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Abstract 

 

Rice breeding plays a vital role in ensuring global food security; however, effective breeding programs require rapid, accurate, 

and objective identification of rice diseases. The optimization of rice breeding holds significant importance in achieving increased and 

high-yield production. Conventional visual inspection methods are labour-intensive, subjective, and prone to human error, particularly 

when disease symptoms are subtle or visually similar. To address these limitations, this study proposes a non-numerical encoding–

based convolutional neural network (NNE-CNN) for rice disease recognition. It expounds upon the algorithm's implementation 

principles, encompassing aspects such as initialization methods, encoding techniques, and population updating procedures. The 

performance of the proposed model was evaluated using two public benchmark datasets (Convex and Rectangles) as well as a rice 

disease image dataset. Subsequently, it utilizes the differential operator to compute an updating operator for the individuals. This process 

involves the removal or sparsity of certain convolutional layers within the CNN, thereby reducing the model's complexity and 

computational overhead while preserving its generalization capabilities. By deleting or sparsifying part of the convolutional layers in 

the CNN, the complexity and computational overhead of the model are reduced, while maintaining the generalization ability of the 

model. Experimental results demonstrate that NNE-CNN consistently outperforms classical CNN architectures and other intelligent 

algorithm-optimized models, achieving accuracies of 96.94% and 96.17% on the public datasets and a test accuracy of 97.50% on rice 

disease images. These findings indicate that the proposed method provides a robust and computationally efficient solution for rice 

disease identification, with practical implications for automated crop monitoring and data-driven rice breeding optimization. 
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Introduction 

 

The magnitude and complexity of challenges 

encountered in modern social production continue to increase 

across diverse domains, including unmanned systems such as 

robotics, governmental decision-making, large-scale data 

processing, and biomedical engineering (Li, 2019a; 

Leonowicz, 2022). Advances in production equipment, 

mobile terminals, and sensor technologies have resulted in a 

rapid growth in data generation, thereby highlighting the 

increasing importance of data analysis in the era of big data.  

The extraction of invaluable insights from colossal data 

reservoirs has perpetually remained a focal point of research 

within the realm of computer science. Particularly noteworthy 

is the acquisition of information from image data, a domain 

that has assumed paramount significance with the rapid 

advancement of surveillance facilities, network video 

technology, and satellite remote sensing imaging. As a result, 

image processing technology has emerged as a pivotal 

application area of machine learning (Chang et al., 2020). 

Rice, the predominant staple crop across numerous Asian 

nations, serves as the dietary foundation for more than 50% of 

the global population, bestowing it with considerable 

economic significance. With the rapid growth of the world 

population, the use of pesticides and bactericidal agents for 

pest management has become an unavoidable practice to 

ensure stable and increased rice yields. However, this practice 

exacts a substantial toll on the environment, concurrently 

engendering latent perils to the quality and safety of rice 

produce. Within the context of contemporary rice breeding 

endeavors, the imperative task at hand involves the precise 

discernment of breeding quality, the assessment of disease and 

pest infestations, which assumes paramount importance in the 

enhancement of crop yields. Both sample data and their 

analysis stand as pivotal benchmarks in the evaluation of crop 

quality and the validation of the efficacy of breeding 

initiatives. Nevertheless, manual inspection methods suffer 

from inherent limitations, including low efficiency and a high 

susceptibility to human error and subjective bias.  In seed 

defect identification, visual discrimination among seeds with 

similar morphological characteristics remains a major 

challenge, making standardized evaluation procedures 

difficult to implement (Liu et al., 2022). Although machine 

vision-based defect detection methods draw upon object 

features for classification, their inherent limitations are 

primarily attributed to the fixed image capture positions, the 

intricacy of image processing, and the impediments to 

achieving normalization in data processing. In the thousand-

grain weight measurement, the image processing method for 

the sparse state has a high seed recognition rate, but the target 

detection accuracy for the complex environment with multiple 

overlapping targets is still low. Consequently, rapid and 

accurate identification, as well as effective control of rice 

diseases, remains a task of paramount importance. 
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In the realm of image recognition, traditional image 
processing and machine learning techniques are often 
intricate. To address these complexities, hyperspectral and 
red spectrum technologies are leveraged to capture both 
spectral and image data from rice disease images (Zhang et 
al., 2021). Conventional machine learning methods, such 
as discriminant analysis and support vector machines, 
typically require extensive image preprocessing to extract 
features such as color, texture, and shape prior to disease 
classification. This is followed by feature selection 
procedures aimed at improving recognition accuracy, 
which further increases methodological complexity.  

