>Fagonia indica</i>	Fi				
<i>Heliotropium strigosum</i>	Hs				
<i>Justicia adhatoda</i>	Ja	An, Db		Sn	Dbi
<i>M. coromandelianum</i>	Mc	Sn, Zn			Ws
<i>Melilotus indica</i>	Mi				
<i>Mentha longifolia</i>	Ml				
<i>Nerium oleander</i>	No				
<i>Olea ferruginea</i>	Of			Os	
<i>Oxalis corniculata</i>	Os	Aa, Ph, Zn		Cd, Of	Cd, Sc
<i>Parthenium hysterophorus</i>	Pp	Cd, Sv			Dv, Sc, Sn, Sv
<i>Peganum harmala</i>	Ph	Os		Zn	Db
<i>Prosopis glandulosa</i>	Pg				
<i>Prosopis juliflora</i>	Af				
<i>Saccharum griffithii</i>	Sm				
<i>Salvia virgata</i>	Sv	An, Sn, Pp		Sn	Aa, Pp, Sc, Sn
<i>Sida cordifolia</i>	Sc	Aa, Db, Pp		Zn	Pp, Os, Sn, Sv
<i>Solanum incanum</i>	Si	Aa	Aa, An	Aa	
<i>Solanum nigrum</i>	Sn	Mc, Sv	Am, Ja	Aa, Sv, Zn	Pp, Sc, Sv
<i>Solanum surratense</i>	Ss				
<i>Sophora tomentosa</i>	St				
<i>Tecomella undulata</i>	Tu				
<i>Tinospora malabarica</i>	Tm				
<i>Tribulus terrestris</i>	Tt				
<i>Withania coagulans</i>	Wc				
<i>Withania somnifera</i>	Ws				Mc
<i>Ziziphus mauritiana</i>	Zm				
<i>Ziziphus nummularia</i>	Zn	Mc		Aa, Ph, Sc, Sn	

Table 4. Association of plant species at Khoora site during different seasons.

Plant species	Abr.	Autumn	Winter	Spring	Summer
<i>Achyranthes aspera</i>	Aa	Si, St	Am, Zn		Dbi, Os, Sm
<i>Acacia modesta</i>	Ac	Zn	Aa, Cd		Cde
<i>Acacia nilotica</i>	An			Bp, Sv	Os
<i>Adiantum capillus-veneris</i>	Ac				
<i>Albizia lebbeck</i>	Al				
<i>Alternanthera sessilis</i>	As				
<i>Barleria cristata</i>	Bc				
<i>Boerhavia procumbens</i>	Bp	Sc	Cd, Dv, Ja, St	An, Cd	
<i>Buxus papillosa</i>	Bpa	Cd, Pg			
<i>Cannabis sativa</i>	Cs				
<i>Capparis deciduas</i>	Cde				
<i>Conyza ambigua</i>	Ca				
<i>Cynodon dactylon</i>	Cd	Bpa, Dv, Zn	Am, Bp, Dv, Ja, Bp, Dv, Ph, Zn	Dv, Ja, Si, Tu	
<i>Cynoglossum lanceolatum</i>	Cl				
<i>Cyperus rotundus</i>	Cr				
<i>Datura metel</i>	Dm				
<i>Desmostachya bipinnata</i>	Dbi				Ac
<i>Diclyptera bupleuroides</i>	Db				
<i>Dodonaea viscosa</i>	Dv	Cd, Si	Bp, Cd,	Cd, Ja	Ja, Sc, Zn
<i>Fagonia indica</i>	Fi				
<i>Heliotropium strigosum</i>	Hs				
<i>Justicia adhatoda</i>	Ja	Sm	Bp, Cd	Dv	Cd, Dv, Ph
<i>M. coromandelianum</i>	Mc				
<i>Melilotus indica</i>	Mi				
<i>Mentha longifolia</i>	Ml				
<i>Nerium oleander</i>	No				
<i>Olea ferruginea</i>	Of	Pg, Si, Sn	Cd		
<i>Oxalis corniculata</i>	Os				Aa, An.
<i>Parthenium hysterophorus</i>	Pp				
<i>Peganum harmala</i>	Ph			Cd, St	Ja
<i>Prosopis glandulosa</i>	Pg	Bpa,			
<i>Prosopis juliflora</i>	Af				
<i>Saccharum griffithii</i>	Sm		Dv		Aa, Am, Os
<i>Salvia virgata</i>	Sv	Sn		An, Zn	
<i>Sida cordifolia</i>	Sc	Bp, Sn			Dv, St, Tu, Zn
<i>Solanum incanum</i>	Si	Aa, Dv, Of, St			Cd
<i>Solanum nigrum</i>	Sn	Of, Ja, Sc, Sv			
<i>Solanum surratense</i>	Ss				
<i>Sophora tomentosa</i>	St	Aa, Si	Bp	Ph, Tu	Sc, Zn
<i>Tecomella undulata</i>	Tu			St	Cd, Sc
<i>Tinospora malabarica</i>	Tm				
<i>Tribulus terrestris</i>	Tt				
<i>Withania coagulans</i>	Wc				
<i>Withania somnifera</i>	Ws				
<i>Ziziphus mauritiana</i>	Zm				
<i>Ziziphus nummularia</i>	Zn	Am, Cd	Aa	Am, Cd, Sv	Dv, Sc, St

