ARTICLE DOI: http://dx.doi.org/10.30848/PJB2026-1(24)

UTILIZATION OF NOVEL EST-SSR MARKERS TO EXPLORE THE GENETIC DIVERSITY AND POPULATION STRUCTURE OF POLYGONUM CUSPIDATUM

GUOHUI SHI^{1,2+}, RUKHSAR SHAHEEN²⁺, MOHAMMAD MURTAZA ALAMI²⁺, FENGFENG LI², LA JI², XUETING ZHAO2, YONGHONG ZHANG3, LANLAN ZHENG3, BEIBEI LUO4, XUEKUI WANG2, DUANYANG WENG^{1*}, SHUMEI ZHONG^{1*}, SHENGQIU FENG^{2*} AND SHAOHUA SHU²

Abstract

Polygonum cuspidatum, a medicinal plant renowned for its therapeutic properties, also poses ecological challenges as an invasive species in Asia and Europe. Despite extensive research on its pharmacological applications and management strategies, its genetic diversity is inadequately comprehended. This study involved an analysis of 52 wild individuals collected from four provinces in China (Hubei, Hunan, Guizhou, and Sichuan) to fill this knowledge gap. By utilizing 24 novel expressed sequence tag-simple sequence repeat (EST-SSR) markers, we determined 191 highly polymorphic alleles, revealing a rich and complex genetic landscape that underscores the potential for conservation and breeding efforts. This study provides an assessment of genetic variation using newly developed EST-SSR markers. It also demonstrates a foundation for sustainable utilization and genetic improvement of P. cuspidatum.

Key words: Polygonum cuspidatum; Genetic diversity; Germplasm resources; Population structure; EST-SSR

Introduction

Polygonum cuspidatum Sieb. et Zucc., commonly known as Japanese knotweed, is a medicinal plant of significant importance in traditional Chinese medicine. For millennia, people have utilized its rhizome to treat a range of ailments including inflammation, coughs, and infections, owing to their high content of bioactive compounds such stilbenes, anthraquinones, flavonoids, polyphenols(Vastano et al., 2000; Peng et al., 2013; Hong et al., 2016). Modern pharmacological research has further substantiated its therapeutic potential, highlighting antioxidant, anti-inflammatory, anticancer, antiviral, and hepatoprotective attributes (Arichi et al., 1982; Kim et al., 2005; Bralley et al., 2008; Shiyu et al., 2011). Owing to these attributes P. cuspidatum is now considered as a valuable source of resveratrol, a compound with diverse health benefits and substantial economic value(Sun et al., 2021). However, the overexploitation of wild populations to meet increasing demand has raised concerns about genetic erosion and habitat loss, underscoring the need for effective conservation strategies.

Despite extensive research on the pharmacological properties and ecological management of *P. cuspidatum*, its genetic diversity and population structure remain underexplored. Understanding these genetic parameters is critical for conserving wild germplasm resources, as genetic diversity provides the foundation for species adaptation, resilience to environmental stressors, and breeding initiatives aimed at improving medicinal compound content (Hartmann, 2007; Chen et al., 2014;

Govindaraj et al., 2015; Ghorbani et al., 2020; Wang, 2020; Huang et al., 2021). Molecular markers such as random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and single nucleotide polymorphisms (SNPs) have been widely employed in plant genetic studies. Among these, simple sequence repeat (SSR) markers are especially valuable owing to their significant polymorphism, reproducibility, and costeffectiveness (Varshney et al., 2005; Lindqvist et al., 2006). Nevertheless, traditional SSR indicators often fail to provide insights into the functional regions of the genome.

Expressed sequence tag-simple sequence repeat (EST-SSR) markers, originated from transcribed regions, overcome this limitation by offering greater transferability and direct relevance to expressed genes(Parthiban et al., 2018; Liu et al., 2021; Liu et al., 2022). These markers have shown promise in genetic studies of other medicinal plants but have not been extensively developed or utilized for P. cuspidatum. Addressing this gap, our study represents the first comprehensive effort to develop and apply novel EST-SSR markers for evaluating the genetic diversity and population structure of *P. cuspidatum*.

By analyzing 52 individuals from 10 wild populations across Hubei, Hunan, Guizhou, and Sichuan provinces in China, this study provides a detailed assessment of genetic variation using 24 newly developed EST-SSR markers. These markers, designed from full-length transcriptome sequences, enable the identification of alleles relevant to both conservation and breeding. Our findings highlight the genetic variety both within and between groups, reveal patterns of gene flow, and identify hotspots for in situ

Received: 10-02-2025 Revised: 23-07-2025 Accepted: 01-08-2025 Online: 19-09-2025

¹Sinopharm Zhonglian Pharmaceutical Co., Ltd., Wuhan 430070, China

²College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China

³College of Basic Medical Science, Hubei University of Medicine, Shiyan 442000, China

⁴Science & Technology Education Division, Department of Agriculture and Rural Affairs in Hubei Province, Wuhan 430070, China

^{*}Corresponding author's email: 10243889@qq.com; 116325106@qq.com; fengsq@mail.hzed.edu.cn

GUOHUI SHI ETAL.,

conservation. This research not only contributes to the preservation of a valuable medicinal resource but also establishes a foundation for sustainable utilization and genetic improvement of *P. cuspidatum*.