In the domain of deep learning, Convolutional Neural 
Networks (CNN) have gained widespread application in 
image processing and exhibit remarkable efficacy in remote 
sensing image classification. Owing to the black-box nature 
of deep neural networks, the selection of an optimal 
architecture lacks standardized design rules and often relies 
on empirical expertise and repeated trial-and-error 
experimentation, which limits further advancement (Zhang 
et al., 2019). Consequently, the selection of an appropriate 
neural network architecture presents a formidable NP-hard 
problem, characterized by exceedingly high complexity. To 
address this challenge, a suitable approach is required to 
discern the optimal network structure, thereby enhancing 
classification accuracy. 

Swarm intelligence algorithms are widely recognized 
for their strong optimization capabilities and have 
demonstrated considerable potential in addressing complex 
and high-dimensional problems. Accordingly, this study 
employs an optimization algorithm to ascertain a more 
suitable deep neural network structure, optimizing the CNN 
architecture through non-numerical encoding, with the aim 
of augmenting image classification accuracy. The main 
contributions of this study are summarized as follows:  

 
(1) Enhanced rice disease ıdentification: This Study 
proposes a novel CNN-based approach optimized through 
non-numerical encoding (NNE-CNN) for autonomous and 
accurate rice disease identification. The proposed method 
enhances the ability to recognize and diagnose rice diseases 
from images, thereby supporting data-driven rice breeding 
and crop management practices. 

 

(2) Structural optimization of CNN: A differential 
operator is employed to calculate structural differences 
between individuals and iteratively refine the CNN 
architecture. This optimization process enables the 
removal or sparsification of selected convolutional layers, 
reducing network complexity and computational cost while 
preserving generalization performance.  
 

(3) Reduction of computational overhead: The proposed 
methodology effectively lowers computational requirements 
by optimizing CNN structure without compromising 
classification accuracy. This improvement enhances the 
practical applicability of the model for real-world rice 
disease recognition and other related computer vision tasks.  
 

Material and Methods 
 

Individual code: This study employs a non-numerical 
encoding approach to represent structural information within 
individual particles. . In the design of the proposed method , 
the focus extends beyond selecting the type of each structural 
element to encompass detailed super-parameter specifications 
for each structural component. This encompasses factors like 
the convolution layer's kernel size, the output feature map 
dimensions, pool layer dimensions, the quantity of neurons in 
fully connected layers, and various other pertinent 
considerations. Each individual can be decoded into some 
kind of convolutional neural network structure, and the super-
parameter information of this layer is retained within each 
layer structure. Unlike conventional function optimization 
problems, CNN structure optimization does not require 
individuals to be expressed in numerical form. Therefore, an 
appropriate population update mechanism is required when 
adopting non-numerical encoding. 
 

Individual difference operator of population: Within the 
non-numerical encoding framework, the process of selecting 
superior genetic traits from better individuals necessitates the 
use of a differential operator calculation. This operator 
computes  compute the disparity between two individuals and 
subsequently determining the update operator based on this 
difference to enhance the characteristics of individuals. The 
technique for calculating the difference operator among 
individuals is illustrated in Fig. 1. 
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Fig. 1. Individual renewal process. 
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To ensure the acurate handling of the fully connected 

layer precise position, it is essential to treat it separately 

from the other two structural components. When 

computing the differences between the pool layer and 

convolution layer, only the structural type differences 

should be taken into account, while variations in super-

parameters should be ignored. For example, if the second 

layer of two individuals is a convolution layer but with 

different kernel sizes (e.g., 5 and 3), the super-parameter 

difference is treated as zero, and the layer position remains 

unchanged during crossover. 

