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Abstract

Rice breeding plays a vital role in ensuring global food security; however, effective breeding programs require rapid, accurate,
and objective identification of rice diseases. The optimization of rice breeding holds significant importance in achieving increased and
high-yield production. Conventional visual inspection methods are labour-intensive, subjective, and prone to human error, particularly
when disease symptoms are subtle or visually similar. To address these limitations, this study proposes a non-numerical encoding—
based convolutional neural network (NNE-CNN) for rice disease recognition. It expounds upon the algorithm's implementation
principles, encompassing aspects such as initialization methods, encoding techniques, and population updating procedures. The
performance of the proposed model was evaluated using two public benchmark datasets (Convex and Rectangles) as well as a rice
disease image dataset. Subsequently, it utilizes the differential operator to compute an updating operator for the individuals. This process
involves the removal or sparsity of certain convolutional layers within the CNN, thereby reducing the model's complexity and
computational overhead while preserving its generalization capabilities. By deleting or sparsifying part of the convolutional layers in
the CNN, the complexity and computational overhead of the model are reduced, while maintaining the generalization ability of the
model. Experimental results demonstrate that NNE-CNN consistently outperforms classical CNN architectures and other intelligent
algorithm-optimized models, achieving accuracies of 96.94% and 96.17% on the public datasets and a test accuracy of 97.50% on rice
disease images. These findings indicate that the proposed method provides a robust and computationally efficient solution for rice

disease identification, with practical implications for automated crop monitoring and data-driven rice breeding optimization.
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Introduction

The magnitude and complexity of challenges
encountered in modern social production continue to increase
across diverse domains, including unmanned systems such as
robotics, governmental decision-making, large-scale data
processing, and biomedical engineering (Li, 2019a;
Leonowicz, 2022). Advances in production equipment,
mobile terminals, and sensor technologies have resulted in a
rapid growth in data generation, thereby highlighting the
increasing importance of data analysis in the era of big data.
The extraction of invaluable insights from colossal data
reservoirs has perpetually remained a focal point of research
within the realm of computer science. Particularly noteworthy
is the acquisition of information from image data, a domain
that has assumed paramount significance with the rapid
advancement of surveillance facilities, network video
technology, and satellite remote sensing imaging. As a result,
image processing technology has emerged as a pivotal
application area of machine learning (Chang et al., 2020).

Rice, the predominant staple crop across numerous Asian
nations, serves as the dietary foundation for more than 50% of
the global population, bestowing it with considerable
economic significance. With the rapid growth of the world
population, the use of pesticides and bactericidal agents for
pest management has become an unavoidable practice to
ensure stable and increased rice yields. However, this practice
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exacts a substantial toll on the environment, concurrently
engendering latent perils to the quality and safety of rice
produce. Within the context of contemporary rice breeding
endeavors, the imperative task at hand involves the precise
discernment of breeding quality, the assessment of disease and
pest infestations, which assumes paramount importance in the
enhancement of crop yields. Both sample data and their
analysis stand as pivotal benchmarks in the evaluation of crop
quality and the validation of the efficacy of breeding
initiatives. Nevertheless, manual inspection methods suffer
from inherent limitations, including low efficiency and a high
susceptibility to human error and subjective bias. In seed
defect identification, visual discrimination among seeds with
similar morphological characteristics remains a major
challenge, making standardized evaluation procedures
difficult to implement (Liu ef al.,, 2022). Although machine
vision-based defect detection methods draw upon object
features for classification, their inherent limitations are
primarily attributed to the fixed image capture positions, the
intricacy of image processing, and the impediments to
achieving normalization in data processing. In the thousand-
grain weight measurement, the image processing method for
the sparse state has a high seed recognition rate, but the target
detection accuracy for the complex environment with multiple
overlapping targets is still low. Consequently, rapid and
accurate identification, as well as effective control of rice
diseases, remains a task of paramount importance.
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In the realm of image recognition, traditional image
processing and machine learning techniques are often
intricate. To address these complexities, hyperspectral and
red spectrum technologies are leveraged to capture both
spectral and image data from rice disease images (Zhang et
al., 2021). Conventional machine learning methods, such
as discriminant analysis and support vector machines,
typically require extensive image preprocessing to extract
features such as color, texture, and shape prior to disease
classification. This is followed by feature selection
procedures aimed at improving recognition accuracy,
which further increases methodological complexity.

