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Abstract

Cotton production in Pakistan is often constrained by limited water resources and inadequate potassium (K) fertilization,
leading to lower crop resilience and yield. This study aimed to evaluate the ameliorated effect of potassium on cotton under
drought stress and the climatic conditions of Multan by assessing the potassium (K) use efficiency and related physiological
attributes in cotton cultivars with varying K efficiency. Moreover, we aimed to identify the K-efficient cotton cultivar to provide
a helping hand for breeders in developing high-yielding varieties for low K and water-limiting environments. For this purpose,
five cotton cultivars (FH-142, ITUB-2013, CIM-554, CYTO-124 [K-efficient], and BH-212 [K non-efficient]) were evaluated
under two irrigation regimes (reduced and normal) with a standardized K application (50 kg ha') across two growing seasons.
Under reduced irrigation with applied K, the K-efficient cultivar FH-142 displayed significantly improved agronomic and
physiological K use efficiency compared with the K non-efficient cultivar BH-212. Specifically, FH-142 exhibited 67.3% and
62.5% increases in agronomic and physiological use efficiency, respectively, compared with BH-212. Potassium application
under normal irrigation generally increased chlorophyll content across all cultivars, with the greatest improvement observed in
FH-142 (7.2%). Reduced irrigation with K application increased leaf osmotic potential in all cultivars, indicating improved
drought tolerance. However, the magnitude of this increase varied, with BH-212 showing the highest rise (16.2%) and FH-142
exhibiting moderate increase (7.3%). Interestingly, K application under reduced irrigation mitigated membrane leakage, a measure
of cell damage, in all cultivars except BH-212. Notably, BH-212 displayed higher membrane leakage (14.2%) than K-efficient
cultivars (3.0% - 9.0%). Overall, the K- K-efficient cultivars’ performance order differs from FH-142< CIM-554< CYTO-124<
IUB-2013. The key findings highlight the importance of potassium for mitigating the negative effects of water stress on cotton
plants. Several cultivars, including FH-142, CIM-554, CYTO-124, and IUB-2013, demonstrated superior performance under both
irrigation levels with and without potassium application, suggesting their potassium-efficient nature. FH-142 outperformed other
cultivars under water stress with K application, demonstrating exceptional potassium recovery efficiency and reinforcing its
suitability for drought-prone, K-deficient soils. These findings suggest that selecting K-efficient cotton cultivars like FH-142,
CYTO-124, IUB-2013, and CIM-554 could improve cotton resilience and yield under limited water and K availability, aiding

farmers and supporting breeders in developing high-yield, drought-tolerant varieties.
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Introduction

Water availability in Pakistan’s cotton-growing regions
has declined significantly recently, dropping from 103.5
million acre-feet in 2011-2012 to 96.3 million acre-feet in
2020-2021 (Anon., 2021). Climate change predictions
suggest further water scarcity alongside rising temperatures,
worsening the situation. This has caused substantial damage
in drought-stricken cotton districts (Ali ef al., 2018).

Water stress is a major abiotic stress that negatively
impacts plant growth by reducing leaf area, vegetative
growth, transpiration rate, photosynthesis, turgor pressure,
and cell water potential, ultimately hindering plant
metabolism (Farooq et al., 2009). Prolonged water shortage
in cotton leads to yield and quality losses (Zahid et al.,
2021). Drought’s physiological effects include increased
reactive oxygen species formation, decreased carbon dioxide
intake due to stomatal closure, and down-regulated non-
cyclic electron transport (Ullah et al., 2017). Cotton-growing
regions are particularly prone to high evapotranspiration
rates, further exacerbating soil moisture loss. These
combined factors have harmful effects on cotton production.

Various strategies have been employed to combat
drought stress in cotton, including applying multiple
inputs, improved seeds, drought-resistant varieties, and
water conservation measures (Fang et al., 2015; Unger et
al., 2010). However, in Pakistan, excessive and often
reckless application of agrochemicals is prevalent among
cotton farmers. This incautious use is another major
contributor to the decline in cotton production (Tariq et al.,
2007; Khan et al., 2020; Mehboob & Ahad, 2021).

In this context, potassium (K) application emerges as
a potentially significant factor in crop resilience against
drought stress (Kant & Kafkafi, 2002; Ishaq, 2024).
Potassium influences cell membrane stability, cell
elongation, osmotic adjustment, water uptake, aquaporins,
and stomatal regulation, all crucial for plant survival under
drought conditions (Wang et al, 2013). Studies have
demonstrated improved crop recovery from drought stress
with potassium application (Wei et al., 2013; Bahrami-Rad
& Hajiboland, 2017; Aksu & Altay, 2020; Anokye et al.,
2021), including cotton (Zahoor et al., 2017; Shahzad et
al., 2019; Zhou et al., 2019). Potassium application also
contributes to osmotic adjustment, lowering osmotic
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potential, promoting solute accumulation and water uptake,
and maintaining turgor pressure (Zhou et al., 2019).

