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Abstract

Across the globe, approximately 200 million tons of tobacco waste are generated annually. Traditional treatment methods generally
cause resource waste and environmental pollution. It is worth noting that discarded tobacco leaves are abundant in pectic
polysaccharides that comprise 5-12% of their dry weight. In this study, a novel pectic polysaccharide, CSTP5b, was isolated from
tobacco waste for the first time. This was achieved via sequential extraction with ammonium oxalate, followed by column
chromatography. CSTP5b is composed of 55.23% rhamnogalacturonan-I (RG-I) and 44.77% homogalacturonan (HG) domains. The
HG domain exhibits methyl esterification, while the RG-I main chain has branches where galactan and arabinan are linked.
Characterized by a sheet-like morphology, CSTP5b exhibits weak crystalline properties and notable thermal stability. Additionally, it
demonstrates significant free radical scavenging and hypoglycemic activities. This study elucidates the fine structural characteristics of
tobacco pectic polysaccharides. This indicates that tobacco waste may serve as a viable source of low methyl-esterified RG-I-HG type
pectin and potential natural antioxidants and hypoglycemic products. These findings offer a novel avenue for the targeted exploration

of bioactive components in tobacco by-products.
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Introduction

The resource utilization of tobacco waste is a key
challenge for sustainable agricultural development. With a
global annual production of 200 million tons, tobacco
waste is often disposed of through landfill or incineration
(Tian ef al., 2023). This not only leads to resource waste,
but also potentially threatens the ecological environment
due to the release of nicotine, tar and other harmful
components. Tobacco contains abundant active ingredients,
including alkaloids (Wang et al., 2022), sterols (Liu ef al.,
2020), flavonoids (Docheva et al., 2014), phenols (Wang
et al, 2008), solanesol (Wang & Gu, 2018),
polysaccharides (Chang et al, 2024), etc. Research
indicates that plant pectic polysaccharides display
biological activities such as immune regulation (Ho et al.,
2016), anti-inflammatory effects (Huang et al., 2024) and
intestinal health protection (Kang & Chang, 2024).
Tobacco cell walls contain a remarkably higher content of
pectic polysaccharides amounting to 15% of dry weight
compared with conventional crops (Yang et al., 2022). The
unique secondary metabolic environment in tobacco may
result in structural differences in its pectin relative to
conventional plant sources (Hao et al., 2024). The structure
analysis of tobacco polysaccharides is an important
prerequisite for illuminating structure-activity
relationships. Extensive research has focused on the
structures and bioactivities of tobacco polysaccharides
(Jing et al., 2016; Ma et al., 2024). However, detailed
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investigations into the structure of tobacco polysaccharides,
especially pectic polysaccharides, and their structure-
activity relations remain scarce.

Low methylation HG type pectin can interact with
calcium ions (Ca®") in the cell wall, which creates “egg-
box” structures (Braccini & Pérez, 2001; Cardoso et al.,
2003). It is difficult to extract these tightly bound pectic
polysaccharides with water alone, which thereby leads to a
reduced yield. Previous studies have revealed that the yield
of pectic polysaccharides can be improved by acid (Kang
& Chang, 2024), alkali (Teng et al., 2021) or chelators
(Jamsazzadeh Kermani et al, 2014) to a large extent.
Compared with the traditional alkaline extraction method,
ammonium oxalate as a weak acidic chelating agent could
disrupt the calcium bridge connection between pectin and
the cell wall without triggering B-elimination reactions
(Cui et al., 2020). This facilitates the release of pectic
polysaccharides. To date, no relevant report has been made
on the extraction of pectic polysaccharides from tobacco
leaves using ammonium oxalate.

In this work, CSTP5b, which is a chelator-soluble
pectic polysaccharide, was purified from tobacco waste. Its
physicochemical properties, structure and morphology
were analyzed in detail through multiple analytical
instruments. In addition, the antioxidant and hypoglycemic
activities of CSTP5b were further investigated. This
research provides fresh perspectives on structure-activity
relationships, which promotes the development of their use
in functional pharmaceuticals.
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Materials and Methods

Tobacco waste was collected from Fujian Province of
China in 2023. DEAE-Fast Flow and Sepharose CL-6B
were provided by Aladdin Biotechnology (Aladdin
Industrial Corporation, Shanghai, China). All other
reagents and chemicals were supplied by Sinopharm
Chemical Reagent Co., Ltd. (Beijing, China).