During population hybridization, the stored 

hyperparameter configuration of the current individual is 

retained. For instance, during the crossing of sterile lines, 

if they share the same layer type, such as a convolution 

layer, but possess varying hyperparameter specifications 

(e.g., different convolution kernel sizes and diverse feature 

map dimensions), the original hyperparameters of the 

sterile lines are retained. During the hybridization process, 

it is plausible that the number of layers in the network 

structure for two individuals may not align. In such cases, 

if the first individual has fewer layers than the second, a '-

1' is added to the final difference, signifying the removal of 

one layer from the structure as a result of crossbreeding. 

Conversely, if the first individual has more layers, an 

additional structure is appended to the end of the 

network.2.3 Population initialization. 

The population initialization process generates N 

individuals with random CNN structures, as detailed in the 

following algorithm. Each individual is endowed with a 

random number of layers, ranging from three to the maximum 

number of layers denoted as lmax. This limit applies to all 

structural components, including convolutional, pooling, and 

fully connected layers, and prevents uncontrolled network 

growth. It's crucial to note that the maximum number of layers 

applies to the entirety of the CNN to prevent an indiscriminate 

proliferation of network layers. 

A standard CNN structure consists of convolution 

layers, pool layers, and fully connected layers. The fully 

connected layer performs final feature classification and is 

therefore typically located at the end of the network. As a 

result, the fully connected layer typically resides at the end 

of the convolutional neural network, rather than within its 

middle layers. Therefore, this algorithm's initialization 

method takes this into account. Once a fully connected 

layer is added to the network structure, only additional 

fully connected layers will be appended until the 

predetermined number of structural layers is reached. In 

other words, when an individual adds a fully connected 

layer, all subsequent layers are fully connected. 

The population initialization includes the following 

steps: 

 

Input: Population size N, the preset upper limit of neural 

network structure layers 𝑙𝑚𝑎𝑥, the upper limit of 

convolution layer feature maps max, the maximum 

convolution kernel size 𝑘max, the upper limit of the number 

of neurons in the fully connected layer 𝑛𝑚𝑎𝑥, The number 

of output results is the category 𝑛𝑜𝑢𝑡. 

 

Output: a population of N individuals, , and each representing 

convolutional neural network (CNN) structure. 

Step 1: Set the population size, N, and commence the 

initialization process for each individual. 

 

Step 2: Iterate through the entire population until the entire 

population has been processed, signifying the completion 

of the population initialization phase. For each individual, 

calculate PiDepth, which represents the current individual, 

using the Formula (1). This encompasses the total number 

of CNN structural elements, inclusive of convolution 

layers, pool layers, and fully connected layers, and then 

proceed to initialize each individual as described in Step 3. 

The formula for finding the maximum number of layers 

of individual network structure is shown in Formula (1): 

 

𝑃𝑖  Depth = rand (3, 𝑙𝑚𝑎𝑥) (1) 

 

Step 3: Start the traversal from the beginning. If the 

PiDepth is equal to 1, indicating that you have just begun 

the traversal (i.e., the current layer number is 1), set j to 1. 

If j is equal to 1, add a convolution layer according to the 

formulas provided in (2) and (3), and then return to Step 3. 

If j is not equal to 1, proceed to Step 4. 

 

The convolution layer structure mainly includes the 

convolution kernel size and the number of filters as shown 

in Formula (2) and Formula (3) respectively: 

 

out_channel = rand (3,  max_out −channel) (2) 

conv_kernel = rand (3, conv _ kernel) (3) 

 

Step 4: If the current layer number, j, corresponds to the 

last layer (i.e., j equals PiDepth), introduce the fully 

connected layer by applying the formula provided below, 

and subsequently return to Step 2 to commence the 

traversal for the next individual. In case j is not the last 

layer, proceed to Step 5. 

