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Abstract 

 

Tobacco Ring Spot Virus (TRSV) is a highly damaging virus that affects a variety of crops. The viral pathogen is 

difficult to control since it is spread by a variety of vectors Viz., aphids, whiteflies, treehoppers and grasshoppers etc. The 

infectious nature of TRSV is due to its coat protein (CP), which helps to protect the virus genome against chemicals. As a 

result, it is necessary to break its CP to control the viral disease. The CP is conserved and plays a very significant role i n 

the formation of the viral capsid. Moreover, vector specificity is also determined by CP. Virtual screening is the most 

accurate method to predict inhibitors for active site residues in CP. For active site prediction on CP, we used many servers,  

including SOMPA, ConSurf, ConCavity, SWISS-MODEL, PHYRE2, 3-D refinement, MTI Open Screen, PyRx, and ProSA 

COACH. Furthermore drugs that are suitable for these active sites were identified after active site prediction. Twenty drugs,  

each with a unique ZINC ID number, were identified. After assessing their ADMET characteristics and carcinogenicity, 

suitable drugs were chosen. One of the twenty most favorable drugs for TRSV is ZINC ID-597691, which has the best 

ADMET characteristics and carcinogenic value. In this study, we identified a drug with ZINC ID-597691 as the most 

effective treatment for TRSV-related infections that has risen. 
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Introduction 
 

Tobacco ringspot virus (TRSV) belongs to the genus 

Nepovirus, subgroup A and family Secoviridae, and 

subfamily Comovirinae (Sanfacon et al., 2015; Anon., 

2017; Lefkowitz et al., 2018) is one of the most prevalent 

and dangerous plant viruses (Almedia, 1980). It emanated 

first from the Midwest and East regions of the United 

States (Anon., 1997). This virus has now spread around the 

world, infecting a broad variety of woody and non-woody 

hosts (Abdalla et al., 2012; Kundu et al., 2015) and causing 

major infections in tobacco, soybeans, and tomatoes as 

well as in cucurbits, blueberries, and grapevines (Sinclair 

& Backman, 1989). It has the ability to affect more than 

three hundred plant species as well as several economically 

important crops. This viral infection has presented a serious 

danger to the productivity and quality of various crops, 

resulting in considerable yield losses (Hill & Whitham, 

2014). It causes necrotic ringspots and systemic chlorotic 

in tobacco, mottled leaves in cucurbits (Abdalla et al., 

2012), bud blight disease in soybeans (Demski & Kuhn, 

1989), chlorotic spots, rings, and red blotches with 

deformed leaves in berries (Mitra et al., 2021). 

TRSV is an isometric, non-enveloped and 25 to 30 

nm in diameter and exhibits icosahedral symmetry 

(Murant et al., 1996). The genome is made up of single-

stranded polyadenylated RNA and is bipartite in the 

positive sense. TRSV consists of two RNA molecules 

with distinct lengths: the first RNA has a length of 7514 

nucleotides, while the second has a length of 3929 

nucleotides (Dunez & Gall, 2011; Sanfacon et al., 2012; 

Thompson et al., 2017). However, a distinct virion layer 

(coat protein/capsid protein) exists that surrounds each 

RNA molecule of identical diameter. 