Material and Methods

Plant Materials and Extraction of DNA: Overall 52 P. cuspidatum individuals were sampled from 10 populations across four provinces in China: Hubei, Hunan, Guizhou, and Sichuan. Populations were designated using the first two letters of the province or city name, followed by the first two letters of the county name (e.g., QNWA for Wengan Country, Guizhou Province). Individual samples within populations were labeled sequentially (e.g., QNWA1, QNWA2) (Fig. 1). Collected plant materials were preserved in the medicinal plant resource nursery of Huazhong Agricultural University, Wuhan, China. The cetyltrimethylammonium bromide (CTAB) technique was used to recover genomic DNA from fresh young leaves (Huang et al., 2012; Zhang et al., 2018; Xia et al., 2019; Sihanat et al., 2020; Tilwari & Sharma, 2021). Isolated DNA was preserved at -20°C for further analysis.

Identification of EST-SSR and designing of primers: Comprehensive transcriptome sequencing data for roots, leaves, and stems were collected through Biomarker Technologies (Beijing, China). Microsatellite loci were identified from unigenes (length $\geq 1,000$ bp) using the MISA software. With minimum repeat criteria of 10, 6, 5, 5, 5, and 5, correspondingly the search parameters comprised moni-, di-, tri-, tetra-, penta- and hexanucleotide motifs. Primer pairs were designed using

Primer3 software with the following parameters: product size: 100–150 bp; primer length: 18–22 nucleotides; GC content: 45–55%; annealing temperature: 5°C lower than the melting temperature (Tm = 55-65°C). After synthesizing 227 primer pairs, 24 were chosen for their high polymorphism and stable amplification capabilities (Supplementary Table S1).

PCR Amplification: Amplification via polymerase chain reaction (PCR) was conducted using 25 μL reaction mixtures containing 1 μL (20 ng/μL) of genomic DNA, 12.5 μL of $2\times$ Taq Master Mix (Vazyme, Nanjing, China), 1 μL (0.01 nmol/μL) of each primer, and 9.5 μL of ddH₂O. The following steps were part of amplification protocol: denaturation at 94°C for 2 minutes initially followed by 35 cycles of denaturation at 94°C for 30 seconds, annealing at 55°C for 30 seconds, and extension at 72°C for 30 seconds and finally, a final extension at 72°C for 2 minutes. Products that were amplified were analyzed using the Fragment Analyzer 5300 system (Agilent, USA).

Data analysis

Genetic diversity metrics, such as, including major allele frequency (MAF), gene diversity (GD), and polymorphic information content (PIC), were computed using Power Marker v3.25 (Liu & Muse, 2005). Diversity measures including the number of distinct alleles (Na), effective number of alleles (Ne), Shannon's information index (I), expected heterozygosity (He), and unbiased expected heterozygosity (uHe), were calculated using GenAlEx v6.5 (Peakall & Smouse, 2012).

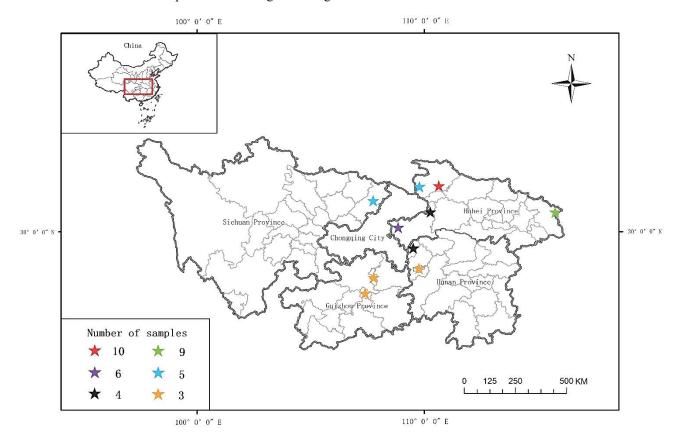


Fig. 1. The sampling locations of the *Polygonum cuspidatum*. Note: Each star on the map represents a sampling point. Stars of different colors represent the number of samples taken at the sampling point.

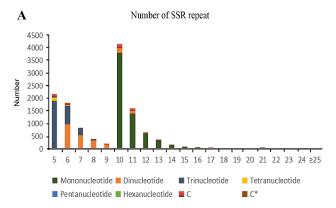
Table S1. Genetic diversity parameters of the developed 24 EST-SSR markers across the 52 *P. cuspidatum* individuals.