In the domain of deep learning, Convolutional Neural
Networks (CNN) have gained widespread application in
image processing and exhibit remarkable efficacy in remote
sensing image classification. Owing to the black-box nature
of deep neural networks, the selection of an optimal
architecture lacks standardized design rules and often relies
on empirical expertise and repeated trial-and-error
experimentation, which limits further advancement (Zhang
et al., 2019). Consequently, the selection of an appropriate
neural network architecture presents a formidable NP-hard
problem, characterized by exceedingly high complexity. To
address this challenge, a suitable approach is required to
discern the optimal network structure, thereby enhancing
classification accuracy.

Swarm intelligence algorithms are widely recognized
for their strong optimization capabilities and have
demonstrated considerable potential in addressing complex
and high-dimensional problems. Accordingly, this study
employs an optimization algorithm to ascertain a more
suitable deep neural network structure, optimizing the CNN
architecture through non-numerical encoding, with the aim
of augmenting image classification accuracy. The main
contributions of this study are summarized as follows:

(1) Enhanced rice disease 1dentification: This Study
proposes a novel CNN-based approach optimized through
non-numerical encoding (NNE-CNN) for autonomous and
accurate rice disease identification. The proposed method
enhances the ability to recognize and diagnose rice diseases
from images, thereby supporting data-driven rice breeding
and crop management practices.
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(2) Structural optimization of CNN: A differential
operator is employed to calculate structural differences
between individuals and iteratively refine the CNN
architecture. This optimization process enables the
removal or sparsification of selected convolutional layers,
reducing network complexity and computational cost while
preserving generalization performance.

(3) Reduction of computational overhead: The proposed
methodology effectively lowers computational requirements
by optimizing CNN structure without compromising
classification accuracy. This improvement enhances the
practical applicability of the model for real-world rice
disease recognition and other related computer vision tasks.

Material and Methods

Individual code: This study employs a non-numerical
encoding approach to represent structural information within
individual particles. . In the design of the proposed method ,
the focus extends beyond selecting the type of each structural
element to encompass detailed super-parameter specifications
for each structural component. This encompasses factors like
the convolution layer's kernel size, the output feature map
dimensions, pool layer dimensions, the quantity of neurons in
fully connected layers, and various other pertinent
considerations. Each individual can be decoded into some
kind of convolutional neural network structure, and the super-
parameter information of this layer is retained within each
layer structure. Unlike conventional function optimization
problems, CNN structure optimization does not require
individuals to be expressed in numerical form. Therefore, an
appropriate population update mechanism is required when
adopting non-numerical encoding.

Individual difference operator of population: Within the
non-numerical encoding framework, the process of selecting
superior genetic traits from better individuals necessitates the
use of a differential operator calculation. This operator
computes compute the disparity between two individuals and
subsequently determining the update operator based on this
difference to enhance the characteristics of individuals. The
technique for calculating the difference operator among
individuals is illustrated in Fig. 1.
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Fig. 1. Individual renewal process.
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To ensure the acurate handling of the fully connected
layer precise position, it is essential to treat it separately
from the other two structural components. When
computing the differences between the pool layer and
convolution layer, only the structural type differences
should be taken into account, while variations in super-
parameters should be ignored. For example, if the second
layer of two individuals is a convolution layer but with
different kernel sizes (e.g., 5 and 3), the super-parameter
difference is treated as zero, and the layer position remains
unchanged during crossover.