Table 5. Association of plant species at Dape Sharif site during different seasons.

Plant species	Abr.	Autumn	Winter	Spring	Summer
<i>Achyranthes aspera</i>	Aa	Cs, Db, Pg, Sv	An, Dv, Zn	Db, Tu., Zm, Zn	Af, Db, Of, St, Zn
<i>Acacia modesta</i>	Ac	Zn	Zn		Db, Sn
<i>Acacia nilotica</i>	An	Dm, Hs, Ws	Aa,	Ph, Sc, St	Dv, Sv
<i>Adiantum capillus-veneris</i>	Ac			Os	
<i>Albizia lebbeck</i>	Al				
<i>Alternanthera sessilis</i>	As				
<i>Barleria cristata</i>	Bc	Cd, Db, Of		Cs, Db, Dm, Ph, Si, Sv	
<i>Boerhavia procumbens</i>	Bp	Dm, Hs, Sn, St, Zm			
<i>Buxus papillosa</i>	Bpa				
<i>Cannabis sativa</i>	Cs	Aa, Sv	Db, No	Bc, Db, Os, Sn	Os
<i>Capparis deciduas</i>	Cde				
<i>Conyza ambigua</i>	Ca	Cd, Db, Sn			Af, Tu
<i>Cynodon dactylon</i>	Cd	Af, Bc, Ca, Sn			
<i>Cynoglossum lanceolatum</i>	Cl	Hs, Ja, Pg, St, Sv, Zm			
<i>Cyperus rotundus</i>	Cr				
<i>Datura metel</i>	Dm	An, Bp, Zm	Aa, Zn	Bc	Ws, Zn
<i>Desmostachya bipinnata</i>	Dbi	Sm		No	
<i>Dicliptera bupleuroides</i>	Db	Aa, Bc, Ca, Zm	Cs, No	As, Bc, Cs, Os, Tu	Aa, Am, Sn, Zn
<i>Dodonaea viscosa</i>	Dv	Hs, St, Sv	Aa, Zm, Zn	Zn	Ss, Sv, Zn
<i>Fagonia indica</i>	Fi				
<i>Heliotropium strigosum</i>	Hs	Cn, Bp, Cy, Dv, Si, St			
<i>Justicia adhatoda</i>	Ja	Cy, Sv		No	Of, Ph
<i>Malvastrum coramandelianum</i>	Mc				
<i>Melilotus indica</i>	Mi				
<i>Mentha longifolia</i>	Ml				
<i>Nerium oleander</i>	No		Cs, Db	Db, Ja	
<i>Olea ferruginea</i>	Of	Bc	Dv		Aa, Ja, St
<i>Oxalis corniculata</i>	Os				
<i>Parthenium hysterophorus</i>	Pp				
<i>Peganum harmala</i>	Ph			An, Bc, Zn, Zm	Ja, Sc, Zn

Table 5. (Cont'd.).

