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Abstract

In spite of few attempts for mapping land-cover types in Pakistan, remotely sensed data has
not been used widely; and its potential is not being explored for providing information on mapping
vegetation cover in general and ecological communities in particular. The present study was
undertaken in the Lohibehr scrub forest in the Foothills of Himalaya, northeast of Pakistan. The
objective of the study was ot find out the relationship between remote sensing data and vegetation
communities of ecological importance using multivariate techniques such as TWO WAY
INDICATOR SPECIES ANALYSIS (TWINSPAN), Principal Component Analysis (PCA) and
Correspondence Canonical Analysis (CCA). Floristic data were compiled for vegetation types and
Digital number (DN) values were extracted from SPOT XS image for visible and near infrared
bands (NIR). Classification and ordination methods were used for the classification of floristic data
and to describe the relationships between floristic species composition and DN values. Ordination
analyses indicated positive correlation between floristic species composition and DN values along
the first ordination axis, with the NIR. The ordination methods proved effective in summarizing
basic, general structure of the plant community types and to some extent indicated correspondence
with their spectral signatures. The results highlighted the potential of remote sensing data in
providing information on different plant community types that could be used in planning,
management and conservation of subtropical forest.

Introduction

During the past 20years, digital remote sensing has become an increasingly important
tool for mapping and monitoring vegetation resources around the globe (Cohen et al., 1996;
Malik & Husain, 2006a), due to the increasing availability and understanding of remote
sensing data in general and to the greatly expanded use of geographic information systems.
Resource scientists and managers now require spatially explicit vegetation data over
extensive geographic areas, which means that traditional field survey techniques, even
when coupled with aerial photography are of limited use (Cohen et al., 1996). Traditional
methods of vegetation mapping are time-consuming and uneconomical, with data collected
over long time intervals, and are particularly inefficient and impractical for real-time global
and regional mapping of different vegetation types and other land-cover categories (De
Fries & Townshend, 1994).

Remote sensing has been widely used in mapping and classification of vegetation types
(Chavez & MacKinnon, 1994) and has considerable potential for the provision of
information on different vegetation types of ecological importance (Franklin, 1994) as
vegetation classification and mapping can be considered as the process of distinguishing
vegetation communities that represent a realistic (although abstract) model, and displaying
their spatial distribution on maps. To date, many studies have focused on issues such as
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forest/non-forest classification (Trisurat et al., 2000), particularly to monitor deforestation,
but its potential to extract information about vegetation communities of ecological
significance has not yet been explored in detail using remotely sensed data (Vogelmann &
Moss, 1993; Key et al., 2001; Malik, 2006b, c). Different vegetation types may differ
markedly in terms of floristic species composition and therefore vary in terms of ecological
and economic value (Cohen et al. 1996). Therefore, information on vegetation types is
required for vegetation conservation and planning (Toumisto et al., 1995). Remotely sensed
spectral data have been used to identify broad categories of forest cover, for example,
coniferous versus deciduous stands. Studies which have focused on different forest
vegetation types have generally separated forests of different structural and biochemical
attributes (Malik et al., 2005).

One of the most difficult challenges in remote sensing of vegetation classification
has been species identification (Key et al., 2001). There are a multitude of factors
influencing the spectral response of digital imagery and species is only a minor influence
relative to vegetation structure and topography (Cohen et al., 1996). Number of studies
has used broad band sensor data such as Landsat TM and ETM, SPOT SX, MSS, and
AVHRR to classify vegetation types at detailed species resolution with varying degree of
success (Franklin, 1994; Schriever & Congalton 1995; Clark et al., 2001). In the last 10
years, a number of satellite sensors with higher spatial and spectral resolution have been
developed, providing spectral resolution necessary to improve upon existing vegetation
classification based on species identification and ecological types (Martin et al., 1998;
Thomas et al., 2003). Additionally, a temporal data set was also found advantageous in
capturing the phenological events associated with different tree species and also for
vegetation type mapping (Cohen et al., 2001; Key et al., 2001).