Plants respond to environmental stress by producing
lower molecular weight compounds like free amino acids
and proline. These compounds play a role in plant structure
development (Ashraf et al., 1994a). Thus, potassium plays
a vital role in mitigating various environmental stresses.

Potassium-efficient ~ cultivars  possess  unique
physiological mechanisms for achieving sufficient K uptake.
These cultivars often have a larger root surface area for
better contact with soil, facilitating a greater soil-root spread
gradient for efficient nutrient uptake (Rengel & Damon,
2008). Nutrient-efficient cultivars are expected to have a
positive environmental impact due to their more efficient use
of soil nutrients. They require less fertilizer than less-
efficient or non-efficient cultivars (Gourley et al., 1994),
potentially reducing overall chemical use in agriculture
while maintaining yields. White (2008) described nutrient
efficiency as the plant’s ability to use nutrients for biomass
production. It involves multiple processes, including
nutrient acquisition, translocation, and utilization.

Potassium is critical in maintaining the ion flow for
transporting other ions across cell membranes. Potassium
flux facilitates the transport of sugars, amino acids, and
nitrates (Marschner, 1995). Additionally, potassium
accumulation within guard cells reduces the water potential
inside the cell, along with an anion, providing the osmotic
potential for water absorption (Schroeder et al., 2001).

Potassium, along with irrigation water, is a crucial
factor limiting cotton yield. However, while initially
leading to high yields, excessive chemical fertilizer
application can increase input costs and exacerbate
environmental issues like eutrophication, soil acidification,
and air pollution (Chen & Liao, 2017). Plant uptake of
these fertilizers can also be limited in many soils.

There is a significant gap in Pakistani cotton farmers’
awareness regarding using potassium fertilizers, particularly
for drought-tolerant cotton cultivars. This study aims to
address this knowledge gap by evaluating the performance
of five cotton cultivars under drought conditions, focusing
on their morpho-physiological and biochemical traits. This
study aimed to evaluate the ameliorated effect of potassium
on cotton under drought stress under the climatic conditions
of Multan. Moreover, we aimed to identify the K-efficient
cotton cultivar to provide a helping hand for breeders in
developing high-yielding varieties for low K and water-
limiting environments.

Materials and Methods

A two-year field study was conducted at the Central
Cotton Research Institute (CCRI), Multan, Pakistan (30° 8’
55.8528” Latitude, 71° 26” 22.1892” Longitude), to evaluate
the effects of potassium nutrition on various morphological
and physiological parameters of cotton. This research was
built upon preliminary hydroponic studies conducted under
controlled conditions (Akhtar et al, 2022a). These initial
studies screened and selected five cotton cultivars based on
their potassium (K) efficiency: FH-142, [UB-2013, CIM-554,
CYTO-124 and K non-efficient cultivar BH-212.

Experimental setup: The field was prepared with raised
beds measuring 0.2 m high, 3 m wide, and 4 m long. Plots
were demarcated, and treatments were assigned using a
randomized complete block design (RCBD) with split-split
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plots. The main plot factor was irrigation level (normal or
reduced), the sub-plot factor was potassium application (0
kg ha™! K0 or 50 kg ha™! K,0), and the sub-sub-plot factor
was cotton cultivar (five cultivars mentioned above). Each
treatment combination was replicated four times.

The recommended doses of nitrogen (150 kg ha'!) and
phosphorus (60 kg ha') were applied to all plots.
Potassium fertilizer was applied according to the treatment
plan (0 kg ha! K,O or 50 kg ha! K,O) at sowing time
(Ahmad et al., 2013). Nitrogen application was split into
three doses throughout the growing season. Meanwhile,
phosphorous was applied at the time of sowing.

Cotton seeds were sown using the dibbling method,
and thinning was done 15 days later to maintain a plant
spacing of 25 cm x 75 cm. Standard weeding and insect
pest control practices were employed. Soil moisture
content was monitored regularly using a moisture meter
(TDR-200) to determine irrigation needs. Plots under
normal irrigation received the full recommended water
amount, while reduced irrigation plots received only half.
Cutthroat flumes were used to measure irrigation water
application. Irrigation was discontinued during the second
week of September in both growing seasons. Weather data,
including temperature (maximum and minimum), rainfall,
and relative humidity, were also recorded and presented in
(Fig. 1). Average humidity in the Ist and 2™ growing season
was 30 and 32%, respectively. Average temperature was 36.5
and 36.8°C, respectively.