 

Step 5: If the previous layer of the current layer is a fully 

connected layer, proceed to add another fully connected 

layer on top of it. Otherwise, advance to Step 6. 

The structure of the fully connected layer is mainly the 

number of neurons, so the formula for adding the whole 

connective layer is shown in Formula (4): 

 

nerons𝑛𝑢𝑚 = 𝑟𝑎𝑛𝑑 (1, 𝑛𝑚𝑎𝑥) (4) 

 

When adding a pool layer, the choice between an 

average pool layer and a maximum pool layer should be 

determined as follows: Generate a random number, and if 

it's greater than 0.5, add a maximum pool layer; otherwise, 

add an average pool layer. The pooling size is fixed at 2x2. 

 

Step 6: Generate a random integer between 1 and 3. When 

the integer is 1, incorporate a convolution layer. If the integer 

is 2, introduce a pooling layer. In case the integer is 3, 

implement a fully connected layer. It is noteworthy that these 

layers possess distinct probabilities of occurrence, as 

expounded in this paper, namely 0.6, 0.3, and 0.1. To clarify, 

the likelihood of incorporating a convolution layer stands at 

0.6, the probability of introducing a pooling layer rests at 0.3, 

and the probability of including a fully connected layer is 

0.1. When adding a pooling layer, there is an equal 
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likelihood of integrating either an average pooling layer or a 

maximum pooling layer, with both options holding a 50% 

chance, concurrently proceeding to Step 3. 

 

Fitness calculation: The objective of this algorithm is to 

identify an appropriate convolutional neural network for 

image structure classification. When assessing the fitness 

value, each individual undergoes a decoding process to 

translate it into a meaningful CNN architecture. 

Subsequently, this architecture is subjected to a brief 

training phase, during which the model is fine-tuned. 

Simultaneously, the performance on the test dataset, 

measured in terms of cross-entropy, is utilized as the fitness 

value to appraise the quality of the individual.  

For a single example, the cross-entropy for that 

example is calculated as: 

 

H(Y, P) = -Σ [ Y(i) * log(P(i)) ] (5) 

 

In this equation: H(Y, P) is the cross-entropy for the 

example. 

 

Y(i) is a binary value (0 or 1) indicating whether the actual 

class is class i. 

 

P(i) is the predicted probability that the example belongs to 

class i. 

 

The algorithm aims to identify the network 

architecture with the minimum loss, irrespective of 

network depth or structural complexity. Nonetheless, this 

algorithm does possess a drawback, as it necessitates the 

decoding of each individual into a CNN structure and 

entails a preliminary training phase, which can be time-

consuming. Nevertheless, the strength of this algorithm lies 

in its potential to discover an optimal structure that may 

perform well in diverse data collection scenarios, 

showcasing adaptability across different datasets. 

 

Disease identification based on significance detection: 

After image I is input, a certain pixel Ik, Ik ∈ [0,255] in the 

image is known. After the input image is transformed into 

grayscale image, histogram D is obtained, and the pixel 

value An is Fn, where An ∈ [0,255]. Elements D(x, y) =

|Ax − Ay| represents the color of the gap between pixels 

Ax and pixels Ay, where An ∈ [0,255], D(x, y) ∈ [0,255].  

The pixel 𝐼𝑘 significant value in Sals (Ik) can be 

calculated as formula: 

 

Sals (Ik) = Sals (Am) = ∑  

255

n=0

FnD(m, n) (6) 

 

To bolster image learning through CNN and augment 

recognition accuracy, Sals (Ik) denotes the saliency 

measure associated with the image or element labeled as 

"Ik." The computed saliency is subtracted from the pixel 

values of the original image, thereby amplifying contrast 

and mitigating the impact of intricate backgrounds. 

The pixel value of the image after subtraction is Zk, 

whose range is [0,255], the calculation process is shown in 

Formula (7). 