Extraction and purification of tobacco pectic
polysaccharides: In this step, 1 kg of dried tobacco waste
powder was treated with 95% ethanol at a mass-to-
volume ratio of 1:10 at room temperature for 48 hours. A
water-soluble polysaccharide fraction termed WSTP was
obtained by extracting the retained tobacco powder with
distilled water at a 1:16 mass-to-volume ratio at 100°C
for 3 hours. Then, 0.5% ammonium oxalate was used at a
1:16 solid/liquid ratio to extract pectic chelator-soluble
polysaccharide from the solid residues of the hot water
fraction of tobacco leaves, with 4-hour mechanical
stirring at 25°C. The extract was concentrated to about 2
L wunder reduced pressure and centrifuged. The
supernatants were precipitated through the addition of a
fourfold volume of 95% ethanol and 12-hour incubation
at 4°C. After 10-minute centrifugation at 4,000 rpm, the
precipitates were dried with 95% and absolute ethanol.
The precipitate was gathered and deproteinized by use of
Sevag reagent, which yielded around 34 g of crude
polysaccharide designated as chelator-soluble pectic
polysaccharides (CSTPs).

A DEAE Fast Flow ion exchange column (2.6 x 40
cm) was utilized to separate CSTPs, which produced
CSTPN and CSTP5 in sequence. CSTPS was isolated by
Sepharose CL-6B column with 0.1 M sodium chloride
(NaCl) as the eluent, which yielded the primary pectin
fraction CSTP5b. A record was kept of the elution profiles
by measuring uronic acid content using the m-
hydroxydiphenyl method.

Monosaccharide composition: The monosaccharide
composition of CSTP5b was determined according to the
previous report (Peng et al., 2023).

Molecular weight: The molecular weight (Mw) of the
purified components was determined via high-
performance gel permeation hromatography (HPGPC)
using a Shimadzu LC-10A with a differential
refractometry detector and a BRT-105-103-101 (8 x 300
mm) column. The experimental parameters were set as
follows: an injection volume of 20 pL, a column
temperature of 40°C, a flow rate of 0.7 mL/min, 0.05 M
NaCl solution as the mobile phase and a CSTP5b
concentration of 5 mg/mL. The calibration curve was
drawn using dextran standards (2 mg/mL) with multiple
molecular weights: 7,380, 10,510, 21,950, 44,520,
109,900, 217,800, 410,200 and 755,900 Da.

Fourier transform infrared and ultraviolet
spectroscopy: The experimental procedures were based on
previously published reports (Ma et al., 2023).
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Morphology analysis: The dried sample was affixed to a
conductive carbon film and subjected to about 40-second
gold-coating in the chamber of an ion sputterer. The sample
was examined in a scanning electron microscope chamber
with a 2 kV acceleration voltage.

The crystal structure of CSTP5b was determined using
the X-ray diffraction (XRD) pattern. The diffractometer
functioned across an angular range of 5-90°. For atomic
force microscope (AFM) analysis, the samples were
deposited on mica sheets, dried and examined in tapping
mode at 25°C.

Analysis of CSTP5b methylation: The methylation of
CSTP5b was referenced to literature (Huang et al., 2021).

Nuclear magnetic resonance analysis of CSTPS5b:
CSTP5b was precisely weighed (20 mg) and dissolved in
deuterium oxide (D.O) (99.8%) with acetone as the
internal standard. 'H, '3C, heteronuclear singular quantum
correlation (HSQC), correlation spectroscopy (COSY) and
nuclear Overhauser effect spectroscopy (NOESY) nuclear
magnetic resonance (NMR) spectra were measured on a
Bruker Avance 600 MHz NMR spectrometer containing a
cryo probe (Bruker Inc., Rheinstetten, Germany).

Thermal stability: A thermogravimetric (TG) analyzer
(STA 449C, Netzsch, Germany) was applied to perform
TG and differential scanning calorimetry (DSC) analyses.

Antioxidant activity: The antioxidant activity of CSTP5b
against 1,1-Diphenyl-2-picrylhydrazyl (DPPH), hydroxyl
and 2, 2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
(ABTS) was then assessed in vitro using previously
reported methods (Ning ef al., 2021).