Data collection

Measurement of water relations and biochemical
attributes: The leaf area of three randomly selected leaves
(top, middle, and bottom) from five plants per replicate was
measured using a leaf area measurement system (Delta-T-
Devices LTD, Sunwell Cambridge, England). The leaf area
index (LAI) was calculated using the following equation:
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Fig. 1. Daily precipitation and mean, minimum, and average
temperature during 2018 and 2019 in the experimental site. The
vertical lines show the experiment duration.
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Proline content was determined spectrophotometrically
following the ninhydrin method described by (Bates et al.,
1973). Briefly, fresh leaf material (0.5 g of the leaf material
used for the other parameters) was homogenized in 10 ml of
3% sulfosalicylic acid, and the homogenate was filtered. The
filtrate (2.0 ml) was reacted with 2.0 ml of acid ninhydrin
and 2.0 ml of glacial acetic acid at 100°C for one hour. The
reaction mixture was extracted with 4 ml of toluene, and the
absorbance was read at 520 nm. Total free amino acids were
determined following the procedure of (Hamilton & Van
Slyke, 1943), for which one ml of each sample extracted for
soluble protein determinations was treated with 1 ml of 10%
pyridine and 1 ml of 20% ninhydrin solution. The optical
densities of the solutions were read at 570 nm using the
spectrophotometer (Hitachi U-2000, Japan).

For measuring the leaf water potential (‘YW), osmotic
potential (¥s), and pressure potential (Wp), a fully
expanded youngest leaf (should be fourth from the top) was
excised from each plant at 11:00 AM by using a pressure
bomb apparatus (Chas W. Cook Division, Birmingham,
England). The chlorophyll contents were measured using a
chlorophyll meter (SPAD-502, Minolta Japan). Leaf
relative water contents (LRWC) were determined by
collecting fresh leaves from every treatment. The sampled
fresh leaves were weighed, soaked in water overnight, and
dried at 70°C for 24 h, or until constant weight. Finally,
LRWC was calculated using the formula given below:

FW -DW

LRWC (%) = W

x 100

Similarly, the membrane stability integrity/membrane
leakage was determined using the method described by
(Ashraf et al., 1994; Yan et al., 1996). The fully expanded
fourth leaf was taken from the top of each plant and from
each treatment at the peak flowering stage. After weighing
the fresh leaves, the material was poured into a glass beaker
and kept for three hours at room temperature. The electrical
conductivity of the solution was measured with the help of
an EC meter (HI 8633, Hanna Instruments Co. Ltd). The
solution in the glass beaker was autoclaved for 10 minutes
to release all electrolytes from the leaf tissue and cooled at

K uptake in treated — K uptake in control

room temperature. The following formula computed the
electrolyte leakage.

Electrolyte leakage (%) = gé x 100
Where, Cl is the electrolyte conductivity before boiling,

and C2 is the electrolyte conductivity after boiling.

After harvesting, the total crude fat, crude protein,
crude fiber, and ash from cotton seed were estimated
according to AOAC method (Bellaloui et al., 2015; He et
al., 2013). About 0.5 g of seed powder was taken in a 250
ml flask. Then, 50 ml of 1.25% H,SO4 was added and boiled
for 30 minutes. Samples were cooled and filtered. The
procedure was repeated three times. Again, the filtrate was
taken, and 50 ml of 1.25% NaOH was added and boiled on
a hot plate for 30 minutes. Samples were again cooled, and
the residue was filtered. The procedure was repeated thrice.
The residue was finally air-dried and weighed. The filtrate
was burned in a high-temperature muffle furnace at 600°C.
The ash was weighed, and equations were given to calculate
the ash (%) and crude fiber.

Weight of ash

04 =

Ash (%) Weight of original sample x 100
Crude fiber (%) = Weight of residue — Weight ash % 100

Weight of sample

Plant analysis, K uptake, and potassium use efficiency
indices: The leaf, fruit, lint, and seed samples were air-
dried and grounded in a coffee grinder. The wet digestions
of these samples were carried out. The readings for K
concentration in leaf, fruit, lint, and seed were recorded
using a Flame Photometer. The K uptake in leaf, stalk, and
fruit was determined by multiplying the K content of plants
by their dry biomass weight, and the values were
represented as kg ha’l. Different forms of the K use
efficiencies were calculated using the formulae as reported
by (Arif et al., 2018).