Primer name	Primer sequence (5'-3')	SSR motif	Na	MAF	GD	PIC
rimer name	F:CACAAAGCTTCCAAACAGCA	SSK IIIUIII	1NA	IVI /A F	GD	FIC
3	R:TTTTGTCAGCAGTGTAGCAGG	(GAA)6	12	0.212	0.862	0.847
	F:GTCTCACCACAAAGCAACCA					
4	R:TGCGAAGAACAGAGCAGAGA	(GA)6	16	0.231	0.845	0.828
	F:CTCACGGAAACAACTCCCAT					
17	R:AAGTCGCCTTCTGTGGTGTT	(AGA)5	8	0.462	0.668	0.614
	F:TGAGCGACACTCTTCCTTCA					
31	R:CTCGCACAAAACCTTCTTCC	(TAG)6	10	0.250	0.827	0.806
	F:GAGAATACCCGACGACGTA					
39	R:CACATGGGCACTTGGTACAC	(TCA)6	9	0.346	0.771	0.740
	F:CTTGCCCTTCCTCTCT			0.231 0.462 0.250 0.346 0.404 0.308 0.385 0.423 0.750 0.365 0.404 0.404 0.346 0.462 0.731 0.788 0.423 0.510 0.577 0.692 0.327 0.385		
49	R:AAGATCCCGGTAAGGCTGAT	(TCA)5	6	0.462 0.250 0.346 0.404 0.308 0.385 0.423 0.750 0.365 0.404 0.404 0.346 0.462 0.731 0.788 0.423 0.510 0.577 0.692 0.327 0.385 0.577	0.686	0.633
	F:CGTGACATTGGACCAACAAG			0.212 0.231 0.462 0.250 0.346 0.404 0.308 0.385 0.423 0.750 0.365 0.404 0.404 0.346 0.462 0.731 0.788 0.423 0.510 0.577 0.692 0.327 0.385 0.577		
59	R:AAACCCAACACACCCACAAT	(TGG)5	15	0.308	0.837	0.821
	F:AACGAGCGTGTAACTGGAGG			2 0.212 6 0.231 6 0.462 0 0.250 0 0.346 0 0.404 5 0.308 0 0.385 0 0.423 0 0.750 0 0.365 0 0.404 0 0.405 0 0.402 0 0.403 0 0.403 0 0.403 0 0.403 0 0.403 0 0.403 0 0.403 0 0.404 0 0.404 0 0.404 0 0.404 0 0.404 0 0.404 0 0.405 0 0.405 0 0.577 0 0.385 0 0.577		
60	R:GTTGCAAGCTCACCATGAGA	(TC)7	7	0.385	0.734	0.692
	F:CCTTGCTTGACCTTGAGGAG			2 0.212 0.231 0.462 0 0.250 0.346 0.404 0.308 0.385 0.423 0.750 0.365 0.404 0.404 0.404 0.404 0.404 0.577 0.692 0.327 0.385 0.577		
86	R:GGGGTTTTAGTCACCGGAAT	AACAGCA FTAGCAGG FTAGCAGG GCAACCA GCAGAGA GCAGCA GCAGAGA GCAGCA GCAGAGA GCAGCA GCAGAGA GCACCA TTCCTCC TTCCTCC CGACGTA GCTACAC TTCCTCT GGCTGAT CCACCAC TCCCCT GGCTGAT CCACCACAAT CCACCACAAT CCGACGAG GCAGAGA GCCGACAT GCAGGAG GCAGAGA GCCGACAT GCAGGAG GCAGAGA GCCGACAT GCAGGAG CCGGACAT GTAGCC GACCGC AACGGAT GAGGAG CCGGACAT GCACCAC CGACCAC ACCGTCA ACGACC GCACCAC ACCGTCA GCTGCCA CGACCAC CCACCAC CCACCAC CCACCAC CCACCAC CCACCA	0.709	0.663		
	F:GGTTAACAGGCTTGTAGCCG		9 0.346 6 0.404 15 0.308 7 0.385 6 0.423 7 0.750 6 0.365 6 0.404 7 0.404 7 0.346 10 0.462 7 0.731 4 0.788 8 0.423			
87	R:GTGCTATCACGGAAACGGAT	(CGG)5	7	0.750	0.412	0.383
22	F:TGCCTGGATTTGTTAGTCACC	(5,15)	16 0.231 8 0.462 10 0.250 9 0.346 6 0.404 15 0.308 7 0.385 6 0.423 7 0.750 6 0.365 6 0.404 7 0.404 7 0.346 10 0.462 7 0.731 4 0.788 8 0.423 8 0.423 8 0.510 8 0.577 6 0.327 6 0.385		0.650	
93	R:CATCTTCAGCTTCACCGTCA	(GAC)6		0.707	0.652	
105	F:TGCGCTGTAGAACACGAATC	(T) A T) 5		0.404	0.601	0.625
105	R:CCAAGAACACGTTCGTCAGA	(TAT)5	6	0.404	0.691	0.635
111	F:ATGAAGGAGAAGAGCTGGCA	(CAT)5	7	0.404	0.605	0.644
111	R:CATCTTCTGACGCTTGTCCA	(GA1)5	/	0.404	0.695	0.644
113	F:TGCCTGGATTTGTTAGTCACC	(CAC)6	7	7 0.385 6 0.423 7 0.750 6 0.365 6 0.404 7 0.404 7 0.346 0 0.462 7 0.731 4 0.788 8 0.423	0.700	0.655
113	R:CATCTTCAGCTTCACCGTCA	(GAC)	/		0.709	0.655
114	F:GTGGATCAGTCCATGTCCCT	(AG)6	10	0.462	0.683	0.638
114	R:CAGCAGAGGAAAGGAAAAAG	(AG)0	10	9 0.346 6 0.404 15 0.308 7 0.385 6 0.423 7 0.750 6 0.365 6 0.404 7 0.404 7 0.346 10 0.462 7 0.731 4 0.788 8 0.423 8 0.510 8 0.577 6 0.692	0.003	
118	F:AATCTGGGCTTAGGGTTTCG	(GTG)5	7	8 0.462 10 0.250 9 0.346 6 0.404 15 0.308 7 0.385 6 0.423 7 0.750 6 0.365 6 0.404 7 0.404 7 0.346 10 0.462 7 0.731 4 0.788 8 0.423 8 0.510 8 0.577 6 0.327 6 0.385 6 0.577	0 444	0.420
110	R:ACCAGGATAACCGCCTTCTT	(010)3	,		0.111	0.120
123	F:AGAATCACCACCAGAATCCG	(ATC)5	4	0.788	0.353	0.321
123	R:GTGGCTAAATTGGTAGCCCA	(1110)3	•	0.231 0.462 0.250 0.346 0.404 0.308 0.385 0.423 0.750 0.365 0.404 0.404 0.346 0.462 0.731 0.788 0.423 0.510 0.577 0.692 0.327 0.385 0.577	0.555	0.521
137	F:ATGGGTAACATTGGTGGTGG	(TGA)5	8	0.423	0.699	0.649
	R:TGTTGTTGTGAGGCGTTCAT	,		0.231 0.462 0.250 0.346 0.404 0.308 0.385 0.423 0.750 0.365 0.404 0.404 0.346 0.462 0.731 0.788 0.423 0.510 0.577 0.692 0.327 0.385 0.577		
178	F:CTGTCATAAGAAAGGGGGCA	(CAA)5	8	0.510	0.675	0.638
	R:TTATTCCTCAACAGCGGGAG	•				
179	F:TTGCAGAGATTGCGGTAGTG	(GA)6	8	0.577	0.621	0.589
	R:TCCAATTCTCCATCTCCAC					
191	F:AGAAGATGCTGGAAAGGCTG R:AAGGGGATCGTCTTCTTCGT	(CGA)5	6	0.692	0.490	0.459
	F:AGATCAAATCGGCCATGCTA					
205	R:TGAAACTGCAATCACGAAGG	(TC)6	6	0.327	0.353 0.3 0.699 0.6 0.675 0.6 0.621 0.5 0.490 0.4 0.746 0.7	0.703
	F:TGCCTGGATTTGTTAGTCACC					
209	R:CATCTTCAGCTTCACCGTCA	(GAC)6	6 0.404 0.686 15 0.308 0.837 7 0.385 0.734 6 0.423 0.709 7 0.750 0.412 6 0.365 0.707 6 0.404 0.691 7 0.404 0.695 7 0.346 0.709 10 0.462 0.683 7 0.731 0.444 4 0.788 0.353 8 0.423 0.699 8 0.510 0.675 8 0.577 0.621 6 0.327 0.746 6 0.385 0.725 6 0.577 0.587	0.725	0.679	
	F:GGTTTTACTGCCAGGGTTGA					
224	R:AACCAAGAATGAATGCAGGC	(TA)6	6	0.577	0.587	0.532
Mean			7.958	0.453	0.674	0.635
			,20	30		