Hypoglycemic effects: The hypoglycemic effect of
CSTP5b was assessed by inhibiting a-glucosidase and -
amylase, and using acarbose as a positive control in
accordance with established methods (Sun et al., 2024).
CSTP5b (0.5, 1.0, 2.0, 4.0, 6.0 and 8.0 mg/mL) was
evaluated in both experiments.

Results and Discussion

Extraction, isolation and purification of CSTPs:
CSTPs from tobacco leaves were extracted using
ammonium oxalate and subsequently deproteinated via
the Sevag method, which achieved a yield of 4.25%.
Additionally, CSTPs were purified using DEAE Fast
Flow column to separate neutral and acidic
polysaccharides. Distilled water and 0.5 M NaCl were
used successively for elution to obtain two fractions
(CSTPN and CSTPS) (Fig. Sla). CSTP5 was a
predominant high-purity constituent in polysaccharide
fractions. Therefore, CSTP5 was chosen for further
purification  with  Sepharose = CL-6B  column
chromatography (Fig. S1b). After fractionation, the
primary independent fraction CSTP5b was isolated for
further analysis.
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Fig. S1. Column chromatography results of tobacco chelator-
soluble polysaccharide. (a) DEAE-Fast Flow column
chromatography of CSTP. (b) Sepharose CL-6B column
chromatography of CSTP5b.

100

80

Transmittance/%

60

4000 3500 3000 2500 2000 1500 1000 500
Wavenumber/cm’

Fig. S2. FT-IR spectrum of CSTP5b.
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Fig. S3. TG curve (a) and DSC curve (b) of CSTP5b.

Physicochemical characteristics and monosaccharide
compositions of CSTP5b: It was found that the uronic
acid and neutral sugar contents in CSTP5b were 59.3 +
0.17% and 85.59 + 0.08%, respectively. A minor protein
content of 0.8 + 0.03% was observed, which suggested the
effective removal of protein impurities during purification.
As shown in Fig. 1(a), the ultraviolet—visible (UV-Vis)
spectra of CSTP5b lacked absorption at 280 and 260 nm,
which indicated that proteins and nucleic acids were absent.

The homogeneity and molecular weight distribution of
CSTPS5b were shown in Fig. 1b. A single symmetrical peak
was detected, which implied the homogeneousness of
CSTPS5b. A linear equation with dextran standards of
varying molecular weights was employed to determine the
Mw and Mn of CSTP5b as 65.8 and 64.0 kDa, respectively.
The polydispersity index (PDI, Mw/Mn) of 1.03 suggested
a narrow molecular mass distribution for the homogeneous
polysaccharide.

The monosaccharide composition of the hydrolyzed
CSTP5b was identified (Figs. 1c-d). CSTP5b consisted of
galacturonic acid (GalA) (57.88%), galactose (Gal)
(20.71%), rhamnose (Rha) (13.11%) and arabinose (Ara)
(8.3%) in comparison with monosaccharide standards (Figs.
1c-d). The presence of GalA proved that CSTP5b was an
acidic heteropolysaccharide. Pectic polysaccharides are
made up of  various domains, primarily
rhamnogalacturonan-I (RG-I) and homogalacturonan (HG).
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The molar ratio of monosaccharide composition reflects the
relative proportions of various pectin domains. The CSTP5b
component is mainly constituted by RG-I (55.23%) and HG
(44.77%) domains, as determined by monosaccharide
composition analysis. Of note, the GalA proportion was
much higher than that in prior research (Jing et al., 2016; Ma
et al., 2024), which could be chiefly attributed to different
extraction methods or raw materials. Traditional hot water
extraction can only dissolve Ara, Gal and other water-
soluble sugars from side chains of pectic polysaccharides.
Nevertheless, ammonium oxalate is effective in dissociating
the cross-linked network formed by GalA and Ca?*, which is
the reason for the relatively high content of GalA in CSTP5b.

Fourier transform infrared spectroscopy analysis: As
shown in Fig. S2, CSTP5b showed a broad peak at 3,365
cm!, which indicated hydroxyl stretching vibration. C-H
stretching vibrations were responsible for 2,933 cm™!
bands (Liu et al., 2021). The bands of 1,739 and 1,610
cm ! represented the stretching vibrations of methylated
(-COOCH3) and free (-COO-) carboxyl groups in uronic
acid, respectively (Goémez-Ordoéinez & Rupérez, 2011).
The DM of CSTP5b was calculated to 22.34% (DM <
50%) (Chen et al., 2019). It can primarily be deduced that
CSTP5b obtained through chelator extraction was low
methoxyl pectin. Pyran configurations in CSTP5b were
suggested by the absorption bands at 900~1,200 ¢m™!
(Hong et al., 2022).
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Morphological properties: Scanning electron microscopy
(SEM) analysis was utilized for capturing the
microstructure morphologies of CSTP5b. The images are
depicted in Fig. 2(a-c). CSTP5b showed an irregular flake-
like structure, and its surface was smooth with circular
protrusions under 200x and 500x magnifications. It was
noted that the surface became asperities with a number of
small uneven particles under 5,000x magnification.