Antiviral treatment has made significant progress in 

enhancing the quality of life of infected plants during the last 

few decades. However, because of the long-term use of the 

same medicine and its associated adverse effects, it is 

necessary to establish new pharmaceuticals with unique 

mechanisms of action. The increasing of TRSV infection in 

various plants is posing an increasing threat throughout the 

world. The infection leads to spreads of various type of 

diseases in different crops which result to the loss of 

productivity. The TRSV itself does not pose a direct threat 

to human health, it can have significant economic and 

agricultural impacts, which in turn can affect global food 

security and trade. For the first time, infection with this virus 

was found in the tobacco (Nicotiana tabacum) plant by 

Fromme and his coworker in 1927. It is a significant virulent 

virus that is widely spread, causes serious infections/ 

diseases in different economic crops and urgent/ immediate 

need to be control. Its infection is difficult to manage 

because it is spread by a variety of vectors. The host range 

of TRSV encompasses both plants and insects due to its 

unique ability of host shifting (Li et al., 2014). Virtual 

screening is usually the most accurate method for predicting 

the residue of the active site using inhibitors. The entire CP 

of the examined molecule encodes approximately 513 amino 

acids having a molecular mass of 56.99 KDa (Geourjon & 

Deleage, 1995). The CP has a highly conserved sequence 

and is critical to the virus's life cycle. Because of their highly 

conserved sequence across successive generations, capsid 

proteins can be altered or damaged by a variety of small 

compounds or medicines. Drugs can have an effect both in 

the beginning and late stages of viral infection and 

replication cycles. As a result of these effects, several small 

compounds that can attach to CP have been discovered, with 

a few of them showing a vital role in preclinical and 

therapeutic research (Fu et al., 2019). 
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The primary goal of obtaining biological responses 

in medication development is to identify chemical 

species that are more capable of binding to proteins. 

Virtual screening offers an accelerated method to detect 

an effective drug. A diversified and developed chemical 

database is utilized to assess distinct protein groups and 

complex proteins and receptors for excellent 

performance (Ghosh et al., 2006). For the prediction of 

residual sites (ligand binding sites) in CP of TRSV to 

bind with ligand (inhibitor) and for docking study, 

several kinds of servers have been used (ConSurf, 

ConCavity, etc.). The goal of this research is to find 

possible inhibitors using various tools that can target the 

specific active sites of the virus coat protein and 

subsequently impede viral replication in affected plants 

and denying their role to act as reservoir for the vectors.  

 

Material and Methods 

 

Retrieval of protein sequence and secondary structure 

prediction: The amino acids sequences of chain A, a coat 

protein with the identification number 1A6C, were 

retrieved from the protein data bank in pdb format. These 

sequences correspond to the coat protein (CP) of the 

tobacco ringspot virus (TRSV) strain NC-87. The CP with 

chain A was selected throughout several coat proteins of 

TRSV due to its large size. The coat protein with ID 1A6C 

has been uploaded to the SOPMA server (http:// 

www.ibcp.fr/predict.html) to predict the secondary 

structure of CP. The sequence with the name was pasted on 

the SOPMA server for output (Eisenhaber et al., 1995). 

 

Tertiary structure prediction, homology modeling, and 

structure refinement: The tertiary structure was predicted 

by using SWISS-MODEL (https://swissmodel. expasy.org/) 

and PHRE2 web server (http: //www.sbg. 

bio.ic.ac.uk/phyre2). For refinement, the sequence of CP 

was uploaded in FASTA format in a 3D refine server 

(http://sysbio.rnet.missouri.edu/3Drefine/). The server 

generated five refined TRSV protein structures. The fifth 

structure was the most refined model with the lowest 

potential energy. Hence model number five was used for 

subsequent study. 

 

Error recognition and protein consistency analysis: For 

error recognition, refined structure of the TRSV protein 

was uploaded to ProSAweb server (https://prosa.services. 

came.sbg.ac.at/prosa.php). Then the PDB file of coat 

protein was uploaded to Procheck to determine protein 

consistency analysis (https://servicesn. mbi.ucla.edu/ 

PROCHECK/). The final model was selected on the basis 

of G-score, several residues in the core, allowed regions, 

favored regions, and outlier regions. 

 

Active site prediction and calculation of grid center 

coordinates: For prediction of active sites, the sequence of 

CP was uploaded on COACH server (https:// 

zhanglab.ccmb.med.umich.edu/COACH/). The PDB file 

of CP was uploaded to the Prank Web for the calculation of 

grid center coordinates (https://prankweb.cz/).  

Virtual screening and lazy structure-activity: To find 
optimal ligands, protein and ligand files were submitted to 
MTI AutoDock web server in mol2 and pdb formats, 
respectively (https://bioserv.rpbs.univ-paris-diderot.fr/ 
services/MTiOpenScreen/). The chemical structures or 
SMILE strings were submitted to LAZAR (httpr://laza.in-
silico.ch) for identification of lazy structure-activity 
relationship and determination of carcinogenicity of the 
structural molecules. 