Satellite remote sensing data have not been fully exploited in Pakistan for mapping
vegetation types in general and particularly in the Foothills of the Himalayas, which is
one of the species rich zones (Anon., 1999), few attempts have been made using SPOT
XS data (Malik & Husain, 2006a). Himalayan Foothill forests of Pakistan are present in
the north of the country and wide range of climatic and topographic variations have
resulted in different vegetation types within few kilometers (Ellis et al., 1994). Many
vegetation types can be recognized, each varying in terms of floristic species
composition, structure, physiognomy and habitat. In this region, the potential of remote
sensing has yet to be explored in terms of providing information on ecological
communities. The study was designed to focus on the use of multivariate methods such as
clustering and ordination analyses to establish relationship between vegetation
communities that are of ecological importance and remote sensing data. The information
will be used for mapping of vegetation communities in the study area.

Materials and Methods

The location of the study area and its detail description is given in Fig. 1 (Malik &
Husain, 2006b). Sampling strategy represents the skeleton of a study design, and when a
remote sensing data is incorporated into the vegetation analysis, then ground data should
be collected at the same time as data acquisition by the remote sensing satellite, or at least
within a period in which the environmental conditions do not change (Wolter et al.,
1995). Considering this, the floristic data (floristic species composition) were collected
between March-June 2000 to correlate with the remote sensing data which were obtained
in the first week of June, 1998. Before collection of the floristic data, field visits were
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made to obtain an overview of the region to gain familiarity with the local flora,
topography and land-use/cover patterns. This proved invaluable for vegetation sampling
and later during the computer processing of the imagery. These visits showed well-
marked differences in vegetation in relation to different vegetation types. A hand held
Global Positioning System (Gamin GPS 12) and colour paper prints of the SPOT XS data
were used in the field to determine the location of the sites to be sampled where
sufficiently large areas of homogenous vegetation occurred on the imagery (based on
colouration) and also identified in the ground, it was selected as a site for floristic data
collection. After the selection of the site, three randomly placed plots measuring
20mx20m were recorded. A total of 90 randomly selected plots were recorded from 30
field sites for floristic data collection. Floristic species composition of each species from
each plot were measured using percentage cover assessed as the vertical projection onto
the ground of all the above ground parts of the individuals expressed as a percentage of
the reference area (Kent & Coker 1992). The geographic locations (latitude and
longitude) of each field plot from where floristic species composition was collected were
taken using a Global Position System (GPS). Other parameters such as deforestation,
urban encroachment, grazing pressure, land-use/cover patterns, topography of the area
and cultivation which could be helpful in describing the vegetation types and other land-
cover types were also recorded during sampling. All plants collected during the field
work are deposited in the Quaid-i-Azam University Islamabad Herbarium (ISL) as
voucher specimen.

Four non-vegetation types were also identified during field surveys. These types
include urban land, cultivated area, degraded land (land excavated for soil extraction for
making bricks) and water bodies (i.e. rivers, streams, seasonal nullahs and small ponds).
The latitude and longitude of representative sites of these non-vegetation types were also
recorded with the help of GPS.

SPOT HRV2 multi-spectral (XS) sensor data (Scenes No. 195 282 and 196 282) was
acquired on 8" June 1998. A subset covering the study area was extracted from the whole
image of SPOT XS sensor data and was geometrically corrected with an Root Mean
Square Error (RMSE) i.e. the average of the errors in the reference points or sigma of
+10m using Ground Control Points (GCPs). GCPs were either obtained using GPS in the
field or identified on a topographic map at the scale of 1:50,000.

Field data from all plots (vegetation and non-vegetation types) were imported in
ERDAS Imagine software (Anon., 1996) and were overlaid on the subset of the study
area as a point map. Field plots boundaries were drawn using ‘Area of Interest (AOI)’
tools (Anon., 1996). For each filed plot, an area of 120mx120m was delimited on the
satellite image. This area was selected in order to reduce the effect of hilliness on the
results and the error in GPS coordinate at the time of sampling may have exceeded. DN
values were extracted in three SPOT XS bands which include near infrared (NIR) and
visible green and red for each field plot of vegetation types and non- vegetation sites.