Plant species	Abr.	Autumn	Winter	Spring	Summer
<i>Prosopis glandulosa</i>	Pg	Aa, Cy, Dv, Si, Sm, St,		Aa, Dv, Sm	Dv, Sm, Ws
<i>Prosopis juliflora</i>	Af	Cd			Aa, Ca, St, Zn
<i>Saccharum griffithii</i>	Sm	Db, Pg			
<i>Salvia virgata</i>	Sv	Aa, Cs, Cy, Dv, Ja, Pg, St		Bc, Sc, Sn, St	An, Dv, Tu, Ws
<i>Sida cordifolia</i>	Sc				
<i>Solanum incanum</i>	Si	Hs, Pg, St, Zm	Zn	Bc, Ss, Tt, Zm, Zn	St
<i>Solanum nigrum</i>	Sn	Bp, Ca, Cd	Cs, Db, Sv, Zm, Zn	Am, Db, Zm	
<i>Solanum surratense</i>	Ss				
<i>Sophora tomentosa</i>	St	Bp, Cy, Dv, Hs, Of, Si, Sv		Of, Sv, Zn	Aa, Of, Si
<i>Tecomella undulata</i>	Tu			Aa	Ca, , Sv
<i>Tinospora malabarica</i>	Tm				
<i>Tribulus terrestris</i>	Tt				
<i>Withania coagulans</i>	Wc				
<i>Withania somnifera</i>	Ws	An			Dm, Pg, Sv
<i>Ziziphus mauritiana</i>	Zm	Bp, Cy, Db, Dm, Si, St,	Aa, Dv, Zn	Aa, Ph, Si, Zn	Zn
<i>Ziziphus nummularia</i>	Zn	Ph	Aa, Dm, Dv, Si	Aa, Ph, Si, Sn, St	Aa, Af, Db, Dm, Ph

At Anga site, *Ziziphus nummularia* showed association with the maximum number of species among tall shrubs or trees. It was associated with tree/shrub species like *Acacia modesta*, *Olea ferruginea* and *Dodonaea viscosa*, and grass species as *Cynodon dactylon*. Among shrubs, *Dodonaea viscosa* was associated with a number of species; most of them were herbaceous species and single tree *Acacia modesta*. Among grasses, *Cynodon dactylon* was associated with the maximum number of species, but this association was weak in spring season, and this may be due to its suppressed growth due to severe winters (Table 6).

Knotti Garden had very specific type of vegetation. Tree species at this site were growing in isolated patches and only *Acacia modesta* showed some association with shrubby *Prosopis glandulosa*. However, there were some herbaceous and grass species found to be associated with tree species. *Justicia adhatoda* was associated with a number of species, particularly in autumn season, including three large shrubs/trees (*Prosopis juliflora*, *P. glandulosa* and *Olea ferruginea*) and two small shrubby species (*Nerium oleander* and *Cannabis sativa*). *Cynodon dactylon*, however, the most dominant perennial grass of the area and was found associated with a number of species in all the seasons (Table 7). As this species is adaptable and tolerant to a variety of habitat types and environmental stresses (Holmgren & Holmgren, 1977; Gleason & Cronquist, 1991; Speranza, 1995), therefore its distributional pattern seems to be not dependent on a particular soil condition (Bell, 2000; Hubbell, 2001).

Table 6. Association of plant species at Anga site during different seasons.