 
Toxicity identification and auto docking: For 
identification of toxicity, the chemical structures of twenty 
target drugs were analyzed by using ADMETSAE web tool 
(http://lmmd.ecust.edu.cn/admetsar1/). For autodocking 
purposes, ligands and CP sequences were uploaded in 
pdbqt and PDB formats, respectively, within PyRx 
software (https://pyrx.sourceforge.io/). The results of 
PyRx software were visualized through Drug Discovery 
Studio (https://discover.3ds.com/discovery-studio-
visualizer-download). 

 

Results and Discussion 

 

Chain A, accession ID 1A6C of CP, consists of 513 

amino acids with a 56.99 KDa mass. The SOPMA server was 

used to generate the protein secondary structure (Eisenhaber 

et al., 1995). In this research work, we predicted different 

inhibitors against the chain A coat protein of TRSV strain NC-

87 which was the most common and virulent. The Chain A 

coat protein with the accession ID 1A6C consisted of 513 

amino acids having a 56.99 KDa mass. The results showed 

that the CP was consisted of 10.53% alpha-helix, 34.21% 

beta-strand, and 43.86% coils. The understanding of protein 

functions requires the knowledge about secondary structure. 

Its prediction is an important initial step toward predicting 

tertiary structure, along with providing data on protein 

functions, interactions, and activities (Ma et al., 2018). The 3D 

model of CP was predicted by PHYRE2 (Kelley et al., 2015) 

and SWISS-MODEL (Waterhouse et al., 2018), which 

predicted the tertiary structure (Biasini et al., 2014) (Fig. 1). 

Tertiary structure accuracy in resulting model was assessed by 

the GMQE score. As a consequence, the best three-

dimensional model with 100% sequence accuracy was found. 

An automated server performed each step, and when the 

model was built, three-dimensional structure was downloaded 

in a PDB file (Guex et al., 2009). It is often required to 

establish three-dimensional structure of proteins to recognize 

their functions at a molecular level (Yang et al., 2018). 
The refining of CP was done with the aid of a 3D refine 

server, which resulted in the 5 refined TRSV protein structures 
(Bhattacharya et al., 2016). All models are listed in order of 
potential energy base (Table 1). The best CP has a lower 
potential energy that is closer to its original structure. The 
structure that came in 5th place was an extremely refined 
model having the lowest potential energy. The 3D models of 
CP generated by online prediction servers were passed to an 
automated server (MODREFINER) for structure refinement 
and energy minimization (Xu & Zhang, 2011). The acquired 
results demonstrated the comparability between the modeling 
studies of the provided molecule (Rollinger et al., 2008). As a 
result, a 5th model was used for the next study. For the Error 
identification in coat protein, the ProSA-web (The protein 
structural analysis program (ProSA) is the most effective tool 

http://sysbio.rnet.missouri.edu/3Drefine/
https://zhanglab.ccmb.med.umich.edu/COACH/
https://prankweb.cz/
https://bioserv.rpbs.univ-paris-diderot.fr/%20services/MTiOpenScreen/
https://bioserv.rpbs.univ-paris-diderot.fr/%20services/MTiOpenScreen/
http://lmmd.ecust.edu.cn/admetsar1/
https://pyrx.sourceforge.io/
https://discover.3ds.com/discovery-studio-visualizer-download
https://discover.3ds.com/discovery-studio-visualizer-download
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ever for determining the validity of proteins as well as their 
structural prediction and modeling (Wiederstein & Sipple, 
2007) gives three graphs: the first is a "Z score" that is used 
for model quality indication, the second is a "plot of residue 
score" that is used for local model quality, and the third is an 
"interactive molecular viewer" that is used for checking the 
target protein's 3D structure (Fig. 2A, B). The model quality 
was indicated by the Z score, which assesses the change in 
total energy of the structural form of the energy distribution 
that excretes and is generated from the mechanism. The CP 
had a Z score of -7.96. The results of Ramachandran plot 
analysis and sequence position plots revealed that the SWISS-
MODEL server was developed as an excellent structural 
model for CP. The Ramachandran plot produced by the Pro-
check server (Nageswara et al., 2019) showed that 70.8% of 
residues of SWISS-MODEL (Biasini et al., 2014) created a 
model of CP, which was located in the favored region of the 
Ramachandran plot as well as with the minimum percentage 
(additional allowed region, 23.5%; general allowed region, 
3.6%) of residue inside the allowed region and (3.0%) in the 
outlier regions (Fig. 3). The Ramachandran plot analysis 
provides a score for the amino acid residues located within the 
favored region. The higher the proportion of amino acid 
residues within these favored regions, the greater the stability 
of the predicted structure. On the other hand, Ramachandran 
outliers represent amino acid residues that are less conducive 
to structural stability; in such cases, a smaller proportion is 
preferred (Chauhan et al., 2023). 