4 GUOHUI SHI ET AL.,

STRUCTURE v2.3.4 with Bayesian clustering was used to evaluate population structure (Pritchard *et al.*, 2000) After a 100,000 burn in time, Markov Chain Monte Carlo (MCMC) parameters were set to 100,000 iterations. Optimal K values were determined using the ΔK method via STRUCTURE Harvester (Earl & VonHoldt, 2012). In GenA1Ex v6.5, principal coordinate analysis (PCoA) and analysis of molecular variance (AMOVA) were also carried out. ITOL was used to perform a cluster analysis based on Nei's genetic distance using the unweighted pair group method with arithmetic mean (UPGMA) (Letunic & Bork, 2021).

Results


Characterization of EST-SSR Loci: From 34,105 unigenes (≥1,000 bp) obtained via transcriptome sequencing, 12,335 EST-SSR loci were identified, of which 3.90% exhibited complex forms (Table 1). The most prevalent SSRs were mononucleotide motifs (52.30%) followed by trinucleotide (24.00%) and dinucleotide motifs (18.30%) (Table 1 and Fig. 2A). The most frequent repeat types were A/T for mononucleotides (51.56%) and AAG/CTT for trinucleotides (1.41%) (Fig. 2B). Using MISA and Primer3, 227 EST-SSR primer pairs were synthesized, of which 24 exhibited high polymorphism and stable amplification, confirming their suitability for genetic studies of *P. cuspidatum*. These markers represent a significant advancement over previously available SSR markers by targeting expressed genomic regions.

Genetic diversity analysis: On average, 7.96 alleles were found per locus among the 52 individuals studied using the 24 selected EST-SSR markers, for grant total of 191 alleles. The number of alleles per marker ranged from 4 (primer pair 123) to 16 (primer pair 4). The major allele frequency (MAF) varied from 0.212 to 0.788, and gene diversity (GD) ranged from 0.353 to 0.862, averaging 0.674. Polymorphic information content (PIC) values indicated high polymorphism across loci, with 83.33% of markers exhibiting PIC \geq 0.5 (Supplementary Table S1). These results underscore the high discriminatory power of the developed EST-SSR markers.