During population hybridization, the stored
hyperparameter configuration of the current individual is
retained. For instance, during the crossing of sterile lines,
if they share the same layer type, such as a convolution
layer, but possess varying hyperparameter specifications
(e.g., different convolution kernel sizes and diverse feature
map dimensions), the original hyperparameters of the
sterile lines are retained. During the hybridization process,
it is plausible that the number of layers in the network
structure for two individuals may not align. In such cases,
if the first individual has fewer layers than the second, a '-
1'is added to the final difference, signifying the removal of
one layer from the structure as a result of crossbreeding.
Conversely, if the first individual has more layers, an
additional structure is appended to the end of the
network.2.3 Population initialization.

The population initialization process generates N
individuals with random CNN structures, as detailed in the
following algorithm. Each individual is endowed with a
random number of layers, ranging from three to the maximum
number of layers denoted as /max. This limit applies to all
structural components, including convolutional, pooling, and
fully connected layers, and prevents uncontrolled network
growth. It's crucial to note that the maximum number of layers
applies to the entirety of the CNN to prevent an indiscriminate
proliferation of network layers.

A standard CNN structure consists of convolution
layers, pool layers, and fully connected layers. The fully
connected layer performs final feature classification and is
therefore typically located at the end of the network. As a
result, the fully connected layer typically resides at the end
of the convolutional neural network, rather than within its
middle layers. Therefore, this algorithm's initialization
method takes this into account. Once a fully connected
layer is added to the network structure, only additional
fully connected layers will be appended until the
predetermined number of structural layers is reached. In
other words, when an individual adds a fully connected
layer, all subsequent layers are fully connected.

The population initialization includes the following
steps:

Input: Population size N, the preset upper limit of neural
network structure layers lmax, the upper limit of
convolution layer feature maps max, the maximum
convolution kernel size k,,,,, the upper limit of the number
of neurons in the fully connected layer n,,,,, The number
of output results is the category n,y;.

Output: a population of N individuals, , and each representing
convolutional neural network (CNN) structure.

Step 1: Set the population size, N, and commence the
initialization process for each individual.

Step 2: Iterate through the entire population until the entire
population has been processed, signifying the completion
of the population initialization phase. For each individual,
calculate P:Depth, which represents the current individual,
using the Formula (1). This encompasses the total number
of CNN structural elements, inclusive of convolution
layers, pool layers, and fully connected layers, and then
proceed to initialize each individual as described in Step 3.

The formula for finding the maximum number of layers
of individual network structure is shown in Formula (1):

P; Depth = rand (3, Lyqy) (1)

Step 3: Start the traversal from the beginning. If the
PiDepth is equal to 1, indicating that you have just begun
the traversal (i.e., the current layer number is 1), set j to 1.
If j is equal to 1, add a convolution layer according to the
formulas provided in (2) and (3), and then return to Step 3.
If j is not equal to 1, proceed to Step 4.

The convolution layer structure mainly includes the
convolution kernel size and the number of filters as shown
in Formula (2) and Formula (3) respectively:

out_channel = rand (3, max_out _channel) 2)
conv_kernel =rand (3, conv _ kernel) 3)

Step 4: If the current layer number, j, corresponds to the
last layer (i.e., j equals PiDepth), introduce the fully
connected layer by applying the formula provided below,
and subsequently return to Step 2 to commence the
traversal for the next individual. In case j is not the last
layer, proceed to Step 5.

Step 5: If the previous layer of the current layer is a fully
connected layer, proceed to add another fully connected
layer on top of it. Otherwise, advance to Step 6.

The structure of the fully connected layer is mainly the
number of neurons, so the formula for adding the whole
connective layer is shown in Formula (4):

neronsnum = rand (1, n,,q,) “4)

When adding a pool layer, the choice between an
average pool layer and a maximum pool layer should be
determined as follows: Generate a random number, and if
it's greater than 0.5, add a maximum pool layer; otherwise,
add an average pool layer. The pooling size is fixed at 2x2.

