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Abstract 

 

Tomato production and quality are of great economic importance, but farmers face significant losses due to root rot 

infection, which affects tomato yield. Globally, a wide range of chemical pesticides are used to control plant diseases that 

have an impact on the environmental and nutritional content of the crop. In this scenario, plant growth-promoting 

microorganisms (PGPMs) are safe and effective substitutes for the control of root infections. In this study, we have 

investigated the effect of different plant growth promoting microorganisms (PGPMs) on the suppression of root rot disease in 

tomato plants. In field plot experiments, conducted in the season I and repeated in season II, the application of PGPMs 

improved the systemic resistance of plants against root rot pathogens via improving the functioning of antioxidant molecules. 

They considerably reduced the infection caused by Macrophomina phaseolina, Rhizoctonia solani, Fusarium solani, and 

Fusarium oxysporum compared to untreated control plants. Isolates of PGPMs significantly (p<0.05) enhanced the amount of 

total phenol, and salicylic acid with an improvement in crop yield and quality of fruit (dry matter, soluble solids, fruit acidity, 

and lycopene content). In season I, Penicillium (Pen1-R) whereas in season II, Trichoderma (ET-6) treated plants produced 

the highest quality of tomato fruit with better plant growth and suppression of root rot disease. In both seasons, Penicillium 

and Trichoderma were found to be effective as compared to untreated control plants and plants treated with carbendazim, a 

commercial fungicide.  This research will help to make an impact on the production of tomatoes in a sustainable way. 

 

Key words: Root rot; Biocontrol; Endophytic; Beneficial microorganisms; Salicylic acid; Antioxidant. 

 

Introduction 

 

The use of biopesticides and biofertilizers is an option 

to maintain high food demand with minimal environmental 

impact (Deng et al., 2019). Many biological agents, 

including necrotizing pathogens, non-pathogens, and 

rhizosphere-associated bacteria and fungi, can help plants 

develop systemic resistance to diseases (Romera et al., 

2019). Plant colonisation with certain plant growth 

promoting microbes (PGPMs) can induce systemic 

resistance (ISR) and stimulation of plant defence against 

various pathogens (Moin et al., 2020; Urooj et al., 2021). 

ISR, which includes growth promotion, physiological 

tolerance, antioxidants and antimicrobial regulation, is 

developed in response to an external stimulus and introduces 

the plant’s defensive immune system capabilities (Jain & 

Das, 2016). According to Zehra et al., (2017), a new plant 

protection technique is believed to involve pre-treating a 

plant with a biological inducer to activate its defence 

systems. Several enzymatic and non-enzymatic antioxidants, 

including phenols (secondary metabolites), which have 

redox properties, the ability to donate hydrogen, and singlet 

oxygen quenchers that enable them to serve as reducing 

agents, and protect plants by scavenging free radicals 

(Bagheri et al., 2013). A phenolic compound such as 

salicylic acid (S.A) is presents in higher plants and is a 

fundamental molecule in the signal transduction pathway 

that activates the defence response against various harmful 

pathogens in many species. S.A is a true plant hormone that 

goes beyond the defence process in plant immunity and 

responds to abiotic stress and biotic stress in cotton (Rahman 

et al., 2016). PGPMs such as fluorescent Pseudomonas and 

Trichoderma can promote plant growth by suppressing plant 

diseases (Moin et al., 2021). Some of these strains have a 

strong antagonistic potential and can reduce the severity of 

plant diseases by suppressing plant pathogens, mainly in the 

soil or on/in plant roots (Viterbo et al., 2010). 

Tomato (Lycopersicon esculentum Mill) is the world's 

most highly edible and nutritious vegetable crop which is 

consumed raw, cooked, and processed (Hossain et al., 2010). 

Tomatoes are an important source of minerals, health-

promoting vitamins, and disease-fighting phytochemicals, 

particularly lycopene (Pinela et al., 2016). Qualitative 

characteristic of tomatoes i.e., acidity, soluble solids, and total 

dry matter are important quality attributes for processed and 

fresh market tomatoes (Powell et al., 2003). Tomatoes are an 

important vegetable crop for the tomato processing market. 