Plant species	Abr.	Autumn	Winter	Spring	Summer
<i>Achyranthes aspera</i>	Aa			Zn	
<i>Acacia modesta</i>	Am	Sn	Cd, Of, Zn	Ja, Zn	Dv, Ja, Zn
<i>Acacia nilotica</i>	An				
<i>Adiantum capillus-veneris</i>	Ac				
<i>Albizia lebbeck</i>	Al				
<i>Alternanthera sessilis</i>	As	Si			
<i>Barleria cristata</i>	Bc				
<i>Boerhavia procumbens</i>	Bp			Si, Zn	
<i>Buxus papillosa</i>	Bpa				
<i>Cannabis sativa</i>	Cs				
<i>Capparis deciduas</i>	Cde				
<i>Conyza ambigua</i>	Ca				
<i>Cynodon dactylon</i>	Cd	Mc, Mi, Ph, Sv, Ws	Am, Dv, Ja, Sv		Dv, Ja, Os, Sm
<i>Cynoglossum lanceolatum</i>	Cl				
<i>Cyperus rotundus</i>	Cr				
<i>Datura metel</i>	Dm		Dv		Ja
<i>Desmostachya bipinnata</i>	Dbi				
<i>Dicyptera bupleuroides</i>	Db				
<i>Dodonaea viscosa</i>	Dv	Ja, Ph, Zn	Cd, Dm, Sm, Zn		Cd, Ja, Ph, Sv, Ws
<i>Fagonia indica</i>	Fi				
<i>Heliotropium strigosum</i>	Hs				
<i>Justicia adhatoda</i>	Ja	Dv	Cd	Am, Of, Ph, Ws	Cd, Dm, Zn
<i>Malvastrum coromandelianum</i>	Mc	Cd, Mi			
<i>Melilotus indica</i>	Mi	Cd, Mc			Ph
<i>Mentha longifolia</i>	Ml				
<i>Nerium oleander</i>	No				
<i>Olea ferruginea</i>	Of		Zn,	Ja, Zn	Zn
<i>Oxalis corniculata</i>	Os			Ph, Zn	Cd
<i>Parthenium hysterophorus</i>	Pp				
<i>Peganum harmala</i>	Ph	Cd, Dv, Pg		Ja, Os, Sn, Sv, Ws	DV, Mi, Sn
<i>Prosopis glandulosa</i>	Pg	Dv, Ph, Sv, Ws			
<i>Prosopis juliflora</i>	Af				
<i>Saccharum griffithii</i>	Sm		Dv		Cd
<i>Salvia virgata</i>	Sv	Cd, Pg, Sn, Zn	Cd	Ph	Dv, Ws
<i>Sida cordifolia</i>	Sc				
<i>Solanum incanum</i>	Si	As		Bp, Zn	
<i>Solanum nigrum</i>	Sn	Am, Sv		Ph, Zn	Ph
<i>Solanum surratense</i>	Ss				
<i>Sophora tomentosa</i>	St				
<i>Tecomella undulata</i>	Tu				
<i>Tinospora malabarica</i>	Tm				
<i>Tribulus terrestris</i>	Tt				
<i>Withania coagulans</i>	Wc				
<i>Withania somnifera</i>	Ws	Cd, Pg		Ja, Ph	Dv, Sv
<i>Ziziphus mauritiana</i>	Zm				
<i>Ziziphus nummularia</i>	Zn	Dv, Sv, Of, Cd	Am, Dv, Of	Aa, Am, Bp, Cd, Dv, Of, Os, Si, Sn	Am, Ja, Of

Table 7. Association of plant species at Knotti Garden site during different seasons.