Floristic data were converted into Domin scale (Kent & Coker 1992) and used in the
classification and ordination analyses for identification of vegetation types based on
floristic species composition. Floristic species composition data were analyzed using
Windows version (ver.4.34) of PC-ORD (McCune & Mefford 1999). For vegetation
classification Two Way Indicator Species Analysis (TWINSPAN) was used (Jongman et
al., 1995).
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Fig. 1. Location of the study area and field sites from where floristic species composition and
geographical coordinated were collected.
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Fig. 2. PCA of spectral variables, each point representing data for a single field plot where field
data and corresponding digital numbers of SPOT XS bands were collected.
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Data analysis

All plant species recorded during the field visits as well as in the field plots were
subjected to TWINSPAN for an ecological classification into vegetation communities.
Classification by TWINSPAN was stopped at the 3 level of the division so that the size
of plots would demonstrate ecological meaning through their floristic structure. This
resulted in four ecologically distinct groups (Fig. 2 in Malik & Husain, 2006a), together
with the indicator species used by the software for every level of division.

The spectral data which include DN values of all plots of vegetation and non-
vegetation types in three SPOT XS bands were analyzed using Principal Component
Analysis (PCA) which is a multivariate indirect ordination technique that considers
intercorrelations of the spectral data to produce an optimized and simplified
representation of the underlying data structure (Legendre & Legendre, 1998) PCA based
on the correlation matrix was used (Fig. 2). Spectral data in three SPOT XS bands (green,
red and NIR) from vegetation and non-vegetation groups were used. The main use of
PCA was to reduce the dimensionality of a data set while retaining as much information
as is possible.

PCA is well suited to the identification of outlier groups in multidimensional spectral
band space (Brook & Kenkel, 2002). Land-cover types appearing as prominent outliers in
the two-dimensional ordination space were identified and removed. Land-cover types
were considered outliers when the cluster defining the land-cover type was clearly
separated from the remaining land-cover types. After one or more outliers identified in
the data set were removed, PCA was run again on the reduced data set. This process was
repeated until no strong outlier groups remained (Kenkel et al., 2002). Once the main
outlier groups were removed from the spectral data set, Canonical Correspondence
Analysis (CCA) was performed on the floristic data and three spectral bands of SPOT XS
sensor data (Fig. 3).

CCA in which a set of species is related directly to a set of measured environmental
variables and the axes of a vegetative ordination are restricted to linear groupings of
environmental variables (Jongman et al., 1995) was used to explore the relationships
between natural species distribution shown in the classification and the image DN values
to see how well DN values (spectral response) using three SPOT XS bands described the
natural species clusters which describe the ecological importance in defining vegetation
communities for vegetation classification of the whole study area using remotely sensed
data (Malik & Husain, 2006c).

CCA was performed on species abundance data using the ‘Domin scale’. Rare species
were down-weighted to reduce distortion of the analysis. CCA was accomplished using
“Hill’s Scaling’ and site scores scaled by ‘species’. A Monte Carlo test (P=0.05) was then
used to evaluate whether the Spectral variables (environmental variables) were significantly
related to the floristic species composition of plots. A finding of no significant difference
among the correlations of the real data set and the randomized data sets will suggest that the
relationship between the matrices (floristic species composition matrix and SPOT XS
spectral bands matrix) is not stronger than that expected by random chance and supports the
hypothesis of no linear relationship between the two matrices (McCune & Mefford, 1999;
Qadir et al., 2007). The main data matrix consisted of the floristic species composition of
field plots and the second matrix contained the mean reflectance values of three SPOT XS
spectral bands of field plots. The Monte Carlo test was set at 1000 randomized runs and the
result was compared with that of the nonrandomized data.
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PCA were performed using MVSP software (version 3.13f) of Kovach (2003) and
CCA was performed using Windows version (ver.4.34) of PC-ORD (McCune &
Mefford, 1999).

DN values extracted from all land-cover types (vegetation and non- vegetation) in
three spectral bands of SPOT XS were statistically tested for their separability with
transformed divergence using different band combinations (i.e. band 1, bands 2, 3 and
bands 1, 2, 3). Transformed divergence takes into account the covariance matrix and
mean vectors of the different land-cover types and gives exponentially decreasing
weights to increasing distance between the land-cover types (Jensen, 2000). The scale of
the divergence values ranged from O to 2,000. If greater than 1,900 then the land-cover
types are highly separable. Between 1,700 and 1,900, the separation is fairly good and
below 1,700 it is poor (Jensen, 2000). However, Foody & Hill (1996) working on the
forest mapping of tropical rain forest considered divergence values of 1,500 acceptable.
Transformed divergence was calculated using the following equations (Swain & Davis,
1978):

D; = %tr((ci -C;)c - Cj_l))+ %tr((ci'l - Cfl)(ﬂi T H;j )(/“i T Hj )T )
Equation 1 D, = 2000[1_ exp(_ ;)ij n Equation
2

where j and j = the two signatures (types) being compared, C; = the covariance matrix of
signature j, i = the mean vector of signature |, Tr = the trace function (matrix algebra),
and T = the transposition function.