High soluble solids and dry matter content are desirable trait 

for the tomato canning industry as they enhance the quality of 

processed product and lower processing costs (Turhan & 

Seniz, 2009). Tomato yield losses due to root rot disease can 

account for up to 25% of the overall annual production and 

losses for individual growers may be higher. Over 2,000 plant 

species are affected by Fusarium spp., (Zehra et al., 2022). 

Losses (60-85%) have been recorded caused by Fusarium 

oxysporum and Fusarium solani in combination with root-

knot nematodes (Parveen et al., 2020a). A wide variety of 

chemical pesticides are currently available for the 

management of plant diseases that not only affect the 

nutritional quality of tomatoes but also the environment. 

Organic produce is viewed as a more nutritious and 

healthier option than conventional produce, and consumers 

are increasingly more concerned about environmental 

sustainability and food safety. According to some authors, 
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the use of organic methods has resulted in higher nutritional 

content (Carricondo-Martínez et al., 2022). In this context, 

plant growth promoting microorganisms (PGPMs) are a 

healthy and efficient substitute for chemical pesticides. Plant 

growth promoting microorganisms (PGPMs) have a high 

potential to prevent root rot infection by increasing plant 

resistance biomarkers as well as the physicochemical 

qualities of tomato fruit. This research aimed to explore the 

antagonistic potential of beneficial microorganisms to 

suppress root infection and provide an alternative and 

environmentally friendly solution to promote the 

biochemical and nutritional quality of tomato fruit. 

 

Materials and Methods 

 

Source of biocontrol agents and inoculum 

preparation: Fluorescent Pseudomonas (MRFP-205, 

MRFP-206, MRFP-212, and EFP-47), Rhizobia (NFB-1) 

and endophytic fungus Trichoderma (ET-6, ET-9) used 

during the experiment were previously evaluated in 

different crops (Ehteshamul-Haque et al., 2015; Moin et 

al., 2020; 2021; Parveen et al., 2020b). Whereas, 

endophytic Penicillium (Pen1-R) has been isolated from 

potato. Fluorescent Pseudomonas was grown in King’s B 

broth and rhizobia in Yeast extract mannitol (YMA) broth 

for 5 days at 28°C. In the case of fungi, a disc of fungus 

was inoculated into potato dextrose broth (PDB) and 

incubated for 10 days. 

 

Experimental design: After growth, the population of each 

biocontrol agent was examined by serial dilution method, and 

their biological control potential activity was also examined in 

field plots, using tomato as a test crop. Seeds of tomato 

cultivar (commander-F1) were grown in earthen pots. Roots 

of tomato seedlings (3 weeks old) were dipped in bacterial and 

fungal aqueous gum Arabic (1%) suspension (108 mL 1) for 1 

hour and transplanted in rows (10 seedlings/row) of 

2x2meters field plots at the experimental field of the 

Biological Research Centre, University of Karachi. The sandy 

loam soil had a natural infestation of Macrophomina 

Phaseolina (4-8 sclerotia g⁻ˡ soil), Fusarium species (3500 cfu 

g⁻ˡ soil), and Rhizoctonia solani (7-12% colonization of 

sorghum seeds used as baits) as determined by using the 

techniques of Nash & Snyder (1962), Sheikh & Ghaffar 

(1975) & Wilhelm (1955) respectively. Un-inoculated field 

plots were served as negative control, while 200ppm 

Carbendazim @ 200mL/plot was served as a positive control. 

All treatments were replicates four times and treatments were 

randomized in a block design. Plants were watered as 

required. Observations were made at 45 and 90 days, 

including growth parameters, physical parameters, and 

biochemical parameters of tomato. The prevalence of root rot 

fungus was assessed using the method of Moin et al., (2020). 
 

Root rot fungal infestation: Four tomato plants from each 

plot were uprooted after 45 and 90 days of replanting. The 

taproots were cut into 1 cm long pieces, washed with clean 

water and sterilized with sodium hypochlorite 1% (NaOCl) 

for about 3 minutes. From each treatment, four tap root 

sections were placed on a petri plate (four replicates) having 

potato dextrose agar (PDA) with the antibiotics penicillin 

(100,000 units/L) and streptomycin (0.2g/L). The plates 

were incubated at 28°C for a period of 7 days. After the 

identification of the fungi emerging from each piece, the 

following formula was used to determine the percentage of 

infection for each fungus: (Moin et al., 2020). 