The crystallization characteristics of pectin
significantly affect its mechanical strength, gel properties,
as well as biodegradability. As illustrated in Fig. 2d,
CSTPSb exhibits sharp and narrow diffraction peaks at
32.475° and 46.174° within the diffraction angle 26 range
of 5°-90°, which indicates that CSTP5b mainly exists in a
weakly crystalline form. This may be ascribed to the
ordered structure formed by the GalA linear backbone in
the HG structural unit of pectic polysaccharide
(Ponmurugan et al., 2017).

As indicated in Figs. 2(e-f), the AFM planar and cubic
spectra revealed a morphology of irregular flakes and
blocks with a height of -4.8~6.9 nm. The CSTP5b diameter
measured by AFM was larger than that of single chains of
polysaccharides, which indicated the entanglement and
aggregation of pectic polysaccharide chains. The
aggregation of CSTPSb could result from hydrogen
bonding within and between molecules on its surface, as
well as interactions with water molecules (Camesano &
Wilkinson, 2001; Wang & Nie, 2019).

b 50

40}

301

Intensity/mV

20t

0 20 40 60 30

Retention time/min

d 500

450+
400

—— CSTP5b

)
S
:

Value/nC

S0F

0

0 10 20 30 40

Retention time/min

Fig. 1. (a) UV-Vis absorption spectra of CSTP5b; (b) HPGPC of CSTP5b; (c-d) Ion chromatogram of standard monosaccharides (c) and CSTP5b (d).
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Table 1. Results of methylated glycyryl acetate (PMAA) of CSTP5b.
Peaks Retention time (min) Methylated sugar Molar (%) Glycosidic linkages
1 10.288 2,3,5-Mes—Arap 33 Arap—(1—
2 14.835 3,5-Mex—Araf 4.4 —2)-Araf-(1—
3 17.482 2,3,4,6-Mes—Galp 7.0 Galp—(1—
4 18.650 3—-Me;—Rhap 4.0 —2,4)-Rhap—(1—
5 20.826 2,3,6-Mes—Galp 57.7 —4)-Galp—(1—/—4)-GalpA—(1—
6 23911 2,6-Me,—Galp 17.2 —3,4)-Galp—(1—/—3,4)-GalpA—(1—
7 26.525 2,3—Me,—Galp 6.4 —4,6)-Galp—(1—
Table 2. Assignments of hydrocarbon for CSTPSb.
Glycosyl residues H1/C1 H2/C2 H3/C3 H4/C4  HS5a/CS H6a,H5b/C6 H6b/C6
5.19 4.24 39 3.73 3.82 1.25
A —228oDRhap(1= 030 9760 69 779 719 18.1
538 391 3.97 4.07 4.1 375
B o-D-Galp~(1— 99.91 68.22 80.5 78.1 70.09 63.56
4.87 422 424 4.55 525
D =34-aD-GapA-(I—~ ) o) 7168 8238 7925 71.86 176.7
5.1 3.75 3.84 4.14 4.16 4 4.01
B —4.6)-a-D-Galp-(1— 99.48 69.77 70.49 77.93 75.61 65.74
4.97 3.67 3.93 432 4.68
F —4-a-D-GalpA~(1— 100.38 69.4 70.05 79.15 72.65 176.7
5.02 422 4.05 42 3.58 3.65
G o-Arap(1— 101.3 69.53 7146  73.11 63.73
52 42 3.82 434 378 3.69
I —2)rel-Araf(l— 108.87 8549 7853 83.35 62.61

Glycosidic linkage analysis: The glycosidic linkage
patterns and mass fragment information are displayed in
Table 1. Seven methylated glycyryl acetates (PMAAs)
were found in CSTP5b based on the methylation analysis.
CSTP5b primarily comprised —4)-Galp—(1—/—4)—
GalpA—(1— (57.7%), —3,4)-Galp—(1—/—3,4)-GalpA—
(1— (17.2%), Galp—~(1— (7.0%), —4,6)-Galp—(1—
(6.4%), —2)-Araf(1— (4.4%), —2,4)-Rhap—(1—
(4.0%) and Arap—(1— (3.3%). The main structural
component of CSTP5b was —4)-GalpA—(1—, as
identified by monosaccharide composition. The
branching degree was calculated as 37.9% as per the
previous method (Tang et al., 2021).