Apparent recovery efficiency (%) =

1
Nutrient applied x 100

Seed cotton yield in K treated — Seed cotton yield in control

Agronomic use efficiency (g/g) =

Nutrient applied

Seed cotton yield in K treated — Seed cotton yield in control

Physiological use efficiency (g/g) =

Statistical analysis: The data regarding cotton
characteristics were examined using a linear model using
the “Im” package in R (R Core Team, 2019). A separate
study was carried out for the years 2018 and 2019. The
mean separation of the cultivars within the irrigation level
and the potassium levels was done at p<(.05 using the
least square mean and modified Tukey Multiple Test
comparison methods using the “means” package in R
(Lenth, 2018).

Nutrient uptake

Results

Effect of applied potassium on leaf area and leaf area
index of cotton cultivars under varied irrigation levels:
The main effect of K levels, irrigation levels, and cultivars
was significant on the leaf area and leaf area index in both
growing seasons at p<(0.05 (Table 1). The reduced irrigation
caused a reduction in leaf area compared with
regular/normal irrigation. However, K application at the rate



of 50 kg ha™! increased the leaf area compared with without
K application. The K application at the rate of 50 kg ha’!
under the reduced irrigation in both growing seasons, as
compared without K, increased leaf area by 8.43, 4.08, 2.37,
2.71, and 5.18% in BH-212, IUB-2013, CIM-554, CYTO-
124, and FH-142, respectively (Table 1). Similarly, overall,
the leaf area index was higher in the cotton-growing season
of 2018 than in the cotton-growing season of 2019. The
decrease in leaf area index was found by 1.1, 3.6, 1.28, 2.2,
and 2.8% in BH-212, [UB-2013, CIM-554, CYTO-124, and
FH-142 under reduced irrigation with K application at the
rate of 50 kg ha!. Among cotton cultivars, the FH-142
performs better in terms of leaf area and leaf area index with
K application under reduced irrigation (Table 1).

Effect of applied potassium on leaf water potential and
osmotic potential of cotton cultivars under varied
irrigation levels: The principal and interactive effects of
K levels, irrigation levels, and cultivars were significant on
the leaf water and osmotic potential at p<(0.05 in both
growing seasons (Table 2). The K application at the rate of
50 kg ha'! increased the leaf water potential compared with
without the K application. The K application under normal
irrigation conditions has increased the leaf water potential
by 17.7,10.1, 7.4, 13.2, and 10.4% in BH-212, ITUB-2013,
CIM-554, CYTO-124, and FH-142, respectively (Table 2).
Similarly, the leaf osmotic potential was increased by 7.3,
10.5, 15.5, 14.3, and 16.2% in BH-212, IUB-2013, CIM-
544, CYTO-124, and FH-142, respectively, under reduced
irritation with K application as compared with no K
application. Whereas the increase in leaf osmotic potential
was 13.1, 26.6, 16.9, 17.1, and 18.6% in BH-212, IUB-
2013, CIM-544, CYTO-124, and FH-142, respectively,
under normal irrigation with K applied as compared with
without K application (Table 2).

Effect of applied potassium on leaf turgor potential and
proline under varied irrigation levels: The K application @
50 kg ha'! increased the leaf turgor potential compared without
the K application. The K application under normal irrigation
conditions increased the leaf turgor potential by 10.7, 16.1,
55.7,51.7, and 56.4% in cultivars BH-212, ITUB-2013, CIM-
554, CYTO-124, and FH-142, respectively, during both
growing seasons (Table 3). Similarly, the main effect of
irrigation levels, K levels, and cultivars was also significant on
the proline contents in both growing seasons at p<(.05 (Table
3). The BH-212 showed higher proline contents than other
cultivars like ITUB-2013, CIM-554, CYTO-124, and FH-142,
which were 8.7, 42.4, 35.4, and 23.7%, respectively, under
normal irrigation conditions with K application at the rate of
50 kg ha! in both cotton-growing seasons (Table 3).

Effect of applied potassium on membrane electrolyte
leakage of cotton cultivars under varied irrigation
levels: Fig. 2 shows that all cultivars behave statistically
dissimilar for membrane electrolyte leakage under both
potassium and irrigation levels. Upon comparison among
the cotton cultivars, the cultivar BH-212 has shown a 14.2
% higher membrane leakage % as compared with CYTO-
124 (6.0%), IUB-2013 (5.0%), CIM-554 (3.0%), and FH-
142 (9.0%) under the reduced irrigation condition with the
application of K at the rate of 50 kg ha™!' on an average basis
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across both the growing season (Fig. 2). But overall, the
performance of CIM-554 cultivar was better under reduced
irrigation as compared with rest of all the cultivars.
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Fig. 2. The impact of irrigation and potassium levels on the
electrolyte leakage in the leaf (data is the average of two years).
The cultivars with the same letter (s) are statistically non-
significant with potassium rate and irrigation level. Error bars
indicate the standard deviation of four replications.