At the population level, genetic diversity indices varied significantly. The SYFX population (Fangxian, Shiyan City) demonstrated the highest genetic diversity (Na = 4.25, He = 0.618, I = 1.178), while the ZYFG population showed the lowest values (Na = 2.167, He =

0.414, I = 0.648) (Table 2). These findings identify the SYFX population as a genetic diversity hotspot, making it a prime candidate for in situ conservation and future breeding programs.

Population structure: According to analysis of the molecular variance (Table 3), just 2% of genetic variation was caused by variations between populations, whereas 91% was found to be present within population. The genetic differentiation coefficient (FST) was 0.025, indicating minimal genetic differentiation among populations. Correspondingly, gene flow (Nm) was calculated as 9.908, suggesting extensive genetic exchange among populations. These findings align with the clonal reproductive nature of *P. cuspidatum*, where facultative sexual reproduction and pollen flow contribute to a great deal of variations within populations and relatively little variation between them.

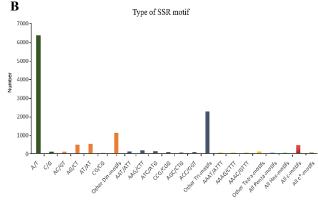


Fig. 2. Distribution of simple sequence repeat (SSR) repeat numbers and SSR motif types in *Polygonum cuspidatum*. A Number of SSR repeat. B Type of SSR motif.

Table 1. Occurrence of simple sequence repeats (SSRs) in the transcripts of the Polygonum cuspidatum.

Type of SSR	Number	Ratio in all SSRs (%)	Mean distance (bp)	Length (bp)
Mononucleotide	6454	52.30	98.69	10-23
Dinucleotide	2263	18.30	231.23	12-62
Trinucleotide	2943	24.00	116.92	15-33
Tetranucleotide	157	1.20	86.92	20-24
Pentanucleotide	17	0.10	198.31	25-30
Hexanucleotide	14	0.10	218.63	30-36
C	472	3.8	713.79	20-184
C*	15	0.1	247.2	21-41
Total	12335			

Note: C stands for exactly consistent tandem repeats (e.g. $(GA)_{15}$). C* means that there is mutation in the core repeat region (such as $(G^{**}G^{**})_3(GA)_{12}$)

Table 2. Genetic diversity of ten Polygonum cuspidatum populations.

Tuble 2. Genetic diversity of ten 1 bijgonum euspiaanum populations.							
Population	Na	Ne	I	He	uНе	PPL	F
SYFX	4.250	3.071	1.178	0.618	0.650	100.00%	0.941
ESLC	3.083	2.440	0.906	0.508	0.554	95.83%	0.946
SYZX	3.208	2.792	1.032	0.594	0.660	95.83%	0.947
SCDZ	3.208	2.897	1.038	0.598	0.665	95.83%	0.943
XXLS	2.958	2.712	0.997	0.592	0.677	95.83%	0.940
XXJS	2.292	2.192	0.733	0.465	0.558	83.33%	0.931
ZYFG	2.167	2.058	0.648	0.414	0.497	79.17%	0.937
QNWA	2.125	1.992	0.656	0.428	0.514	83.33%	0.931
ESBD	2.417	2.089	0.743	0.461	0.527	91.67%	0.934
HGYS	3.667	2.696	1.040	0.566	0.599	95.83%	0.947
Mean	2.938	2.494	0.897	0.525	0.590	91.67%	0.940

Note: Na: Number of different alleles; Ne: Number of effective alleles; I: Shannon's information index; He: Expected heterozygosity; uHe: Unbiased expected heterozygosity; PPL: Percentage of polymorphic loci; F: Fixation index

Table 3. Analysis of the molecular variance (AMOVA) of the 52 *Polygonum cuspidatum* individuals.

Source	DF	SS	MS	Est. Var.	%	FST
Among population	9	159.070	17.674	0.203	2%	0.025
Among individual	42	655.536	15.608	7.549	91%	
Within individual	52	26.500	0.510	0.510	6%	
Total	103	841.106		8.262	100%	

According to the ΔK approach, STRUCTURE analysis found that two (K=2) genetic clusters were the most probable (Fig. 3A and 3B). Bayesian clustering grouped individuals into two distinct genetic clusters, with some populations exhibiting admixture (Fig. 3C). Principal coordinate analysis (PCoA) corroborated this result (Fig. 4), with the first two axes explaining 15.92% and 8.71% of genetic variance, respectively. The UPGMA dendrogram, based on Nei's genetic distance, also supported this subdivision (Fig. 5). Interestingly, the genetic clusters did not align with geographical proximity, suggesting that factors other than physical distance, such as human-mediated dispersal or ecological adaptation, influenced population structure.