 

Percent infection (%) = 
Total number of plants infected by a fungus 

x 100 
Total number of plants 

 

Analysis of tomato fruit quality parameters: 

Physiological and biochemical parameters of tomato leaves 

and fruits were investigated, furthermore, fruit and leaf 

antioxidants i.e., lycopene, salicylic acid, polyphenols, and 

free radical scavenging activity were recorded. 

 

Percentage of moisture content: The moisture content 

percentage of tomato fruit was calculated according to the 

standard method of Anon., (2000). 

 

Moisture % = 
{W1 – W2} x 100 

W1 

 

Whereas: 

W1 = Initial weight of tomato sample  

W2 = Oven-dried weight of tomato sample. 

 

Total dry matter: The total dry matter (DM) of a sample 

was determined by drying the tomatoes at a temperature of 

105°C till a constant mass was achieved (Anon., 2000). 

 

Total soluble solids: The soluble solids present in the 

tomatoes were observed using a hand refractometer (Atago 

Co., Tokyo, Japan) ranging 0-32% (Anon., 2000). 

 

pH determination: The homogenised tomato pulp and 

juice were used for pH determination as described of 

(Anon., 2000). 

 

Total titratable acidity: According to the method of 

(Anon., 2000), 5mL of tomato juice titrated with 0.1M 

NaOH, using a few drops of phenolphthalein as an indicator. 

The percentage of citric acid calculated as follows: 

 

Citric acid percentage (%) = V ×N×W meq×100/Y 

 

Whereas: V= NaOH volume (mL) used 

N= NaOH Normality 

W meq= Milliequivalent of citric acid (0.064) 

Y= volume of the sample (mL). 

 

Quantitative analysis of lycopene: To analyse lycopene, 

an ethanol: hexane: acetone (1:2:1) (v/v) mixture was used 

as described by Anthon & Barrett (2006) with slight 

modification. For lycopene determination, 1mg fresh 

sample was mixed with distilled water (1mL) and kept in a 

30℃ water bath for one hour. A solution (8 mL) of ethanol: 

hexane: acetone (1:2:1) was added, the mixture was 

immediately capped and vortex. Incubate the reaction 

mixture at room temperature for 10 min under bright light. 

Vortex again after adding distilled water (1mL) to each 

sample. The reaction mixture was incubated for a second 

time at room temperature for about 10 min, the 

absorbance/O.D. was observed at 503 nm. 
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Lycopene content calculated by, 

Lycopene (mg/kg) = Abs503 × 537×8×0.55/0.10×172 

Or, Absorbance 503nm ×137.4 
 

Preparation of sample for the determination of total 
phenol, flavonoids, salicylic acid, and DPPH free 
radical scavenging activity of fruits and leaves: 1g of 
dried fruit or leaf samples were crushed in ethanol (96 % 
v/v), the resulting concentration was 10mg per millilitre of 
ethanol, the mixture was centrifuged at 1600xg for 15min 
and the supernatant was collected for further investigation. 
 

Estimation of total phenols: Using the technique of 

Chandini et al., (2008), the total phenolic content of the 

extract was determined. 

Estimation of total flavonoid content: The flavonoid 

content of the sample was estimated using Marinova et al., 

(2005) assay. 

 

Estimation of salicylic acid (S.A): Salicylic acid was 

measured using the technique suggested by Warrier et al., 

(2013). 

 

Estimation of free radical scavenging activity by 

(DPPH) assay: The DPPH (2, 2-Diphenyl-1-

picrylhydrazyl) assay by Tariq et al., (2011) was used to 

determine the free radical scavenging activity (%).  

Free radical scavenging activity was calculated as 

follows: 

 

Free radical scavenging activity % =  
{Absorbance of control – Absorbance of sample} 

x 100 
Absorbance of control 

 

Statistical analysis 

 

Statistical significance (p<0.05) was examined by using 

one-way analysis of variance (ANOVA). The analysis was 

carried at least in triplicate. p<0.05 was used to evaluate the 

level of significance. Three-ways analysis of variance was 

also performed to examine the percentage of infection 

between different treatments, pathogens, and days. 