Plant species	Abr.	Autumn	Winter	Spring	Summer
<i>Achyranthes aspera</i>	Aa				
<i>Acacia modesta</i>	Ac	Sv, Pg	Bp, Pg	Pg	Db
<i>Acacia nilotica</i>	An				
<i>A. capillus-veneris</i>	Ac	Dm, Dbi	Cs, No	Cd, Db	Cd
<i>Albizia lebbeck</i>	Al				
<i>Alternanthera sessilis</i>	As				
<i>Barleria cristata</i>	Bc				
<i>Boerhavia procumbens</i>	Bp	Ja, Si	Am, Cd	Dv	Dv, Si, Sn
<i>Buxus papillosa</i>	Bpa				
<i>Cannabis sativa</i>	Cs	Ja, Os	Ac, No		
<i>Capparis deciduas</i>	Cde				
<i>Conyza ambigua</i>	Ca			Db	Db, Sc
<i>Cynodon dactylon</i>	Cd	Sn, Tm, Ws	Bp, Db, Dv, Ja, Of, Pj	Ac	Ac, Ja, Sn
<i>C. lanceolatum</i>	Cl				
<i>Cyperus rotundus</i>	Cr				
<i>Datura metel</i>	Dm	Ac			Cs, Sc
<i>Desmostachya bipinnata</i>	Dbi	Ac, Tm			Cs, Dv, Sc, Sn
<i>Dicyptera bupleuroides</i>	Db	Ja, Ml	Cd, Tm	Ac, Ca, Os	Am, Ws
<i>Dodonaea viscosa</i>	Dv		Cd	Bp, Ja, Of	Bp, Dbi, Ph, Sn
<i>Fagonia indica</i>	Fi				
<i>Heliotropium strigosum</i>	Hs				
<i>Justicia adhatoda</i>	Ja	Bp, Cs, Db, No, Oc, Of, Pj, Pg	Ca, Of	Dv, Pg, Ph, Of,	Cd, Of, Pg
<i>M. coromandelianum</i>	Mc				
<i>Melilotus indica</i>	Mi				
<i>Mentha longifolia</i>	Ml	Db			
<i>Nerium oleander</i>	No	Ja, Ws	Ac, Cs, Tm		
<i>Olea ferruginea</i>	Of	Ja	Cd,	Dv, Ja	Ja
<i>Oxalis corniculata</i>	Oc	Cs, Ja, Pg, Sv		Cs, Db, Ph	
<i>P. hystorophorus</i>	Ph				
<i>Peganum harmala</i>	Pha			Ja, Os	Dv
<i>Prosopis glandulosa</i>	Pg	Ja, Os, Sv	Cd, Si		
<i>Prosopis juliflora</i>	Pj	Ja			Sc
<i>Saccharum griffithii</i>	Sm				
<i>Salvia virgata</i>	Sv	Am, Os, Pg, Sn		Ws	
<i>Sida cordifolia</i>	Sc				Ca, Cs, Dm, Pj
<i>Solanum incanum</i>	Si	Bp	Pg		Bp, Ws
<i>Solanum nigrum</i>	Sn	Cd, Sv			Bp, Cd, Dbi
<i>Solanum surratense</i>	Ss				
<i>Sophora tomentosa</i>	St				
<i>Tecomella undulata</i>	Tu				
<i>Tinospora malabarica</i>	Tm	Cd, Dbi	Db, No		
<i>Tribulus terrestris</i>	Tt				
<i>Withania coagulans</i>	Wc				
<i>Withania somnifera</i>	Ws	Cd, No		Sv	Db, Dbi, Dv
<i>Ziziphus mauritiana</i>	Zm				
<i>Ziziphus nummularia</i>	Zn				

Vegetation diversity and species richness was the minimum at Jallar among all the study sites. However, there was strong association among most of the species (Table 8). According to Connell & Slatyer (1977) and Langenheim *et al.*, (1984) non-competitive species may actually be facilitated by the presence of other species, therefore, this may have resulted in a strong association of a number of species at this site. Among tall shrubs and trees *Ziziphus nummularia* was associated with a number of species, more frequently with shrubby species like *Justicia adhatoda* and *Dodonaea viscosa*. Shrubby species (*Dodonaea viscosa* and *Justicia adhatoda*) showed positive association mainly with herbs and grasses, the most important among them was *Cynodon dactylon*. Among grasses, *Cynodon dactylon* was associated with the maximum number of species, and this association was relatively weaker only in the summer season.

Table 8. Association of plant species at Jallar site during different seasons.