Discussion

This study utilizes newly designed expressed sequence tag-simple sequence repeat (EST-SSR) markers to gain a better understanding of the genetic diversity and population structure of P. cuspidatum. These markers, derived from transcribed regions, provide higher polymorphism, better transferability, and more direct biological relevance than traditional SSR markers. By analyzing 52 individuals from 10 wild populations across four provinces in China, we offer a comprehensive genetic assessment that fills a critical gap in the conservation and sustainable utilization of this important medicinal plant. The research reveals substantial genetic diversity within P. cuspidatum populations, with an average of 7.96 alleles per locus and high polymorphism across most markers (average PIC = 0.635). Notably, the SYFX population in Fangxian, Shiyan City, demonstrated the highest genetic diversity (Na = 4.25, He = 0.618, I =

1.178). High genetic diversity indicates better adaptability to environmental changes and stresses, making the *SYFX* population a vital resource for in situ conservation and genetic improvement(Booy *et al.*, 2000). In contrast, populations such as *ZYFG* exhibited lower diversity, warranting targeted conservation strategies to prevent genetic erosion.

The identification of genetic diversity hotspots not only advances foundational knowledge but also offers actionable insights for resource management. Prioritizing populations with high diversity, such as *SYFX*, for conservation and breeding programs could enhance the medicinal and ecological value of *P. cuspidatum*, supporting its sustainable utilization (Nachimuthu *et al.*, 2015). The low genetic differentiation among populations (FST = 0.025) and high gene flow (Nm = 9.908) highlight extensive genetic connectivity (Wang & Zhang, 1996). The structure, PCoA, and UPGMA analyses consistently identified two genetic clusters that were not aligned with geographical proximity, further underscoring the influence of gene flow and clonal reproduction in shaping genetic structure.

These findings contribute to broader theories of population genetics, particularly in clonal and outcrossing plants. While clonal reproduction often reduces genetic diversity, *P. cuspidatum* appears to maintain high variability through facultative sexual reproduction, supporting theories that clonal plants can achieve genetic diversity through alternative reproductive strategies (Menken *et al.*, 1995; Kirsten *et al.*, 1998). By identifying key populations and alleles with high breeding potential, this study lays the groundwork for marker-assisted selection aimed at enhancing the medicinal value of *P. cuspidatum*.

GUOHUI SHI *ET AL.*,

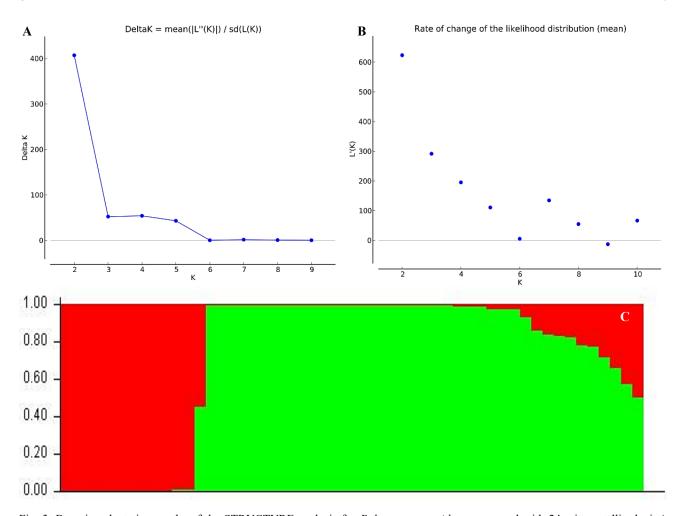


Fig. 3. Bayesian clustering results of the STRUCTURE analysis for *Polygonum cuspidatum* assessed with 24 microsatellite loci. A Estimates of ΔK for K. B Plot of the probability of the data (LnP(D)) values. C Genetic group structure with K=2.

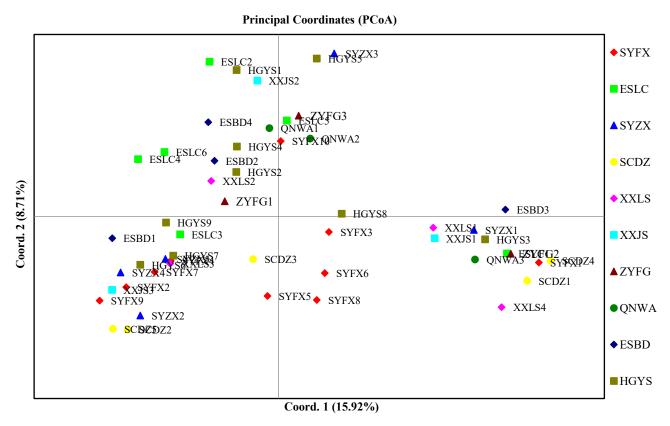


Fig. 4. A principal coordinate analysis (PCoA) plot for the ten Polygonum cuspidatum populations showing the separation into two main clusters.

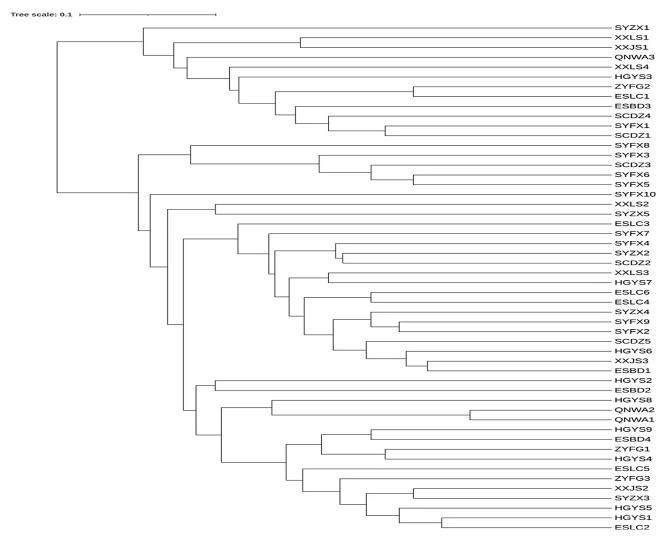


Fig. 5. A unweighted pair group method with arithmetic mean (UPGMA) dendrogram of the 52 Polygonum cuspidatum individuals.