NMR analysis: NMR spectroscopy provides an efficient
approach for acquiring detailed structural insights into
complex polysaccharides. The NMR spectra of CSTP5b
are presented in Fig. 3. The 'H NMR spectrum (Fig. 3a)
displayed signals mainly in the range of 3.0 to 5.5 ppm. In
the 3C NMR spectrum (Fig. 3b), a majority of signals
appeared between 60 and 120 ppm. The NMR spectrum
analysis of the CSTP5b head region showed chemical
shifts at 65.19/100.37, 5.38/99.91, 4.87/101.54, 5.1/99.48,
4.97/100.38, 5.02/101.3 and 5.2/108.87 ppm, designated as
letters. As demonstrated in Fig. 3b, the uronic acid signal
of 176.7 ppm was noticed. The attributions for each residue
are detailed in Table 2. The monosaccharide composition
results indicated that CSTPSb is a typical pectic
polysaccharide.

A shift of H-1 to H-5 at 64.97, 3.67, 3.93, 4.32 and
4.68 ppm is revealed in Fig. 2c. As shown in Fig. 3d, C-1
to C-5 signals were found at 6100.38, 69.4, 70.05, 79.15,

and 72.65 ppm. As illustrated in Figure 3e, the cross peak
at 04.97/4.32 ppm corresponded to H1/H4. It suggests that
residue F is —4)-0—D-GalpA—(1 —. Moreover, the H-
3/C-3 signal (64.24/82.38) for residue D was noticeably
downfield compared to that (83.93/70.05) for residue F,
which suggested an O-3 substitution. Residue D is
characterized as —3,4)-0-D-GalpA-(1—.

A similar approach was adopted to obtain the
hydrogen and carbon signals of other primary residues.
Residues were analyzed using the above analysis, in
conjunction with prior studies (Liu et al., 2024). Residue A
is —2,4)-0—D-Rhap—(1—; residue B is o—D—-Galp—(1—;
residue E is —4,6)-0—D—Galp—(1—; residue G is o—Arap—
(1-); residue I is —»2)—a—-L—-Araf—(1—.

In the NOESY spectrum (Fig. 3e), the following
cross-peaks were noted: F H-1/F H-4, F H-1/D H-4, F H-
1/A H-2, G H-1/1 H-2, B H-1 to E H-4, E H-1 to A H-4
and I H-1 to A H-4.

Based on the analysis, CSTP5b was identified as an
RG-I-HG pectin with a primary chain of —[4)-o-D-
GalpA—(1]s—4)—-0—D—-GalpA(OMe)—(1—4)—a—D—
GalpA—(1—2)—a—D-Rhap—(1—4)—-a—-D-GalpA—(1—-2)-
a—D—-Rhap—(1—-. The side chain includes branches of o—
L-Arap—(1—2)-o—-L-Araf-(1— and a—D-Galp-
(1—4,6)-0—D—Galp—(1—, linked via —2,4)—0—L—Rhap—
(1— at the O—4 position, with a minor presence of o—D—
Galp—(1—. The predicted structure of CSTP5b is
illustrated in Fig. 4.

Thermal stability: TG analysis (TGA) and DSC were
used to evaluate the thermal behavior of pectic
polysaccharides. As indicated in Fig. S3(a), the TG
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analysis of tobacco pectic polysaccharides revealed three
stages of decomposition. The initial phase saw a mass
reduction of 16% because of moisture loss (Einhorn-Stoll
& Kunzek, 2009). During the second stage (166~516°C),
CSTP5b experienced significant weight loss (up to 60%)
owing to thermal decomposition. The process entailed the
cleavage of glycosidic bonds, the decarboxylation of acid
groups and the breakdown of C-C bonds in the pyran ring,
which resulted in the formation of solid char (Hu et al.,
2020). The third stage (516~800°C) showed a slow
weight reduction, which implied the further breakdown of
carbonized substances with aliphatic and ketone groups
(Zhou et al., 2011). The DSC curve in Fig. S3(b)
indicated that CSTP5b exhibited endothermic behavior
from 40-340°C due to the loss of bound water.
Concurrently, this process was accompanied by pectic
polysaccharide dehydroxylation and conformational
changes, like the transition of polygalacturonic acid from
a stable *C; chair conformation to a thermodynamically
less stable inverted 'Cs4 chair conformation (Wani &
Uppaluri, 2023). Furthermore, an exothermic
phenomenon was observed between 340°C and 800°C.
This was potentially associated with the thermal
degradation of pectin polysaccharides. These results
verified the exceptional thermal stability of CSTPS5b.