Step 6: Generate a random integer between 1 and 3. When
the integer is 1, incorporate a convolution layer. If the integer
is 2, introduce a pooling layer. In case the integer is 3,
implement a fully connected layer. It is noteworthy that these
layers possess distinct probabilities of occurrence, as
expounded in this paper, namely 0.6, 0.3, and 0.1. To clarify,
the likelihood of incorporating a convolution layer stands at
0.6, the probability of introducing a pooling layer rests at 0.3,
and the probability of including a fully connected layer is
0.1. When adding a pooling layer, there is an equal



likelihood of integrating either an average pooling layer or a
maximum pooling layer, with both options holding a 50%
chance, concurrently proceeding to Step 3.

Fitness calculation: The objective of this algorithm is to
identify an appropriate convolutional neural network for
image structure classification. When assessing the fitness
value, each individual undergoes a decoding process to
translate it into a meaningful CNN architecture.
Subsequently, this architecture is subjected to a brief
training phase, during which the model is fine-tuned.
Simultaneously, the performance on the test dataset,
measured in terms of cross-entropy, is utilized as the fitness
value to appraise the quality of the individual.

For a single example, the cross-entropy for that
example is calculated as:

H(Y, P) = -2 [ Y(i) * log(P(1)) ] (&)

In this equation: H(Y, P) is the cross-entropy for the
example.

Y (i) is a binary value (0 or 1) indicating whether the actual
class is class i.

P(i) is the predicted probability that the example belongs to
class i.

The algorithm aims to identify the network
architecture with the minimum loss, irrespective of
network depth or structural complexity. Nonetheless, this
algorithm does possess a drawback, as it necessitates the
decoding of each individual into a CNN structure and
entails a preliminary training phase, which can be time-
consuming. Nevertheless, the strength of this algorithm lies
in its potential to discover an optimal structure that may
perform well in diverse data collection scenarios,
showcasing adaptability across different datasets.
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Disease identification based on significance detection:
After image I is input, a certain pixel Iy, I, € [0,255] in the
image is known. After the input image is transformed into
grayscale image, histogram D is obtained, and the pixel
value A, is F,,, where A, € [0,255]. Elements D(x,y) =
|AX - Ay| represents the color of the gap between pixels
Ay and pixels Ay, where A, € [0,255],D(x,y) € [0,255].

The pixel I, significant value in Sals (Iy) can be
calculated as formula:

255

Sals (Ik) = Sals (A,,) = Z F,D(m, n) 6)
n=0

To bolster image learning through CNN and augment
recognition accuracy, Sals (Ik) denotes the saliency
measure associated with the image or element labeled as
"Ik." The computed saliency is subtracted from the pixel
values of the original image, thereby amplifying contrast
and mitigating the impact of intricate backgrounds.

The pixel value of the image after subtraction is Zj,
whose range is [0,255], the calculation process is shown in
Formula (7).

Zk = Ik — Sals (Ik) (7)

Following the saliency detection and segmentation of the
image, the processed data is fed into the NNE-CNN for
training and classification.. To facilitate and streamline the
training process of the model, a visual tool, Tensorboard, is
employed. Figure 2 illustrates the overall neural network
architecture. In the figure, solid lines depict data flow between
computational nodes, with arrows indicating the direction of
data transmission. The tensor dimensions resulting from the
three convolution layers are as follows: 57x57x48,
28x28x128, and 13x13x192. The dimension passed from the
final pooling layer to the initial fully connected layer is 6912,
and the dimension classified using softmax is 4.
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Fig. 2. NNE-CNN structure diagram.
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Table 1. Parameter settings.