Conclusion

In conclusion, this study provides a robust genetic framework for P. cuspidatum, addressing key knowledge gaps in its genetic diversity and population structure. The novel EST-SSR markers developed herein offer precise, high-resolution insights into allelic variation, enabling targeted conservation and breeding strategies. The identification of conservation hotspots, such as the SYFX population, and the evidence of extensive gene flow among populations highlight the resilience and adaptability of this species. Beyond advancing the field of P. cuspidatum research, this work exemplifies how molecular genetic tools can perform conservation and resource management for other economically and ecologically important plants. Future studies should expand to populations in additional regions and integrate phenotypic analyses with genetic data to further enhance the sustainable utilization and preservation of this valuable medicinal resource.

Acknowledgment

This work was supported by the Key Industries Innovation Chain Major Project, Hubei Province (2022AC003 and 2021ACA004).

References

- Arichi, H., Y. Kimura, H. Okuda, K. Baba, M. Kozawa and S. Arichi. 1982. Effects of stilbene components of the roots of *Polygonum cuspidatum* Sieb. et Zucc. on lipid metabolism. *Chem Pharm. Bull.*, 30(5): 1766-1770.
- Booy, G., R.J.J. Hendriks, M.J.M. Smulders, J.M. Van Groenendael and B. Vosman. 2000. Genetic diversity and the survival of populations. *Plant Biol.*, 2(4): 379-395.
- Bralley, E.E., P. Greenspan, J.L. Hargrove, L. Wicker and D.K. Hartle. 2008. Topical anti-inflammatory activity of *Polygonum cuspidatum* extract in the TPA model of mouse ear inflammation. *J. Inflamm.*, 5: 1.
- Chen, C., P. Li, R.H. Wang, B.A. Schaal and C.X. Fu. 2014. The population genetics of cultivation: domestication of a traditional Chinese medicine, *Scrophularia ningpoensis* Hemsl. (Scrophulariaceae). *PLoS One*, 9(8): e105064.
- Earl, D.A. and B.M. VonHoldt. 2012. Structure harvester: A website and program for visualizing structure output and implementing the Evanno method. *Conser. Genet. Resour.*, 4: 359-361.
- Ghorbani, S., H. Esmaeili, S.N. Ebrahimi, J. Palazón, A. Sonboli and M.H. Mirjalili. 2020. Genetic structure, molecular and phytochemical analysis in Iranian populations of *Ruscus hyrcanus* (Asparagaceae). *Ind. Crops Prod.*, 154: 112716.
- Govindaraj, M., M. Vetriventhan and M. Srinivasan. 2015. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. *Genet. Res. Int.*, 2015: 431-487.

8 GUOHUI SHI ETAL.,

Hartmann, T. 2007. From waste products to ecochemicals: Fifty years research of plant secondary metabolism. *Phytochemistry*, 68(22-24): 2831-2846.