Effect of applied potassium total soluble amino acid and
chlorophyll contents of cotton cultivars under varied
irrigation levels: The main and interactive effects of
irrigation levels, K levels, and cultivars on the total soluble
amino acids in both growing seasons was statistically alike at
p<0.05. The total soluble amino acids level increased by 8.7,
2.8, 3.3, 2.1, and 2.6% in BH-212, TUB-2013, CIM-554,
CYTO-124, and FH-142, respectively, as compared under
reduced irrigation with K application at the rate of 50 kg ha’!
(Table 4). The main effect of irrigation level, K level, and
cultivars was significant on leaf chlorophyll contents in both
growing seasons at <0.05. The K application under reduced
and normal irrigation in both growing seasons increased the
chlorophyll contents. The K application vs without potassium
application increased chlorophyll contents by 7.2, 3.6, 8.3,
7.1, and 3.3% in cultivars BH-212, TUB-2013, CIM-554,
CYTO-124, and FH-142 under reduced irrigation conditions
during both kinds of the cotton growing seasons.

Effect of applied potassium seed crude fiber and seed
crude protein of cotton cultivars under varied irrigation
levels: The main effect of irrigation and K levels was
statistically alike on the seed crude fiber in both growing
seasons at p<0.05. The K application at the rate of 50 kg ha!
in normal irrigation conditions during both the cotton growing
season increased the seed crude fiber by 35.4,19.9, 11.8, 23.8,
and 26.5% in BH-212, ITUB-2013, CIM-554, CYTO-124, and
FH-142, respectively, as compared with without K application
(Table 5). The impact of water level, K level, and cultivars
was significant on the seed crude protein in both cotton
growing seasons at p<0.05 (Table 5). The cultivar CYTO-124
showed a higher seed crude protein than other cultivars (BH-
212, TUB-2013, CIM-554, and FH-142). The CYTO-124
increased the seed crude protein by 30.0, 13.3, 25.0, and 8.6%
in BH-212, TUB-2013, CIM-554, and FH-142, respectively,
with the application of K at the rate of 50 kg ha! under normal
irrigation conditions in both growing seasons (Table 5).
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Table 7. Impact of reduced irrigation and potassium levels on stalk and fruit potassium uptake index in five cotton cultivars.
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Cotton growing season (2018)

24.7+ 1.98a
34.1 + 1.30bc

35.2+ 1.65bc

65.4+1.38a 87.3+2.38a
105.4+2.31b

84.7+1.37a

57.6+1.85a

12:4 £1,75a 21.4+1.79a 16.2 +1.62a

BH-212

150.6 + 2.68b

125.8+2.71b
133.2 + 2.44bc
141.1 £+ 3.38¢cd

29.0+1.55b 20.8+1.2b 80.7+2.81b
21.7+ 1.34b

16.6 = 1.23b
18.7 £ 1.90bc

20.6+1.93¢

IUB-2013

164.1 +£2.97bc
165.3+2.67¢c

118.3 +£2.73¢

84.5+£2.20b
97.5+2.58¢c

31.0+1.67¢

CIM-554
CYTO-124

124.8 +2.65¢
119.3 £2.52¢

22.8+1.05b 36.9+ 1.82¢

33.1+1.37d
340+ 1.21d

172.7 + 3.16bc

145.5 £ 2.26d

35.8+1.51b 92.0 £ 2.65bc

22.5+1.84b

19.5 + 1.09bc

FH-142

Cotton growing season (2019)

21.5+2.88a

28.7+1.63b
31.3+1.59bc

86.6+2.28a

62.5+2.67a
99.1+2.21b

83.8+2.42a
123.7+2.12b

52.5+1.10a

15.2+2.10a

24.0 + 1.20a

11.3+1.43a
15.5+1.79b
17.6 £ 1.87bc
19.6+1.61c

BH-212

144.7 + 1.48b

78.8+£2.75b
81.3+1.09bc
92.3+2.08d
86.3 £2.32¢cd

19.8 +1.85b

33.8+2.55b
34.5+1.73b

1UB-2013

155.7 +£2.28bc
166.2 +3.29¢

112.3 £2.84¢

134.3 £2.97bc
140.9 £ 2.74¢

21.1+1.30b
22.0+1.88b

CIM-554
CYTO-124

1189+ 3.4lc

33.3+1.33¢

36.8+1.79b

115.7 £2.78¢ 159.9 +3.91c¢

143.0 + 3.85¢

34.6 + 1.84b 21.3+1.71b 34.1 +1.43¢c
The values mean + standard deviation of four replications. The values with same letter (s) within irrigation level and potassium rate are statistically non-significant at p<0.05