Plant species	Abr.	Autumn	Winter	Spring	Summer
<i>Achyranthes aspera</i>	Aa				
<i>Acacia modesta</i>	Am	Ph	Cd, Ja	Cd, Ja, Ph	Dv, Ph
<i>Acacia nilotica</i>	An				
<i>Adiantum capillus-veneris</i>	Ac				
<i>Albizia lebbeck</i>	Al				
<i>Alternanthera sessilis</i>	As	Dv, Ja, Ph, Sv, Ss			Cd, Ph, Wa
<i>Barleria cristata</i>	Bc				
<i>Boerhavia procumbens</i>	Bp				
<i>Buxus papillosa</i>	Bpa				
<i>Cannabis sativa</i>	Cs				
<i>Capparis deciduas</i>	Cde				
<i>Conyza ambigua</i>	Ca				
<i>Cynodon dactylon</i>	Cd	Dv, Fi, Ja, Of, Si, Sm, Ss, Sv	Am, Dv, Ja, Of, Sm	Am, Dv, Ja, Of, Ph, Si, Ss, Sv, Ws	As, Ja, Sm
<i>Cynoglossum lanceolatum</i>	Cl				
<i>Cyperus rotundus</i>	Cr				
<i>Datura metel</i>	Dm				
<i>Desmostachya bipinnata</i>	Dbi				
<i>Diclyptera bupleuroides</i>	Db				
<i>Dodonaea viscosa</i>	Dv	As, Cd, Of, Ph, Zn	Cd, Sn, Zn	Cd, Ja, Ph, Si, Sv	Ja, Ph
<i>Fagonia indica</i>	Fi	Cd, Ph, Sv	Ss		Ja
<i>Heliotropium strigosum</i>	Hs				
<i>Justicia adhatoda</i>	Ja	As, Cd,	Am, Cd	Am, Cd, Dv,	Am, Cd, Dv, Oc, Ph
<i>Malvastrum coromandelianum</i>	Mc				
<i>Melilotus indica</i>	Mi				
<i>Mentha longifolia</i>	Ml				
<i>Nerium oleander</i>	No				
<i>Olea ferruginea</i>	Of	Am, Cd, Dv, Sv	Am, Cd,	Am, Cd, Ph	Am
<i>Oxalis corniculata</i>	Oc	Cd, Ph			Ja
<i>Parthenium hysterophorus</i>	Pp				
<i>Peganum harmala</i>	Ph	Am, As, Dv, Fi, Os, Sn	Zn	Am, Cd, Dv, Of, Sv	Am, As, Dv, Ja

Table 8. (Cont'd.).

Plant species	Abr.	Autumn	Winter	Spring	Summer
<i>Prosopis glandulosa</i>	Pg			Dv, Ja, Si	
<i>Prosopis juliflora</i>	Af				
<i>Saccharum griffithii</i>	Sm		Cd		
<i>Salvia virgata</i>	Sv	As, Cd, Of, Pi, Zn		Cd, Dv, Ph, Si	
<i>Sida cordifolia</i>	Sc				
<i>Solanum incanum</i>	Si	Cd, Zn		Cd, Dv, Pg, Sv	Sg
<i>Solanum nigrum</i>	Sn				
<i>Solanum surratense</i>	Ss	Ph, Zn	Fi	Cd	Sm
<i>Sophora tomentosa</i>	St				
<i>Tecomella undulata</i>	Tu				
<i>Tinospora malabarica</i>	Tm				
<i>Tribulus terrestris</i>	Tt				
<i>Withania coagulans</i>	Wc				
<i>Withania somnifera</i>	Ws			Cd	
<i>Ziziphus mauritiana</i>	Zm				
<i>Ziziphus nummularia</i>	Zn	Dv,Ja, Ph, Sv, Si, Sn	Dv,Ja, Ph	Cd,Ja	

Soil physical and chemical properties of each site had their own impacts on the species association but seasonal effects, which are particularly due to different temperature and rain falls during different seasons of the year, are more pronounced in Soone Valley. Most of the herbaceous species are frequent during summer and autumn due to suitable temperature and availability of moisture. Therefore these are grouped together or associated due to availability of moisture and nutrients in different parts of Soone Valley. However during winter sparse vegetation do not show grouping of plants due to severe cold temperature. These effects mostly extend up to early spring. Availability of different nutrients at different sites and similar ability of some species to absorb these nutrients also cause association of species. Species sharing similar habitat are mostly associated as moisture loving species are grouped around water springs of Knotti Garden and Dape Sharif where as salt tolerant species clustered at Jaller site. Species which can tolerate both high salinity and pH are associated at Anga and Khoora sites.