 

Zk = Ik − Sals (Ik) (7) 

 

Following the saliency detection and segmentation of the 

image, the processed data is fed into the NNE-CNN for 

training and classification.. To facilitate and streamline the 

training process of the model, a visual tool, Tensorboard, is 

employed. Figure 2 illustrates the overall neural network 

architecture. In the figure, solid lines depict data flow between 

computational nodes, with arrows indicating the direction of 

data transmission. The tensor dimensions resulting from the 

three convolution layers are as follows: 57×57×48, 

28×28×128, and 13×13×192. The dimension passed from the 

final pooling layer to the initial fully connected layer is 6912, 

and the dimension classified using softmax is 4. 
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Fig. 2. NNE-CNN structure diagram. 
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Table 1. Parameter settings. 

Parameter Meaning Value 

N Number of populations 30 

iter Number of population iterations 10 

𝑒train Number of training sessions per individual 100 

lmax Maximum number of network structure layers 20 

lmin Minimum number of network structure layers 3 

max_conv_output_schannel Upper limit on the number of channels in a convolutional layer 256 

𝑘max Maximum kernel size 7 

t Selection probability of difference operator during hybridization 0.7 

𝑒train Number of training sessions per individual 1 

𝑒train_final The optimal individual training times 100 

 

 
 

Fig. 3. Classification accuracy comparison of different algorithms 

on the Convex dataset.  

 
Fig. 4. Classification accuracy comparison of different algorithms 

on the Rectangles dataset. 

 

 
 

Fig. 5. Training and testing loss and accuracy curves of the NNE-

CNN on the rice disease dataset. 

 
 

Fig. 6. Classification accuracy comparison of different algorithms 

on the rice disease dataset. 

 
Results and Analysis 

 

Model verification: Initially, two publicly available 

datasets, namely Convex and Rectangles-Image, were 

employed to evaluate the proposed method under 

consistent experimental conditions. The algorithm's 

parameter settings are summarized in Table 1. 

For computational efficiency, each individual was 

trained for a single epoch during fitness evaluation, while 

the optimal architecture was further trained for 100 epochs. 

The classification accuracies obtained on the Convex 
dataset are illustrated in Fig. 3. Owing to the relatively 
simple structure and sufficient data volume of this dataset, 
all evaluated models exhibited strong performance. Among 
the classical approaches, RandNet-2 achieves higher 
accuracy than PCANet-2 and LDANet-2. However, 
structure-optimized models demonstrated superior 
performance overall. In particular, PSO-CNN and the 
proposed NNE-CNN outperform classical networks, with 
NNE-CNN achieving the highest accuracy of approximately 
96.9%. 
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As for the public Rectangles dataset, which contains 

significant background interference, the classification 

accuracies are presented in Fig. 4. The classical models 

PCANet-2, RandNet-2, and LDANet-2 all achieved 

accuracy levels below 90%, indicating limited robustness 

under complex background conditions. In contrast, 

structure-optimized algorithms, including EVO-CNN, 

IPPSO, and PSO-CNN, demonstrated substantially 

improved performance, with accuracies exceeding 94%. 

Among all evaluated models, the proposed NNE-CNN 

achieves the highest accuracy of 96.17%, outperforming 

both classical approaches and other structure-optimized 

CNN models. 

The results above highlight that PCANet-2, RandNet-

2, and LDANet-2 performed well on simpler datasets such 

as Convex . However, when datasets incorporate 

interfering elements such as rotation or background 

images, the performance of these classical models 

noticeably declines. In such scenarios, the performance of 

structure optimization algorithms, characterized by their 

ability to dynamically adapt network architectures, 

becomes significantly superior to the aforementioned 

classical models. Consequently, these algorithms 

demonstrated enhanced performance on complex datasets. 

The proposed NNE-CNN exhibits exceptional 

performance on both Convex and Rectangles datasets. As 

a result, the paper seeks to apply this algorithm to the 

recognition of rice disease images. 
 