18.6 £ 1.98¢c

FH-142

M.N. AKHTAR ET AL.,

Effect of applied potassium on seed ash and leaf
potassium uptake of cotton cultivars under varied
irrigation levels: The main effect of irrigation levels, K
levels, and cultivars was significant on seed ash and the
leaf K uptake in both growing seasons at p<0.05. The
seed ash contents increased by 17.5, 11.5, 10.4, 16.5, and
19.0% under normal irrigation, as compared with reduced
irrigation with K application at the rate of 50 kg ha’!
during the cotton growing season. Similarly, the K uptake
was higher where normal irrigation was given to the crop
in both cotton growing seasons compared with the
reduced irrigation conditions (50% less water). The leaf
K uptake was increased among the cultivars by 15.0, 20.7,
18.9, 29.4, and 26.0% in BH-212, IUB-2013, CIM-554,
CYTO-124, and FH-142 under normal irrigation
conditions over the reduced irrigation conditions with K
application at the rate of 50 kg ha"! during both the cotton
growing season(Table 6).

Effect of applied potassium on stalk and fruit potassium
uptake of cotton cultivars under varied irrigation
levels: The main and interactive effects of K levels,
irrigation levels, and cultivars were statistically alike on the
stalk K uptake in both growing seasons at p<(0.05. The
interaction of water level X potassium level, water level x
cultivars, potassium level X cultivar, and water level X
potassium level x cultivars in both cotton growing seasons
2018 and 2019 was significant at p<0.05. The K
application increased stalk potassium uptake by 33.2,39.4,
42.6, 45.8, and 50.8% in BH-212, IUB-2013, CIM-554,
CYTO-124, and FH-142, respectively, compared with
without potassium application under normal irrigation
condition in both cotton-growing seasons (Table 7). The
main effect of water levels, potassium levels, and cultivars
on the fruit potassium uptake in both growing seasons was
statistically significant at p<(0.05. The normal irrigation
with K application increased by 50 kg ha! increased fruit
potassium uptake by 5.3, 18.1, 18.5, 19.3, and 11.5% in
BH-212, [UB-2013, CIM-554, CYTO-124, and FH-142
over the reduced irrigation condition in the cotton-growing
seasons 2018 and 2019 (Table 7).

Effect of applied potassium on potassium recovery
efficiency (KRE) of cotton cultivars under varied
irrigation levels: The main effect of potassium level and
cultivars was statistically alike on potassium recovery
efficiency (KRE) (leaves + stalks + fruits) in both growing
seasons at p<(0.05 (Fig. 3). The KRE among cultivars
increased under normal irrigation conditions compared
with the reduced irrigation conditions. The cultivar FH-142
showed a higher KRE over other cultivars under the
reduced irrigation levels. CYTO-124 showed a higher KRE
than other cultivars under normal irrigation levels. The
cultivar FH-142 showed an increase in KRE by 39.7, 14.2,
11.9, and 5.3% as compared with BH-212, IUB-2013,
CYTO-124, and CIM-544 cultivars, respectively, under the
reduced irrigation conditions during both cotton growing
seasons (Fig. 3). Whereas, the cultivar CYTO-124 showed
an increase in the KRE by 47.8, 14.1, 7.8, and 1.73% as
compared with BH-212, [UB-2013, CIM-554, and FH-142
cultivars, respectively, under normal irrigation conditions
during both cotton growing seasons (Fig. 3).
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BBH-212 BCyto-124 @CIM-554 OIUB-2013 mFH-142
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K (50 kg ha-| Control K (50 kg ha-
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Normal irrigation

35 1
30
25 A
20
15 |

K Recovery efficiency
(KRE / %)

Control

50 % Reduced irrigation
Cultivars** x K levels** x Irrigation level*

Fig. 3. The impact of irrigation and potassium levels on the potassium
recovery efficiency in cotton cultivars under reduced (R) and normal (N)
irrigation levels during both the growing season. (Average of two-year
data). Error bars indicate the standard deviation of four replications.
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D D
Normal irrigation | 50 % Reduced irrigation

Cultivars** x K levels **x Irrigation level*

Fig. 4. The impact of irrigation (normal (Ns) and reduced (R) irrigation)
and potassium levels on the physiological efficiency in cotton cultivars in
both the growing season. (Average of two-year data). Error bars indicate
the standard deviation of four replications.