An ‘analysis of variance’ (ANOVA) using a ‘Generalized Linear Model’ was
employed for pair-wise comparisons at the 95% level of significance. The results will
indicate whether the groups identified earlier using classification and ordination analysis
can be significantly differentiated from each other based on DN values of SPOT XS data.
This will further strengthen and give information to establish relationship between
vegetation communities and remote sensing data. The results of these (statistical and
spectral analyses) will be used for classification of remotely sensed data (Malik & Husain
20064a).

Results

The TWINSPAN analysis divided the field plots into four vegetation groups (Four
plant community types were recognized from the TWINSPAN and their detailed
description is given in Malik & Husain (2006b). Based on the PCA ordination results,
non-vegetation types were spectrally separable from vegetation types and were identified
as outlier groups (sites identified as outliers if all sites belonging to individual land-cover
types are strongly separated from the other sites in the data set) in the ordination space
(Fig. 2). PCA ordination of all land-cover types indicated two strong outliers. These
outlier groups were characterized by their high DN values in visible bands compared to
vegetation types which showed high DN values in NIR. These could easily be separated
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using SPOT XS1 and XS2 bands when compared with vegetation types. DN values of
outlier groups are more influenced by the visible bands rather than the NIR band of the
SPOT XS imagery. These outlier groups (land-cover categories) formed distinct groups
on the right and lower side of the ordination diagram (Fig. 2). The outlier group identified
on the lower site was represented by urban land (cluster 6) and degraded land (cluster 7)
land-cover categories, while the other was represented by cultivated land (cluster 5) and
water bodies (cluster 8) land-cover categories. PCA analysis also revealed that SPOT
XS1 and SPOT XS2 are highly correlated, whereas SPOT XS3 is non-correlated with
them and place a strong emphasis on distinguishing vegetation from non-vegetation
types. SPOT XS1 and XS2 are important in the separation of non-vegetation types,
whereas SPOT XS3 is important in the separation of vegetation types. The first PCA axis
explains the greatest variance and the second PCA axis, perpendicular to the first,
explained the remaining variance, and so forth. A cumulative variance of axis | was
63.18%, where as for axis Il, it was 35.31%. Ziziphus-Malcolmia dominated by Acacia
modesta was separated from other vegetation types using PCA whereas the other three
vegetation types (i.e. Capparis-Eleusine, Salix-Saccharum and Prosopis-Chrysopogon)
were not distinctly segregated using PCA ordination (Fig. 2). Although sites belonging to
the Salix-Saccharum vegetation type formed a separate group, but showed some overlap
with the Capparis-Eleusine and Prosopis-Chrysopogon community types. PCA
ordination analysis did not separate the Capparis-Eleusine and Prosopis-Chrysopogon
community types based on their DN values, because two vegetation types overlapped in
the ordination space. This could be attributed to the fact that the boundaries between
these two vegetation types could not be drawn based on their DN values. As these
vegetation types are characterized by open shrubs and scanty vegetation and their spectral
response depends upon the soil/bedrock as well as the vegetation.