 

Results 
 

Effect of PGPMs on root rot infection: In both years, 

all PGPMs treatments significantly (p<0.05) inhibited or 

limited the development of Macrophomina phaseolina, 

Rhizoctonia solani, Fusarium solani, and Fusarium 

oxysporum, compared to untreated control plants (Tables 

1 and 2). In 2017 complete control of Fusarium solani 

and Fusarium oxysporum was observed when plants were 

treated with Rhizobia (NFB-1). Application of 

Trichoderma (ET-6, ET-9) significantly reduced 

Macrophomina phaseolina infection and was also 

effective against Fusarium oxysporum. However, 

Rhizoctonia solani was suppressed by Pseudomonas 

(EFP-47) after 45 days. In 2018, Pseudomonas isolates 

(MRFP-212 and EFP-47) were most effective against root 

rot infection. Complete control of Rhizoctonia solani by 

Pseudomonas (MRFP-212) was observed after 90 days, 

whereas; Fusarium oxysporum was completely controlled 

by Pseudomonas (EFP-47) after 90 days (Table 2). 

In general, Rhizobia (NFB-1) and Pseudomonas (EFP-

47) suppressed infection in both years as compared to the 

untreated control. 

 

Growth parameters: Beneficial microbes have a 

positive effect on the growth of tomato plants compared 

to untreated control group plants. At 45 and 90 days, the 

maximum positive effect was observed in plants treated 

with Penicillium (Pen1-R) and Trichoderma (ET-9) in 

both years. It is interesting to note that the maximum 

fresh shoot weight and root length were observed at the 

highest value in plants treated with Penicillium (Pen1-

R), but the maximum shoot length and root weight were 

observed in plants treated with Trichoderma (ET-9) in 

2017 and 2018 (Table 3). 

 

Effect of PGPMs on fruit production: In 2017, 

Trichoderma (ET-6) produced the maximum number (9 

fruits /plant) fruits followed by Trichoderma (ET-9), 

whereas in 2018, Pseudomonas (MRFP-206) produced the 

maximum number of fruits followed by Trichoderma (ET-

6) (Fig. 1). Furthermore, the maximum weight of the fruits 

was observed in carbendazim treatment in 2017, but it was 

dropped in the next season, whereas in 2018 Trichoderma 

(ET-6) produced the highest average weight of fruits 

followed by Trichoderma (ET-9) (Figs. 2 and 4). 

 

Biochemical composition and fruit quality: A wide 

variation was observed in the basic physiochemical 

composition among the treatments (Table 3). Minimum 

moisture content (91.6% - 92.7%) and maximum dry 

matter (8.3% and 7.2%) of fruits were found in plants 

cultivated with Trichoderma (ET-6) as compared to 

untreated control in 2017 and 2018, respectively. In this 

study the maximum acidity of tomatoes was recorded in 

plants treated with Penicillium (Pen1-R) (0.14% and 

0.12%) during the years 2017 and 2018 respectively, 

followed by Rhizobia (NFB-1) which showed a slight 

decrease value (0.13% and 0.12%). However, the pH value 

showed the opposite trend. Total soluble solids (TSS) 

varied from 4.3 to 5.3 percent (Table 4). Our findings 

indicated that the proportion of solids varied between 

different treatments; Pseudomonas (MRPF-212) had much 

higher proportion of soluble solids compared to other 

treatments during both years (Fig. 3). 

 

Lycopene and antioxidants of mature fruit: The 

application of Penicillium (Pen1-R) resulted significantly 

(p<0.05) higher lycopene content in tomatoes (101.1-

74.81mg/kg) as compared to the untreated control in 2017 

and 2018 respectively. The second highest amount of 

lycopene was observed in the treatment with Pseudomonas 

(MRFP-205) followed by Trichoderma (ET-6) in both 

years (Table 5). 
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Fig. 1. Effect of plant growth promoting microbes on mean 

tomato fruit numbers in 2017 and 2018. 
 

 
 

Fig. 2. Effect of plant growth promoting microbes on mean 

tomato fruit weight in 2017 and 2018. 
 