Parameter Meaning Value
N Number of populations 30
iter Number of population iterations 10
Cirain Number of training sessions per individual 100
Imax Maximum number of network structure layers 20
Imin Minimum number of network structure layers 3
max_conv_output_schannel Upper limit on the number of channels in a convolutional layer 256
Kmax Maximum kernel size 7
t Selection probability of difference operator during hybridization 0.7
Cirain Number of training sessions per individual 1
€train final The optimal individual training times 100
Convex data set Rectangles data set
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Fig. 3. Classification accuracy comparison of different algorithms
on the Convex dataset.

1.6 F .
Train loss
Test loss

14 | .
Train accuracy
Test accuracy

12 F

1.0 F

0.8 |

0.6

04 F

02 F

0.0

0 100 200 300 400 500

Epoch

Fig. 5. Training and testing loss and accuracy curves of the NNE-
CNN on the rice disease dataset.

Results and Analysis

Model verification: Initially, two publicly available
datasets, namely Convex and Rectangles-Image, were
employed to evaluate the proposed method under
consistent experimental conditions. The algorithm's
parameter settings are summarized in Table 1.

For computational efficiency, each individual was
trained for a single epoch during fitness evaluation, while
the optimal architecture was further trained for 100 epochs.

Fig. 4. Classification accuracy comparison of different algorithms
on the Rectangles dataset.
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Fig. 6. Classification accuracy comparison of different algorithms
on the rice disease dataset.

The classification accuracies obtained on the Convex
dataset are illustrated in Fig. 3. Owing to the relatively
simple structure and sufficient data volume of this dataset,
all evaluated models exhibited strong performance. Among
the classical approaches, RandNet-2 achieves higher
accuracy than PCANet-2 and LDANet-2. However,
structure-optimized  models  demonstrated  superior
performance overall. In particular, PSO-CNN and the
proposed NNE-CNN outperform classical networks, with
NNE-CNN achieving the highest accuracy of approximately
96.9%.



As for the public Rectangles dataset, which contains
significant background interference, the classification
accuracies are presented in Fig. 4. The classical models
PCANet-2, RandNet-2, and LDANet-2 all achieved
accuracy levels below 90%, indicating limited robustness

under complex background conditions. In contrast,
structure-optimized algorithms, including EVO-CNN,
IPPSO, and PSO-CNN, demonstrated substantially

improved performance, with accuracies exceeding 94%.
Among all evaluated models, the proposed NNE-CNN
achieves the highest accuracy of 96.17%, outperforming
both classical approaches and other structure-optimized
CNN models.

The results above highlight that PCANet-2, RandNet-
2, and LDANet-2 performed well on simpler datasets such
as Convex However, when datasets incorporate
interfering elements such as rotation or background
images, the performance of these classical models
noticeably declines. In such scenarios, the performance of
structure optimization algorithms, characterized by their
ability to dynamically adapt network architectures,
becomes significantly superior to the aforementioned
classical models. Consequently, these algorithms
demonstrated enhanced performance on complex datasets.

The proposed NNE-CNN exhibits exceptional
performance on both Convex and Rectangles datasets. As
a result, the paper seeks to apply this algorithm to the
recognition of rice disease images.

Application case: To further evaluste the effectiveness of
the proposed model in recognizing rice diseases, a dataset
was meticulously constructed using images of rice diseases
as the target identification objects. To enhance model
robustness and feature learning capability, data
augmentation techniques were applied to the original
images, including random rotations (ranging from 5°
counterclockwise to 5° clockwise), random flipping,
brightness adjustment, and contrast modification.

The augmented rice disease images were subsequently
used to train the NNE-CNN in an end-to-end manner. As
shown in Fig. 5, both training and testing loss decreased
rapidly during the initial training phase, followed by a
gradual stabilization as the number of epochs increases.
Although minor fluctuations are observed in the early
epochs, the loss and accuracy curves converge smoothly,
indicating stable training behavior and good generalization
performance. The final training accuracy and test accuracy
reach 98.05% and 97.50%, respectively.