- Hong, M., H.Y. Tan, S. Li, F. Cheung, N. Wang, T. Nagamatsu and Y. Feng. 2016. Cancer stem cells: The potential targets of Chinese medicines and their active compounds. *Int. J. Mol. Sci.*, 17(6).
- Huang, L K., X.Q. Zhang, W.G. Xie, J. Zhang, L. Cheng and H.D. Yan. 2012. Molecular diversity and population structure of the forage grass *Hemarthria compressa* (Poaceae) in south China based on SRAP markers. *Genet. Mol. Res.*, 11(3): 2441-2450.
- Huang, R., Z.D. Zhang, Y. Wang and Y.Q. Wang. 2021. Genetic variation and genetic structure within metapopulations of two closely related selfing and outcrossing Zingiber species (Zingiberaceae). AoB Plants, 13(1): plaa065.
- Kim, Y.S., C.S. Hwang and D.H. Shin. 2005. Volatile constituents from the leaves of *Polygonum cuspidatum* S. et Z. and their anti-bacterial activities. *Food Microbiol.*, 22(1): 139-144.
- Kirsten, J.H., Dawes, C.J. and Cochrane, B.J. 1998. Randomly amplified polymorphism detection (RAPD) reveals high genetic diversity in *Thalassia testudinum* banks ex König (Turtlegrass). *Aquatic Botany*, 61(4): 269-287.
- Letunic, I. and P. Bork. 2021. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. *Nucleic Acids Research*, 49(W1): W293-W296.
- Lindqvist, C., A.C. Scheen, M.J. Yoo, P. Grey, D.G. Oppenheimer, J.H. Leebens-Mack, D.E. Soltis, P.S. Soltis and V.A. Albert. 2006. An expressed sequence tag (EST) library from developing fruits of an Hawaiian endemic mint (*Stenogyne* rugosa, Lamiaceae): characterization and microsatellite markers. BMC Plant Biol, 6: 16.
- Liu, H., Y. Zhang, Z. Wang, Y. Su and T. Wang. 2021. Development and Application of EST-SSR Markers in Cephalotaxus oliveri from transcriptome sequences. Front Genet, 12: 759557.
- Liu, K. and S.V. Muse. 2005. Power Marker: An integrated analysis environment for genetic marker analysis. *Bioinformatics*, 21(9): 2128-2129.
- Liu, Y., X. Fang, T. Tang, Y. Wang, Y. Wu, J. Luo, H. Wu, Y. Wang, J. Zhang, R. Ruan, M. Zhou, K. Zhang and Z. Yi. 2022. Inflorescence transcriptome sequencing and development of new EST-SSR markers in common buckwheat (*Fagopyrum esculentum*). *Plants (Basel)*, 11(6):
- Menken, S.B.J., E. Smit and H. Nijs. 1995. Genetical population structure in plants: Gene flow between diploid sexual and triploid asexual dandelions (Taraxacum section ruderalia). *Evolution*, 49(6): 1108-1118.
- Nachimuthu, V. V., R. Muthurajan, S. Duraialaguraja, R. Sivakami, B.A. Pandian, G. Ponniah, K. Gunasekaran, M. Swaminathan and R. Sabariappan. 2015. Analysis of population structure and genetic diversity in rice germplasm using SSR markers: An initiative towards association mapping of agronomic traits in *Oryza sativa*. *Rice (N Y)*, 8(1): 30.

Parthiban, S., P. Govindaraj and S. Senthilkumar. 2018. Comparison of relative efficiency of genomic SSR and EST-SSR markers in estimating genetic diversity in sugarcane. *3 Biotech*, 8(3): 144.

- Peakall, R. and P. Smouse. 2012. genetic analysis in Excel. Population genetic softwarefor teaching and research-an update. *Bioinformatics*, 28.
- Peng, W., R. Qin, X. Li and H. Zhou. 2013. Botany, phytochemistry, pharmacology, and potential application of *Polygonum cuspidatum* Sieb.et Zucc.: A review. *J. Ethnopharmacol*, 148(3): 729-745.
- Pritchard, J.K., M. Stephens, N.A. Rosenberg and P. Donnelly. 2000. Association mapping in structured populations. *The American Journal of Human Genetics*, 67(1): 170-181.
- Shiyu, S., L. Zhiyu, Y. Mao, B. Lin, W. Lijia, Z. Tianbao, C. Jie and L. Tingyu. 2011. Polydatin up-regulates Clara cell secretory protein to suppress phospholipase A2 of lung induced by LPS *In vivo* and *In vitro*. *BMC Cell Biol*, 12: 31.
- Sihanat, A., O. Theanphong and K. Rungsihirunrat. 2020. Assessment of phylogenetic relationship among twenty *Curcuma* species in Thailand using amplified fragment length polymorphism marker. *J Adv Pharm Technol Res*, 11(3): 134-141.
- Sun, B., Y.L. Zheng, S.K. Yang, J.R. Zhang, X.Y. Cheng, R. Ghiladi, Z, Ma, J. Wang and W.W. Deng. 2021. One-pot method based on deep eutectic solvent for extraction and conversion of polydatin to resveratrol from *Polygonum cuspidatum*. Food Chem, 343: 128498.
- Tilwari, A. and R. Sharma. 2021. Random amplified polymorphic DNA and inter simple sequence repeat markers reveals genetic diversity between micro propagated, wild and field cultivated genotypes of *Gloriosa superba*: an endangered medicinal plant. *Mol Biol Rep.*, 48(3): 2437-2452.
- Varshney, R.K., A. Graner and M.E. Sorrells. 2005. Genic microsatellite markers in plants: Features and applications. *Trends Biotechnol*, 23(1): 48-55.
- Vastano, B.C., Y. Chen, N. Zhu, C.T. Ho, Z. Zhou and R.T. Rosen. 2000. Isolation and identification of stilbenes in two varieties of *Polygonum cuspidatum*. J. Agric. Food Chem., 48(2): 253-256.
- Wang H.X. and H. Zhang. 1996. Plant breeding system, genetic structure and conservation of genetic diversity. *Biodiversity Science*, 04(2): 92-96.
- Wang, S.Q. 2020. Genetic diversity and population structure of the endangered species *Paeonia decomposita* endemic to China and implications for its conservation. *BMC Plant Biol.*, 20(1): 510.
- Xia, W., T. Luo, W. Zhang, A.S. Mason, D. Huang, X. Huang, W. Tang, Y. Dou, C. Zhang and Y. Xiao. 2019. Development of high-density SNP markers and their application in evaluating genetic diversity and population structure in *Elaeis guineensis*. Front Plant Sci., 10: 130.
- Zhang, Y., X. Zhang, X. Chen, W. Sun and J. Li. 2018. Genetic diversity and structure of tea plant in Qinba area in China by three types of molecular markers. *Hereditas*, 155: 22.