References

- Afzal, S., M. Younas and K. Hussain. 1999. Physical and chemical characterization of the agricultural lands of the Soan Sakesar Valley, Salt Range, Pakistan. *Australian J. Soil Res.*, 37: 1035-1046.
- Ahmad, H. and M. Waseem. 2004. Conservation status of some medicinal plants of the Salt Range. *Zonas Áridas*, 8: 1013-1044.
- Ahmad, H., A. Ahmad and M.M. Jan. 2002. The medicinal plants of Salt Range. *Online J. Biol. Sci.*, 2: 175-177.
- Ahmad, K., M. Hussain, M. Ashraf, M. Luqman, M.Y. Ashraf and Z.I. Khan. 2007. Indigenous vegetation of Soone Valley: At the risk of extinction. *Pak. J. Bot.*, 39(3): 679-690.
- Ahmad, I., M. Hussain, M.S.A. Ahmad, M. Ashraf, R. Ahmad and A. Ali. 2008a. Spatio-temporal variations in physiochemical attributes of *Adiantum capillus-veneris* from Soone Valley of salt range (Pakistan). *Pak. J. Bot.*, 40(4): 1387-1398.

- Ahmad, K., Z.I. Khan, M. Ashraf, M. Hussain, M. Ibrahim and E.E. Valeem. 2008b. Status of plant diversity at Kufri (Soone valley) Punjab, Pakistan and prevailing threats therein. *Pak. J. Bot.*, 40(3): 993-997.
- Bell, G. 2000. The distribution of abundance in neutral communities. *American Nat.*, 155: 606-617.
- Champion H.G. 1936. A preliminary survey of the forest types of India and Burma. *Ind. Fores. Rec. New Series 1*.
- Clark, D.A. and D.B. Clark. 1992. Life-history diversity of canopy and emergent trees in a neotropical rain-forest. *Ecol. Mono.*, 62: 315-344.
- Connell, J.H. and R.O. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. *American Nat.*, 111: 1119-1144.
- Dice, L.R. 1945. Measures of the amount of ecological association between species. *Ecology*, 26: 297-302.
- Frisina, M.R., M.H. Woodford and G.A. Awan. 2001. Status of the Punjab urial (*Ovis orientalis [vignei] punjabiensis*) population in the Kalabagh, Salt Range of Punjab Province, Pakistan. *A report to the United States Fish and Wildlife Service*, Division of International Conservation and World Wide Fund for Nature, Pakistan.
- Gleason, H.A. and A. Cronquist. 1991. *Manual of Vascular Plants of Northeastern United States and Adjacent Canada*. 2nd Ed. New York: New York Botanical Garden.
- Holmgren, A.H. and N.H. Holmgren. 1977. *Aristida* In: *Intermountain Flora*. (Eds.): A. Cronquist, A.H. Holmgren, N.H. Holmgren, J.L. Reveal and P.K. Holmgren, 6: 457-465, Columbia Univ. Press, New York.
- Hubalek, Z. 1982. Coefficients of association and similarity based on binary (presence-absence) data: An evaluation. *Biol. Rev.*, 57: 669-689.
- Hubbell, S.P. 2001. *The Unified Neutral Theory of Biodiversity and Biogeography*. Princeton University Press, Princeton.
- Langenheim, J.H., C.B. Osmond, A. Brooks and P.J. Ferrar. 1984. Photosynthetic responses to light in seedlings of selected Amazonian and Australian rainforest tree species. *Oecologia*, 63:215-224.
- Ludwig, J.A. and J.E. Reynolds. 1988. *Statistical Ecology: A Primer on Methods and Computing*. New York: John Wiley.
- Qaiser, M. and S. Nazimuddin. 1981. Rhamnaceae. No. 140. In: *Flora of Pakistan*, (Eds.): E. Nasir and S.I. Ali. National Herbarium, Islamabad and University of Karachi, Karachi, Pakistan.
- Skarpe, C. 1990. Structure of the woody vegetation in disturbed and undisturbed arid Savanna, Botswana. *Plant Ecol.*, 87 (1): 11-18.
- Speranza, M. 1995. Bermuda grass: populations, temperature, salinity, drought, morphology and phenology of *Cynodon dactylon* (L.) Pers. (Gramineae) in Italy. *Webbia*, 49: 225-237.
- Varghese, A.O. and Y.V.N.K. Murthy. 2006. Application of geoinformatics for conservation and management of rare and threatened plant species. *Curr. Sci.*, 91 (6, 25): 762-769.

(Received for publication 21 April, 2008)