 
 

Fig. 3. Effect of plant growth promoting microbes on tomatoes dry matter 
and soluble solids in 2017 and 2018. 

1- Control; 2- Carbendazim; 3- Pseudomonas (MRFP-205); 4- 

Pseudomonas (MRFP-206); 5- Pseudomonas (MRFP-212) 
6- Pseudomonas (EFP-47); 7- Penicillium (Pen1-R); 8- Trichoderma (ET-

9); 9- Trichoderma (ET-6); 10- Rhizobia (NFB-1) 
Bars bearing different superscript letters are showing significant 

difference at p<0.05 with their respective control or among them, 

according to Duncan’s multiple range test. 
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Table 4. Effect of endophytic microorganism on the Biochemical Parameters of tomato fruits in field experiments. 

Biochemical parameter 

Treatments 
Moisture % % Citric acid pH 

2017 2018 2017 2018 2017 2018 

Control 93.5 94.6 0.10 0.11 4.14 4.27 

Carbendazim (0.1%) 93.3 93.4 0.12 0.12 4.15 4.37 

Pseudomonas (MRFP-205) 93.3 93.4 0.11 0.10 4.08 4.36 

Pseudomonas (MRFP-206) 93.5 93.7 0.09 0.08 4.15 4.37 

Pseudomonas (MRFP-212) 92.4 92.8 0.11 0.12 4.02 4.34 

Pseudomonas (EFP-47) 93.6 93.8 0.08 0.07 4.10 4.34 

Penicillium (Pen1-R) 93.3 93.3 0.14 0.12 4.05 4.12 

Trichoderma (ET-9) 92.0 93.4 0.01 0.10 4.13 4.35 

Trichoderma (ET-6) 91.6 92.7 0.09 0.09 4.17 4.33 

Rhizobia (NFB-1) 92.4 93.8 0.13 0.12 4.02 4.10 

LSD0.05 0.641 0.391 0.051 0.061 0.141 0.11 

 

 
 

 
 

 
 

Fig. 4. Effect of plant growth promoting microbes on 

tomato fruit quality. 

The amount of polyphenols was highest in fruits treated 
with Trichoderma (ET-9) followed by Pseudomonas (EFP-
47) in 2017. However, in 2018 the highest amount of 
polyphenols was recorded in Pseudomonas (MRFP-206 and 
EFP-47). The results of this study found the highest amount 
of salicylic acid in Pseudomonas (EFP-47) in both seasons 
compared to untreated control fruits. In addition, the 
maximum flavonoid content was observed in Trichoderma 
(ET-9) in 2017, whereas in 2018 Pseudomonas (MRFP-206 
and 212) treatments showed the maximum value of 
flavonoids (Table.5). In this study, the value of free radical 
scavenging activity was recorded highest in Trichoderma 
(ET-6) in 2017 and 2018 (Table 5). In general, the highest 
percentage of free radical scavenging activity was observed 
in fruits grown with beneficial microorganisms as compared 
to untreated control plants. 

 
Antioxidant activity of leaves: The amount of salicylic 
acid and polyphenol in leaves was found highest in the 
Penicillium (Pen1-R) treatment after both time intervals in 
both seasons. In 2017, the highest antioxidant activity of 
leaves was found after 45 days at 30 min in Rhizobia (NFB-
1) treated plants. However, after 90 days, Pseudomonas 
(MRFP-205 and 206) produced the highest antioxidants at 
30 min compared to the untreated control. Furthermore, in 
2018, Pseudomonas (MRFP-206 and MRFP-212) 
produced the highest percentage of free radical scavenging 
activity at 30 min followed by Trichoderma (ET-9) as 
compared to untreated control at 90 days (Table 6). 

 

Discussion 

 

Plants live in versatile environments where they 

interact with multiple organisms, including detrimental and 

pathogenic, but also beneficial microbes, (Pieterse et al., 

2007; Pineda et al., 2010). The diversity of beneficial 

microbes is enormous and different microbes have 

different effects on plants. Although there is a vast amount 

of research regarding on the potential of PGPMs as a 

biocontrol agents against pathogenic fungus, particularly 

root rotting fungi, their practical usage in agriculture is 

minimal. In this study, we used the two most common 

fungal antagonists (Trichoderma and Penicillium) that 

were associated with the roots of different plants in 

agricultural soils (Nallanchakravarthula et al., 2014).  