Antioxidant activity: Vc was used as a reference to assess
the scavenging capabilities of CSTP5b against DPPH,
hydroxyl radical (‘OH) and ABTS (Figs. 5a-c). The
activity showed a progressive increase with the increase of
concentration levels, which indicated a dose-dependent
effect. In the DPPH radical assay (Fig. 5a), CSTP5b
demonstrated marked antioxidant activity with a radical
scavenging rate of 65.96 + 1.35% (8 mg/mL). CSTPS5b
exhibited a scavenging effect of 48.27 + 1.92% on -OH
radicals at 8 mg/mL (Fig. 5b). CSTP5b demonstrated
ABTS radical scavenging activity across all the tested
concentrations, with scavenging rates of 21.47 + 2.27%,

26.63+1.39%,32.26+1.51%,55.18 £1.92%,62.85+1.39%

and 68.32 £ 1.51% at 0.5, 1, 2, 4, 6 and 8 mg/mL,

w09

respectively (Fig. 5c). The half maximal inhibitory
concentration (ICso) values were 4.40, 8.27 and 3.36
mg/mL, respectively. Hong et al. found that ASP-3 A pectic
polysaccharides derived from soybean hulls exhibit strong
antioxidant activity by virtue of their low esterification
degree and high GalA content (Song ef al., 2022). In this
study, CSTP5b, a low methyl-esterified HG-type pectic
polysaccharide, is primarily composed of GalA (65.4%),
Rha (21.8%), and Ara (12.8%) in light of monosaccharide
composition. Taken together with the structural analysis
results, the high antioxidant activity of CSTP5b may
originate from two possible reasons. One possible reason
is that a low esterification degree (DM = 22.34%) enhances
the hydrophilicity of pectin. The other possible reason is
that high GalA content (> 60%) contributes hydrogen
atoms or electrons through carboxyl and hydroxyl groups,
which thereby neutralizes the effects of oxidative stress.

Hypoglycemic effects: Both a-glucosidase and a-
amylase inhibition assays offer a simple and efficient
approach for the evaluation of in vitro hypoglycemic
activity. As demonstrated in Figs. 6(a-b), CSTP5b
inhibited o-glucosidase and oa-amylase in a
concentration-dependent way (0.5~8 mg/mL). It
exhibited a maximum inhibition rate of 43.82% on a-
glucosidase and 35.86% on a-amylase. Both maximum
inhibition rates were below those observed with
acarbose in the positive control group. The ICso values
were 7.00 (a-glucosidase) and 9.09 mg/mL (a-amylase).
CSTP5b exhibited superior inhibitory effects compared
with certain known natural polysaccharides, like
Lycium barbarum leaves polysaccharide (ICso over
14.92 mg/mL) (Quan et al., 2023) and Fructus Mori
polysaccharide (ICso 19.31 mg/mL) (Zhang et al., 2019).
The glycan chains of CSPT5b may encompass hydroxyl
and carboxyl groups capable of interacting with amino
acid residues, which leads to the inhibition of enzyme
activity (Amamou et al., 2020). Nonetheless, further
research is warranted to explore CSTP5b as a potential
hypoglycemic agent or alternative.

a-D-Galp—(1—=

= | Hfery—T-o(7g—1)-dery—T-»
s )-deD-q-0—(y—)-deD-q—»
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Fig. 4. Predicted structural repeating unit of CSTPSb.
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The ammonium oxalate fractional extraction method
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This structure indicates that CSTP5b is a pectic
polysaccharide consisting of RG-I (55.23%) and HG
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activity. These findings provide a theoretical basis for the
creation of beneficial functional ingredients from pectic
polysaccharides in tobacco waste.
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