CCA ordination results: The results revealed that four vegetation community types
could be discriminated using CCA ordination analysis when floristic species composition
data were incorporated along with the spectral variables (Fig. 3). Three vegetation types
(Salix-Saccharum and Ziziphus-Malcolmia) were distinct from each other whereas
Capparis-Eleusine and Prosopis showed some overlap. SPOT XS1 and XS2 were highly
correlated (r=0.96) with each other. Similarly when correlations of these bands were
calculated with SPOT XS3, they provided similar information. The floristic species
composition - environment (DN values in three spectral bands) correlations for the first
two CCA axes were high. The species-DN values correlations accounted for by the first
three CCA axes were 0.85, 0.78 and 0.44 (Table 1). The first two CCA axes were highly
correlated with the SPOT XS bands. SPOT XS3 showed high correlation with CCA axis
1 (r = -0.74) compared to the other bands (Table 2). A total of 35.57% cumulative
variance (of three CCA axes) in the floristic species composition data was explained by
three spectral variables extracted from satellite sensor data (Table 1). The Monte Carlo
test statistic also indicated that the relationship between floristic species composition
(axis 1) and the spectral variables (SPOT XS bands) was significantly greater than
expected by chance (P = 0.01). CCA ordination biplot revealed that the plots of the
Ziziphus-Malcolmia dominated by Acacia modesta scrub were associated with the high
DN values in SPOT XS3 and low DN values in SPOT XS1 and XS2. Salix-Saccharum,
Capparis-Eleusine and Prosopis-Chrysopogon community types are more differentiated
by the SPOT XS1 and XS2 due to their high DN values in these bands (Figs. 3 and 4).
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Table 1. Summary statistics for the CCA ordination

CCA Axis 1 AXis 2 AXis 3
Eigenvalues 0.24 0.14 0.03
Cumulative variance explained (%) 8.36 13.11 14.1

Floristic species composition and DN values (extracted for
three SPOT XS bands) correlation (Pearson)

Floristic Species composition and DN values (extracted for
three SPOT XS bands) correlation (Kendall Rank)

0.85 0.78 0.44

0.65 0.59 0.33

Table 2. Interset and intraset correlation coefficients of the spectral
variables of CCA ordination.
Bands Interset correlation Interset correlation Intraset correlation Intraset correlation
coefficients Axis 1 coefficients Axis 2 coefficients Axis 1 coefficients Axis 2

SPOT XS1 0.57 0.57 0.67 0.74
SPOT XS2 0.66 0.48 0.78 0.62
SPOT XS3 -0.74 0.31 -0.87 0.40

From the CCA biplot (Fig. 3), three species groups were evident. The first was
highly associated with the high DN values in SPOT XS2 and XS1 and includes plots
belonging to the Capparis-Eleusine and Prosopis-Chrysopogon community types. A
second group is evident in the lower right of the CCA diagram associated with low DN
values in SPOT XS3 and higher values in the visible bands (SPOT XS1). This group is
characterized by plots belonging to the Saccharum-Salix vegetation type. A third group
was evident through the lower left side of the biplot closely associated with SPOT XS3.
This group is represented by the Ziziphus-Malcolmia vegetation type and was associated
with high DN values in this band.

Spectral and statistical analyses results: The mean spectral values of land-cover types
(vegetation and non-vegetation) identified along with their standard deviations as given
in Fig. 4 show the spectral variability and mean pixel values of vegetation types and non-
vegetation types in three SPOT XS bands. The results obtained from separability analysis
using Transformed divergence of three different band combinations are given in Table 3
which showed that the vegetation types are clearly distinct from non-vegetation types.
Water bodies, urban, degraded, and cultivated land categories were separable and distinct
from each other and also from vegetation types in each band combinations and also
showed high transformed divergence values. Similarly significant differences were found
(P=0.05) between non-vegetation types and the vegetation types. The urban land category
was more prominent in visible bands compared with the NIR band and transformed
divergence analysis indicated the highest values of this category from other land-cover
types. Similar trend was found for degraded land. The cultivated land showed lower DN
values in all spectral bands from other non-vegetation types. Water bodies were separated
and distinct in their spectral behavior from other land-cover types; showed high DN
values in visible bands compared to the near infrared band, where low DN values due to
absorption by water bodies making them dark black where it is characterized by high DN
values in SPOT XS1 and XS2 bands and low DN values in SPOT XS3.