Application case: To further evaluste the effectiveness of 

the proposed model in recognizing rice diseases, a dataset 

was meticulously constructed using images of rice diseases 

as the target identification objects. To enhance model 

robustness and feature learning capability, data 

augmentation techniques were applied to the original 

images, including random rotations (ranging from 5° 

counterclockwise to 5° clockwise), random flipping, 

brightness adjustment, and contrast modification. 

The augmented rice disease images were subsequently 

used to train the NNE-CNN in an end-to-end manner. As 

shown in Fig. 5, both training and testing loss decreased 

rapidly during the initial training phase, followed by a 

gradual stabilization as the number of epochs increases. 

Although minor fluctuations are observed in the early 

epochs, the loss and accuracy curves converge smoothly, 

indicating stable training behavior and good generalization 

performance. The final training accuracy and test accuracy 

reach 98.05% and 97.50%, respectively. 

The recognition performance of the rice disease image 

dataset is presented in Fig. 6 in terms of classification 

accuracy. Among the evaluated models, the proposed 

NNE-CNN achieves the highest accuracy, outperforming 

both classical methods and other structure-optimized CNN 

models. In particular, the classification accuracy of NNE-

CNN exceeds that of PSO-CNN by approximately 8.30%, 

demonstrating its superior performance on rice disease 

image recognition. 
 

Discussion 
 

Early rice breeding inspection primarily relied on manual 

selection, a process that is labor-intensive, time-consuming, 

and constrained by human physical and cognitive limitations. 

Hence, the development of an automated classification system 

became imperative to achieve the goals of rapid and accurate 

recognition. This approach is grounded in non-contact, 

nondestructive principles, and machine vision emerges as a 

viable solution. Vanitha employed three deep learning 

models, namely VGG16, ResNet50, and InceptionV3, to 

discern rice diseases (Vanitha, 2019). He assembled a 

comprehensive database of rice diseases, meticulously 

labeling the images, and leveraging various data augmentation 

techniques to expand the dataset, his model was designed to 

identify three distinct leaf diseases, achieving an impressive 

99.53% accuracy with the ResNet50 model. Similarly, (Desai 

et al., 2019) applied deep learning to detect flowering panicles 

in rice images and estimate heading dates with an average 

error of less than one day.  

Notably, there is a paucity of literature dedicated to deep 

learning applications in the context of rice, although the 

advantages of deep learning methodologies have been 

explored in related agricultural domains. For instance, Ma 

introduced a prediction method for grain numbers in ears 

based on deep learning (Ma et al., 2019). Through the 

utilization of a full convolutional neural network and the 

precise marking of grain centers, they successfully detected 

and counted the number of grains on the entire ear without 

compromising its morphological integrity, achieving a 

measurement error of 3.47%, in compliance with 

measurement accuracy standards. Meanwhile, Wang et al., 

(2023a) enhanced the VGG19 network model by 

incorporating a global average pooling layer and two dense 

layers, thereby elevating the recognition accuracy of corn 

seeds. 

Swarm intelligence algorithms, as a subset of 

intelligent algorithms, offer a valuable approach to 

approximating solutions for NP problems. The structural 

optimization of neural networks undeniably constitutes a 

highly intricate challenge, prompting several scholars to 

explore the fusion of swarm intelligence algorithms with 

machine learning or deep learning methods in pursuit of 

algorithm performance enhancement. Ding et al., (2019) 

harnessed the power of the particle swarm optimization 

(PSO) algorithm to identify an optimal set of mapping 

parameters for extreme learning machines.  

Subsequently, these mapped feature samples were fed 

into the K-Nearest Neighbor (KNN) algorithm, amplifying 

its capacity to address linear inseparability issues. 

Pourpanah et al., (2023) leveraged PSO to optimize the 

structure of Bayesian networks, demonstrating distinct 

advantages over alternative optimization methods. Yan et 

al., (2019) devised a hybrid particle swarm optimization 

algorithm, alongside a quasi-Newton algorithm, to operate 

on a CPU-GPU platform.  