C 

Control Penicillium (Pen1-R) 

A 

B 

Pseudomonas (EFP- 47) 

 
Control 

Control Trichoderma (ET-6 

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.12050#fec12050-bib-0082
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.12050#fec12050-bib-0084
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6250784/#B100
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We also used three fluorescent Pseudomonas strains 

and one Rhizobial isolate that have been previously tested 

on different crops, individually or in combination 

(Ehteshamul-Haque et al., 2007; Moin et al., 2020; 2021; 

Parveen et al., 2020b). In both years among other 

treatments Penicillium and Trichoderma isolates were 

found to be effective as compared to untreated control 

plants and plants treated with carbendazim, a commercial 

fungicide (Fig. 4). Trichoderma, free-living fungi that are 

typically found in the roots of plants, are known for their 

ability to act as a biocontrol agents (Ehteshamul-Haque & 

Ghaffar 1992; Moin et al., 2021). Our results show a 

decreasing trend in root infection when treated with 

biological treatments, particularly the isolates of rhizobia 

(NFB-1) and Pseudomonas (EFP-47) isolates suppressed 

the infection during in both years compared to the control. 

Suppression of root rot disease and improvement in plant 

growth were also reported previously by Moin et al., 2021 

& Parveen et al., 2020b. 

Plants contain many phenolic compounds that are 

important for the growth and reproduction of plants. Plant 

phenols are natural antioxidants that act as antibiotics and 

natural pesticides; antioxidants can slow or inhibit the 

oxidation process of cellular compounds for instance 

lipids, carbohydrates, proteins and DNA (Kaurinovic & 

Vastag, 2019). The current results demonstrate that the 

phenolic compounds of fruits and leaves contribute 

positively to their antioxidant capacity, in addition to 

reducing the levels of free radicals, as similarly reported by 

Shafique et al., (2015). 

The lycopene content in tomatoes is responsible for 

the red colour and is an important quality indicator as well 

as considered an antioxidant with high biological activity 

(Przybylska, 2020). Our investigation reveals that among 

all treatments, Penicillium (Pen1-R) treatment enhances 

the lycopene content as compared to untreated plants. 

Furthermore, other antioxidant compounds examined in 

tomato fruit were better influenced by the beneficial 

microorganism application.  

The significance of plant growth-promoting beneficial 

microbes in improving plant fitness via stimulating the 

tolerance to biotic and abiotic stresses has been revealed, 

however very few experiments have been conducted in real 

field conditions to improve the fruit quality and healthiness 

for human consumption (Zhang et al., 2008). Beneficial 

microbes such as P. fluorescens not only help plants 'deal' 

with root rot diseases and improve plant resistance but also 

improve the crop yield and fruit quality (Ramos-Solano et 

al., 2014). These microorganisms colonise plant roots and 

produce root systems that directly improve crop yield by 

increasing root hair biomass production and root hair 

growth for better water absorption and conduction 

(Harman et al., 2004). Beneficial microorganisms could be 

used as biocontrol agents against root rotting fungi; they 

produce ammonia, HCN (hydrogen cyanide) and also 

volatile antifungal compounds. Microorganisms that 

promote development of plant are gaining attention as 

biocontrol agents because they suppress plant diseases and 

have a beneficial effect on plant growth (Gómez-Lama 

Cabanás et al., 2014; Prieto et al., 2011). 

This study has explored an environmentally friendly 

option to improve tomato plant growth, fruit yield, and 

some physical and chemical characteristics of its fruit 

through the application of plant growth promoting 

microorganisms. It would suggest that beneficial bacteria 

and fungi present in plant roots may serve as a possible 

substitute for chemical pesticides. 

 

Conclusions 

 

This study provides evidence that PGPMs have 

exceptional potential against several root rot infections. 

These species have the potential to have significantly 

impact on fruit production and quality. This study will 

enables the selection of the best plant-associated bacteria 

for field inoculation, resulting in potential biocontrol, 

improved systemic resistant markers, decreasing chemical 

inputs, natural soil sustainability, and improved fruit 

productivity and quality. 
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