The results of transformed divergence analysis also revealed a very high transformed
divergence value, greater than 1999, indicating its spectral separation from other land-
cover types. CCA results demonstrated that near infrared band was particularly effective
in differentiating Ziziphus-Malcolmia community type from other vegetation types.
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Spectral and statistical analyses of remotely sensed data indicated a high degree of
interclass separability in some ecological communities (Table 3 and Fig. 4). Ziziphus-
Malcolmia, and Prosopis-Chrysopogon plant community types were separable in the
infrared and green band (XS3 and XS2) from each other and from non- vegetation types
(urban land, cultivated land and water bodies). Acacia modesta scrub was significantly
different from Salix-Saccharum and Capparis-Eleusine vegetation types, whereas it
showed insignificant differences in spectral reflectance from Prosopis-Chrysopogon in
SPOT XS3. Insignificant differences were observed in their spectral reflectance in SPOT
XS1 and XS2 (P=0.05) but could be differentiated in SPOT XS3. Similarly these
vegetation types remained inseparable based on transformed divergence values (Table 3).
The Salix-Saccharum community type remained distinct and significantly different
(P=0.05) from vegetation and non-vegetation types. Transformed divergence also
confirmed these results.

Discussion

The results illustrated that the SPOT XS bands did not relate well with the
distribution of species abundance data, suggesting that classification at the species level
would be difficult. The CCA results indicated that 26% of the variance in the ordination
space could be explained by variations in DN values extracted from SPOT XS1, 2 and 3.
This suggested a weak relationship between floristic species composition and SPOT XS
DN values, but not surprisingly a large amount of the variation in floristic species
composition remained unaccounted for. This occurs because spectral reflectance is
largely a function of structural, rather than floristic properties of vegetation (Brook &
Kenkel, 2002). Beside the structural attributes, the reflectance information is affected by
a number of other factors, including soil moisture, substrate, topography and atmospheric
effects as well as amount, vigour and productivity of the vegetation (Vogelmann & Moss
1993). Multivariate techniques such as ordination analyses to some extent proved very
useful in relating the species floristic characteristics to the spectral reflectance data (Kent
et al., 1997). The ancillary and field data along with satellite imagery also proved very
useful in the present study which is the first such detailed investigation in the study area.
The use of satellite imagery during field data collection was found helpful in the selection
of sampling areas and avoiding routes with steep slopes. Ziziphus-Malcolmia plant
community type was spectrally separable in the NIR band from other vegetation types.
This is possibly because the NIR region of light experiences very little absorption by a
leaf and most near infrared energy impinging upon the leaf is either transmitted or
reflected (Jensen, 2000). Reflection of the leaf is not controlled by the plant pigments in
this region but by the structure of the mesophyll tissue (Jensen, 2000; Schmidt &
Skidmore 2003). Differences in reflectance of plant species are more pronounced in this
region than in the visible regions making the discrimination of vegetation types possible.
The results also indicated the usefulness of near infrared and visible red bands for the
separability of different land-cover types. The NIR band responds to green biomass and is
believed useful for species discrimination (Trisurat et al., 2000). Wolter et al., (1995)
have also suggested the use of red, infrared and mid infrared bands for the separation of
conifers, hardwood and mixed coniferous hardwood types and these bands were also
found useful for detecting the presence or absence of the understorey vegetation for
various degrees of canopy closure. Similarly, Foody & Hill (1996) also recommended the
use of red and near infrared for differentiation of different forest types. The present
results are also consistent with the findings of Schmidt & Skidmore (2003).
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The classification of ecological groups using floristic species composition produced by
TWINSPAN at each level were not tested using spectral types, because the vegetation group
identified using TWINSPAN division cannot be spectrally separable or ecologically similar
groups can be spectrally distinct (Thomas et al., 2003). For instance in the present study, some
of the vegetation types obtained at the third level of TWINSPAN could be spectrally as well
as ecologically distinct, but sites classified by TWINSPAN classification on the left side of the
third division which comprise of vegetation types such Ziziphus-Malcolmia, Capparis-
Eleusine and Prosopis-Chrysopogon are not separable ecologically but could be separated
spectrally. Similarly, if classification is tested at the fourth level of division, more ecological
types could be obtained which could not be separable spectrally. It was observed that most of
the spectrally separable groups were observed at different levels within the hierarchical
divisions. This seems logical, in that it would be expected that spectral groupings would not
correspond on a one-to-one level within hierarchy (Thomas et al., 2003).

As to some extent vegetation types identified, were spectrally separable and
corresponded to ecological groups. It may be possible, therefore to map such ecological
types over large areas with remote sensing data, but the results need to be tested in different
areas particularly with different vegetation types in climatic and topographic condition. This
could lead to the conclusion that remote sensing may be an effective method for producing
a vegetation map showing the spatial distribution of the plant communities.
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