The recognition performance of the rice disease image
dataset is presented in Fig. 6 in terms of classification
accuracy. Among the evaluated models, the proposed
NNE-CNN achieves the highest accuracy, outperforming
both classical methods and other structure-optimized CNN
models. In particular, the classification accuracy of NNE-
CNN exceeds that of PSO-CNN by approximately 8.30%,
demonstrating its superior performance on rice disease
image recognition.

Discussion

Early rice breeding inspection primarily relied on manual
selection, a process that is labor-intensive, time-consuming,
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and constrained by human physical and cognitive limitations.
Hence, the development of an automated classification system
became imperative to achieve the goals of rapid and accurate
recognition. This approach is grounded in non-contact,
nondestructive principles, and machine vision emerges as a
viable solution. Vanitha employed three deep learning
models, namely VGG16, ResNet50, and InceptionV3, to
discern rice diseases (Vanitha, 2019). He assembled a
comprehensive database of rice diseases, meticulously
labeling the images, and leveraging various data augmentation
techniques to expand the dataset, his model was designed to
identify three distinct leaf diseases, achieving an impressive
99.53% accuracy with the ResNet50 model. Similarly, (Desai
etal.,2019) applied deep learning to detect flowering panicles
in rice images and estimate heading dates with an average
error of less than one day.

Notably, there is a paucity of literature dedicated to deep
learning applications in the context of rice, although the
advantages of deep learning methodologies have been
explored in related agricultural domains. For instance, Ma
introduced a prediction method for grain numbers in ears
based on deep learning (Ma et al, 2019). Through the
utilization of a full convolutional neural network and the
precise marking of grain centers, they successfully detected
and counted the number of grains on the entire ear without
compromising its morphological integrity, achieving a
measurement error of 3.47%, in compliance with
measurement accuracy standards. Meanwhile, Wang et al.,
(2023a) enhanced the VGGI9 network model by
incorporating a global average pooling layer and two dense
layers, thereby elevating the recognition accuracy of corn
seeds.

Swarm intelligence algorithms, as a subset of
intelligent algorithms, offer a valuable approach to
approximating solutions for NP problems. The structural
optimization of neural networks undeniably constitutes a
highly intricate challenge, prompting several scholars to
explore the fusion of swarm intelligence algorithms with
machine learning or deep learning methods in pursuit of
algorithm performance enhancement. Ding et al., (2019)
harnessed the power of the particle swarm optimization
(PSO) algorithm to identify an optimal set of mapping
parameters for extreme learning machines.

Subsequently, these mapped feature samples were fed
into the K-Nearest Neighbor (KNN) algorithm, amplifying
its capacity to address linear inseparability issues.
Pourpanah et al., (2023) leveraged PSO to optimize the
structure of Bayesian networks, demonstrating distinct
advantages over alternative optimization methods. Yan et
al., (2019) devised a hybrid particle swarm optimization
algorithm, alongside a quasi-Newton algorithm, to operate
on a CPU-GPU platform.

This innovation curtailed data transmission time and
reduced training errors simultaneously. Wang et al.,
(2023b) employed PSO to fine-tune the weights and
thresholds of neural networks, successfully applying this
approach to estimate and predict the spectrum of soil
organic matter content. Furthermore, Huang et al., (2020)
harnessed genetic algorithms to optimize feedforward
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networks for the classification of pre-processed remote
sensing images.

In the previously discussed research, the proposed
methods were primarily tailored to fully connected neural
network structures and weren't directly transferable to the
domain of image classification employing deep neural
networks. Wang the belief function defined by the
composite normal distribution to model the knowledge of
experts on the fine-tuning of CNN hyperparameters to
enhance the exploration capability of standard PSO(Wang
et al, 2019b). In this innovative approach, particle
encoding takes inspiration from the IP address coding
method in computer networking, with each network layer
assigned an IP address. Sun proposed Evolving Deep CNN
algorithm which deploys genetic algorithms to explore
CNN structures with specific crossover and mutation
operators, displaying remarkable performance on
numerous public datasets(Sun et al., 2020).