BBH-212 BCyto-124 @CIM-554 OIUB-2013 ®BFH-142
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1) 1)
Normal irrigation | 50 % reduced irrigation |

Cultivars** x K levels **x Irrigation level*

Fig. 5. The impact of irrigation and potassium levels on the agronomical
use efficiency in cotton cultivars under reduced (R) and normal (N)
irrigation levels during both the growing season. (Average of two-year
data). Error bars indicate the standard deviation of four replications.

Effect of applied potassium on physiology efficiency (PE)
of cotton cultivars under varied irrigation levels: The main
effect of potassium level and cultivars was noteworthy on
physiological efficiency (PE) (leaves+ stalks+ fruits) in both
growing seasons at p<0.05 (Fig. 4). The PE among cultivars
increased under the reduced irrigation conditions compared
with the normal irrigation level. The cultivar FH-142 showed
a higher PE over other cultivars under reduced irrigation.
CIM-544 showed a higher PE over other cultivars under
normal irrigation levels. The cultivar FH-142 showed an
increase in PE by 62.5, 27.9, 35.9, and 19.5% as compared
with BH-212, IUB-2013, CYTO-124, and CIM-544 cultivars,
respectively, under the reduced irrigation level during both
cotton growing seasons (Fig. 4). Whereas, the cultivar CIM-
544 showed an increase in PE by 35.5, 12.7, 8.4, and 6.1%
compared with BH-212, CYTO-124, IUB-2013, and FH-142
cultivars, respectively, under normal irrigation conditions
during both cotton growing seasons (Fig. 4).

Effect of applied potassium on agronomic use efficiency
(AUE) of cotton cultivars under varied irrigation levels:
The main effect of potassium level and cultivars was
statistically alike on AUE in both growing seasons at
p<0.05. The interaction of irrigation level, potassium level,
and potassium level X cultivars on AUE was also
significant during both cotton growing seasons at p<0.05
(Fig. 5). The AUE among cultivars increased under
reduced irrigation conditions compared with normal
irrigation conditions. The cultivar FH-142 showed a higher
AUE over other cultivars under both irrigation levels. The
cultivar FH-142 showed an increase in the AUE by 67.3,
26.0, 24.3, and 10.1% compared with BH-212, TUB-2013,
CIM-554, and CYTO-124 cultivars, respectively, under the
reduced irrigation conditions during both cotton growing
seasons (Fig. 5). Whereas, the cultivar FH-142 showed an
increase in the AUE under the normal irrigation levels
during both growing seasons by 65.3, 22.6, 8.7, and 5.9%
compared with BH-212, I[UB-2013, CIM-554, and CYTO-
124 cultivars, respectively (Fig. 5).

Correlation between potassium uptake and water use
efficiency: The Fig. 6 shows a positive relationship
between potassium uptake and water use efficiency. When
the potassium uptake increases, water use efficiency also
increases among cotton cultivars. Because potassium is
vital in plant water relations and improved water use
efficiency under stress.

Discussion

The study confirms that water stress significantly
reduces cotton growth and physiological parameters in all
cultivars compared with optimal irrigation conditions
(Tables 2-4). This aligns with previous research
demonstrating that water scarcity hinders cellular
expansion, leaf development, and floral bud formation,
ultimately leading to restricted stem and root growth
(Nelissen et al., 2018). These findings are further
supported (Deeba et al., 2012; Wang et al., 2014; Hejnak
et al., 2015; Niu et al, 2018), who reported similar
reductions in physiological and biochemical characteristics
under water stress conditions.
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Fig. 6. The correlation between total potassium uptake and water
use efficiency in cotton growing season.

However, the study demonstrates a crucial mitigating
effect of potassium application on these negative impacts.
Potassium application under reduced irrigation significantly
improved leaf area, leaf area index, and various biochemical
attributes compared with no potassium application (Tables
2-4). This suggests that potassium is vital in promoting
drought tolerance and maintaining cellular functions under
water stress.

Makhdum et al., (2006) reported varying potassium
uptake responses among different cotton cultivars. This
study supports these findings, as cultivars displayed
diverse potassium uptake abilities (Tables 6-7). Cultivars
with a larger root surface area (Pettigrew et al., 1996;
Wang and Chen, 2012; Yang ef al., 2014) may have a
greater advantage in potassium acquisition, leading to
increased K transport throughout the plant. This efficient
potassium absorption helps maintain optimal cytosolic K*
concentration, which is crucial for various physiological
processes (Wang & Chen, 2012; Wang et al., 2014; Khan
et al., 2017; Zahoor et al., 2017).