This innovation curtailed data transmission time and 

reduced training errors simultaneously. Wang et al., 

(2023b) employed PSO to fine-tune the weights and 

thresholds of neural networks, successfully applying this 

approach to estimate and predict the spectrum of soil 

organic matter content. Furthermore, Huang et al., (2020) 

harnessed genetic algorithms to optimize feedforward 
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networks for the classification of pre-processed remote 

sensing images. 

In the previously discussed research, the proposed 

methods were primarily tailored to fully connected neural 

network structures and weren't directly transferable to the 

domain of image classification employing deep neural 

networks. Wang the belief function defined by the 

composite normal distribution to model the knowledge of 

experts on the fine-tuning of CNN hyperparameters to 

enhance the exploration capability of standard PSO(Wang 

et al., 2019b). In this innovative approach, particle 

encoding takes inspiration from the IP address coding 

method in computer networking, with each network layer 

assigned an IP address. Sun proposed Evolving Deep CNN 

algorithm which deploys genetic algorithms to explore 

CNN structures with specific crossover and mutation 

operators, displaying remarkable performance on 

numerous public datasets(Sun et al., 2020).  

However, it's worth noting that this algorithm 

demands substantial computational resources. Wang 

applied a hybrid algorithm combining genetic algorithms 

and particle swarm optimization to optimize CNN 

architectures (Wang et al., 2019a). In contrast, Li et al., 

(2019b) utilized a PSO algorithm based on binary coding 

to optimize CNN structures. It's essential to recognize that 

various optimization algorithms come with their unique 

limitations, and the choice of coding strategy significantly 

impacts CNN structural optimization. Thus, this paper 

endeavors to optimize CNN structures via non-numerical 

encoding, seeking to strike a suitable balance between 

search accuracy and speed, thereby addressing the 

challenge of image classification. 

The experimental results demonstrate that NNE-CNN 

exhibits superior performance compared to traditional 

models and other intelligent algorithm-optimized CNNs 

across various datasets. On the Convex dataset, NNE-CNN 

achieved the highest accuracy of 96.94%, while on the 

more challenging Rectangles dataset with background 

interference, it attained 96.17% accuracy, significantly 

outperforming classical models like PCANet-2, RandNet-

2, and LDANet-2 which showed accuracy below 90%. 

The superior performance of NNE-CNN can be 

attributed to its non-numerical encoding approach and 

differential operator mechanism, which enables dynamic 

adaptation of network structures. This flexibility allows the 

model to maintain high performance even when dealing 

with complex datasets containing rotational variations and 

background noise. The structural optimization through 

layer removal or sparsification reduces computational 

overhead while preserving generalization capabilities. 

In the rice disease recognition application, NNE-CNN 

achieved 97.50% test accuracy, demonstrating its practical 

utility in agricultural applications. The saliency detection-

based preprocessing method effectively enhanced contrast 

and reduced background complexity, contributing to the 

model's robust performance. The stable training process 

with minimal fluctuations indicates the reliability of the 

proposed approach. 

However, it's important to note that the algorithm 

requires substantial computational resources for the initial 

training phase, which represents a limitation for real-time 

applications. Future work should focus on optimizing the 

computational efficiency while maintaining the model's 

adaptive capabilities. 

Conclusion 

 

Swift and accurate identification and detection of rice 

diseases are of paramount importance, given the critical 

role rice plays as a staple food crop worldwide, and the 

significant impact of infections on crop yield. This research 

employs a non-numerical encoding approach to represent 

the CNN structure, achieving the hybridization of non-

numerical rice seeds through the utilization of difference 

and update operators.  

Through a comparative analysis of the training results 

on Convex and Rectangles public datasets, the study 

reveals that NNE-CNN outperforms the PCANet-2, 

RandNet-2, and LDANet-2 models, especially in 

challenging data scenarios. The consistent training process 

of the significance-detection segmented model streamlines 

the extraction, identification, and classification of rice 

disease characteristics. This research contributes to the 

field of agricultural disease identification and proactive 

disease prevention, offering a theoretical foundation for 

optimizing crop breeding strategies. 
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