However, it's worth noting that this algorithm
demands substantial computational resources. Wang
applied a hybrid algorithm combining genetic algorithms
and particle swarm optimization to optimize CNN
architectures (Wang et al., 2019a). In contrast, Li et al.,
(2019b) utilized a PSO algorithm based on binary coding
to optimize CNN structures. It's essential to recognize that
various optimization algorithms come with their unique
limitations, and the choice of coding strategy significantly
impacts CNN structural optimization. Thus, this paper
endeavors to optimize CNN structures via non-numerical
encoding, seeking to strike a suitable balance between
search accuracy and speed, thereby addressing the
challenge of image classification.

The experimental results demonstrate that NNE-CNN
exhibits superior performance compared to traditional
models and other intelligent algorithm-optimized CNN5s
across various datasets. On the Convex dataset, NNE-CNN
achieved the highest accuracy of 96.94%, while on the
more challenging Rectangles dataset with background
interference, it attained 96.17% accuracy, significantly
outperforming classical models like PCANet-2, RandNet-
2, and LDANet-2 which showed accuracy below 90%.

The superior performance of NNE-CNN can be
attributed to its non-numerical encoding approach and
differential operator mechanism, which enables dynamic
adaptation of network structures. This flexibility allows the
model to maintain high performance even when dealing
with complex datasets containing rotational variations and
background noise. The structural optimization through
layer removal or sparsification reduces computational
overhead while preserving generalization capabilities.

In the rice disease recognition application, NNE-CNN
achieved 97.50% test accuracy, demonstrating its practical
utility in agricultural applications. The saliency detection-
based preprocessing method effectively enhanced contrast
and reduced background complexity, contributing to the
model's robust performance. The stable training process
with minimal fluctuations indicates the reliability of the
proposed approach.

However, it's important to note that the algorithm
requires substantial computational resources for the initial
training phase, which represents a limitation for real-time

applications. Future work should focus on optimizing the
computational efficiency while maintaining the model's
adaptive capabilities.

Conclusion

Swift and accurate identification and detection of rice
diseases are of paramount importance, given the critical
role rice plays as a staple food crop worldwide, and the
significant impact of infections on crop yield. This research
employs a non-numerical encoding approach to represent
the CNN structure, achieving the hybridization of non-
numerical rice seeds through the utilization of difference
and update operators.

Through a comparative analysis of the training results
on Convex and Rectangles public datasets, the study
reveals that NNE-CNN outperforms the PCANet-2,
RandNet-2, and LDANet-2 models, especially in
challenging data scenarios. The consistent training process
of the significance-detection segmented model streamlines
the extraction, identification, and classification of rice
disease characteristics. This research contributes to the
field of agricultural disease identification and proactive
disease prevention, offering a theoretical foundation for
optimizing crop breeding strategies.

Conflict of Interest: The author(s) declared no potential
conflicts of interest with respect to the research, author-
ship, and/or publication of this article.

Authors contribution: Xiao Han, conceptualization,
study design, data collection, visualization, writing —
original draft; Qingrui Zhang and Ziting Gao,
methodology, statistical and data analysis, data curation
and organization. Xiaoliang He and Fenglou Ling,
validation, writing — revision and editing. All authors have
read and approved the final manuscript, underscoring their
commitment to the project's quality and integrity.

Acknowledgment / Funding: This study was supported
by the following fundingsources: Science and Technology
Department of Jilin Province-Natural Science Foundation
of Jilin Province (20240101201JC) and Jilin Provincial
Department of Science and Technology-Innovation
Platform (Base) and Talent Program (20240601061RC).

References

Chang, Z., Z. Du, F. Zhang, F. Huang, J. Chen, W. Li and Z.
Guo. 2020. Landslide susceptibility prediction based on
remote sensing images and gis: comparisons of supervised
and unsupervised machine learning models. Remote Sens.,
12(3): 502.