Therefore, selecting cultivars with high potassium
uptake efficiency can be a valuable strategy to enhance
plant growth, yield, and yield attributes under limited
potassium conditions (Table 5). This approach aligns with
the concept of sustainable cotton production by minimizing
potassium fertilizer application and environmental impact.
Furthermore, identifying cultivars with superior nutrient-
use efficiency can reduce chemical fertilizers’ economic
and environmental costs (Baligar et al., 2001). This aligns
with the findings of Hassan et al., (2014), who reported
increased shoot and root biomass and cotton yield with
adequate potassium application across four cultivars
(Hassan et al., 2014).

Interestingly, Makhdum et al., (2006) observed higher
sensitivity to potassium deficiency in Bt cotton cultivars
compared with non-Bt cultivars. This finding highlights the
potential importance of potassium management strategies
with the growing adoption of Bt cotton varieties. Cultivar
selection for superior nutrient absorption and utilization, as
emphasized by (Akhtar er al., 2022b; Pettigrew et al.,
1996) could be crucial for optimizing cotton production in
soils with limited potassium availability. The positive

M.N. AKHTAR ET AL.,

correlation observed between total potassium uptake and
water use efficiency (WUE) in this study (Fig. 6) further
underscores potassium’s role in enhancing cotton crop
water utilization.

Cultivars demonstrating higher potassium uptake and
potassium use efficiency also accumulated greater biomass
(Tables 6-7 and Fig. 5). This finding aligns with the
observation that cultivars exhibit varying responses in
potassium uptake and translocation throughout the plant
due to the high mobility of potassium within plant tissues
(Rengel & Damon, 2008). Similar results were obtained in
the current study; cultivars with higher K uptake showed
higher biomass and yield (Tables 6-7 and Fig. 5). Bt-
transgenic cotton cultivars seem more sensitive to modern
K deficiency than conventional cultivars, resulting in
increased interest in K fertilizers with the increased use of
transgenic cotton, as described by (Dong et al., 2004).

Genetic variability in potassium uptake efficiency was
also observed among the five cultivars (Yang et al, 2011).
They also reported that potassium-efficient cultivars displayed
a significant advantage in terms of dry mass production per
unit of potassium accumulated and per unit of potassium
fixation compared with potassium-inefficient cultivars. These
findings suggest that potassium-efficient cultivars could
achieve higher yields under potassium-deficient soil
conditions. However, even with potassium application, these
cultivars might still exhibit deficiency symptoms during
critical stages like flowering and boll development.

The study also revealed a positive impact of potassium
application on proline, leaf water potential, seed amino
acid content, seed crude fiber content, and seed crude
protein content under reduced irrigation conditions (Tables
3-4). This is likely due to increased potassium uptake
facilitated by its adequate availability in the soil (Zahoor et
al., 2017). Notably, the cultivar CYTO-124 displayed the
highest proline, amino acid, and crude protein content,
while CIM-554 exhibited the highest crude protein content
under stress conditions with potassium application. The
stress-induced increase in proline content observed in this
study aligns with the findings of (Zhang et al., 2014), who
reported proline accumulation as a response to drought
stress. Overall, the higher levels of proline, amino acids,
and crude protein observed with potassium application
under reduced irrigation suggest that potassium can be
instrumental in maximizing yield and seed quality under
drought conditions (Onyango et al., 2008).

Further research could explore the intricate physiological
mechanisms through which potassium application influences
stress resilience and various physiological functions in cotton
plants. Additionally, studying how potassium interacts with
other agricultural practices across diverse environmental
contexts would yield valuable insights for enhancing cotton
production in different field settings. With this knowledge,
farmers can make informed choices about sustainable and
high-quality cotton cultivation strategies.

Conclusions

This study explored how potassium application and
irrigation levels influence cotton growth, physiology, and
potassium use efficiency. The key findings highlight the
importance of potassium for mitigating the negative effects of
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water stress on cotton plants. Several cultivars, including FH-
142, CIM-554, CYTO-124, and TUB-2013, demonstrated
superior performance under both irrigation levels with and
without potassium application, suggesting their potassium-
efficient nature. FH-142 exhibited exceptional potassium
recovery efficiency under water stress with potassium
application. These findings offer valuable insights for both
farmers and breeders. Farmers can benefit by selecting
potassium-efficient cultivars to maintain cotton growth and
quality under water stress, particularly on potassium-deficient
soils. Breeders can leverage the observed genetic variation in
potassium use efficiency to develop even more efficient
cotton varieties. Both parties can contribute to more
sustainable and productive cotton production by adopting
these strategies.
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