Desai, S.V., V.N. Balasubramanian, T. Fukatsu, S. Ninomiya and
W. Guo. 2019. Automatic estimation of heading date of
paddy rice using deep learning. Plant Methods, 15(1): 1-11.

Ding, J., T. Liu and J. Wang. 2019. KNN classification algorithm
based on PSO-ELM feature mapping. Mod. Electron.
Technol., 42(5): 152-156.

Huang, X., J. Shen and G. Li. 2020. Genetic algorithm optimization
for remote sensing image classification based on BP neural
network. Mod. Electron. Technol., 43(12): 47-49.

Leonowicz, Z. and M. Jasinski. 2022. Machine learning and data



mining applications in power systems. Energies, 15(5): 1676.

Li, K. 2019a. Research on strengthening in-depth study of
artificial intelligence in clinical application of medical
imaging. Chin. Med. Imag. Technol., 35(12): 1769-1770.

Li, Y., J. Xiao, Y. Chen and L. Jiao. 2019b. Evolving deep
convolutional neural networks by quantum behaved particle
swarm optimization with binary encoding for image
classification. Neurocomputing, 362: 156-165.

Liu, J., X. Wang and Y. Li. 2022. Deep learning-based detection
and classification of rice diseases: A comprehensive review.
Comp. Electron. Agric.,202: 107373.

Ma, Z., L. Gong and K. Lin. 2019. Estimation of grains in panicle
based on pattern recognition of rice panicle geometry. J.
Shanghai Jiaotong Uni., 396(02): 117-124.

Pourpanah, F., R. Wang, C.P. Lim, X.Z. Wang, D.H. Vu, C.
Wang, H. Wang, J. Wang and Ou, Y. 2023. A review of
Bayesian neural networks and hybrid Bayesian-based deep
learning models: Applications and challenges. Eng. Appl.
Artif. Intell., 126: 106861.

Sun, Y., B. Xue, M. Zhang and G.G. Yen. 2020. Evolving deep
convolutional neural networks for image classification.
IEEE Trans. Evol. Comput., 24(2): 394-407.

Vanitha, V. 2019. rice disease detection using deep leaming. Int.
J. Recent Technol. Eng., 7(5S3): 534-542.

Wang, B., Y. Sun, B. Xue and M. Zhang. 2019a. A Hybrid GA-
PSO method for evolving architecture and short connections
of deep convolutional neural networks. Swarm Evol. Comp.,

XIAO HAN ET AL.,

49: 114-123.

Wang, L., H. Wang, J. Liu, C. Li and Y. Zhang. 2023a. MViT: A
vision transformer-based framework for fine-grained maize
seed variety identification. Exp. Syst. Appl., 213: 119000.

Wang, L., J. Wang, X. Li, Y. Zhang and Y. Chen. 2023b. A deep
learning approach for soil organic matter content estimation
from hyperspectral data using attention-based convolutional
recurrent neural networks. Remote Sens. Environ., 285:
113382.

Wang, Y., H. Zhang and G. Zhang. 2019b. ¢cPSO-CNN: An
efficient PSO-based algorithm for fine-tuning hyper-
parameters of convolutional neural networks. Swarm Evol.
Comp., 49: 114-123.

Yan, S., Q. Liu, J. Li and L. Han. 2019. Heterogeneous
acceleration of hybrid PSO-QN Algorithm for neural
network training. /[EEE Access, 7: 161499-161509.

Zhang, R., Y. Li, C. Wang, H. Zhang and S. Chen. 2021. Real-
time detection of rice blast disease using deep learning with
hyperspectral imaging. IEEE Trans. Geosci. Remote Sens.,
59(12): 10272-10282.

Zhang, W., P. Tang and L. Zhao. 2019. Remote sensing image
scene classification using CNN-CapsNet. Remote Sens.,
11(5): 494.