The identification of particular ligands is challenging 

for a variety of reasons, including the high cost of 

experimental ligand identification. The structural 

information and ligand–protein binding details for 40% of 

proteins in the Protein Data Bank are missing (Yang et al., 

2013). As a result, the prediction of ligand and protein 

binding information is critical for medicinal and biological 

research. To predict protein–ligand binding sites in silico, a 

variety of techniques have been used. Among them, the 

COACH (Yang et al., 2013) server plays a crucial function 

in the prediction of these active sites. COACH is a web 

server approach that predicts active sites for ligands that are 

more suitable. It incorporates predictions from several 

approaches, such as TM-SITE, COFACTOR (Roy et al., 

2012), S-SITE, Concavity (Capra et al., 2009), and 

FINDSITE (Brylinski & Skolnick, 2008). All server results 

were compiled, and the foremost active sites were used to 

identify the ligand-binding sites (Table 2). The prediction of 

active sites was necessary after a model's native state was 

confirmed. Consequently, ligand uniqueness may be 

identified. This server produced forty-three active sites 

((GLU)115, (TRP)116, (GLN)117, (THR)188, (ALA)190, 

(ASN)336, (THR)337, (ILE)33, (ILE)37, (THR)57, 

(THR)59, (CYS)76, (THR)77, (PHE)78, (GLU)100, 

(ASN)119, (LEU)128, (CYS)129, (TRP)131, (GLN)137, 

(LEU)140, (HIS)163, (THR)178, (ILE)244, (GLY)246, 

(SER)247, (VAL)248, (PHE)260, (ILE)262, (MET)284, 

(GLY)286, (PHE)290, (ILE)292, (LEU)311, (ILE)313, 

(PHE)333, (VAL)333, (HIS)334, (ILE)335, (ASP)39, 

(GLN)46, (ASN)130, (PRO)177)) for CP of TRSV which 

were more favorable to dock with ligands. The prediction of 

active sites in a protein requires the prediction of the 3-

dimensional structure of that protein (Goh & Foster, 2000). 

The active site of a protein is made up of a catalytic (to 

increase the reaction) and binding site (for attachment). 

 
 

Fig. 1. Tertiary Structure of Coat Protein Chain A predicted by 

PHRE2 web server and Swiss model. 

 

 
 

Fig. 2A. Represents the value of Z- score in the residues of the 

coat protein. 

 

 
 

Fig. 2B. ProSAweb calculated energy profile of CP. 
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Table 1. 3D refine server predicted refinement models of coat protein with different energy scores. 

Model # 3Drefine Score GDT-TS GDT-HA RMSD (Å) Mol Probity RW Plus  

5 22626.7 0.9995 0.9859 0.308 3.036 -106097.891799 

4 22944.3 1.0000 0.9898 0.290 3.035 -105865.040395 

3 23471.4 1.0000 0.9932 0.265 3.058 -105679.886359 

2 24738.6 1.0000 0.9976 0.229 3.021 -105454.633027 

1 30456.9 1.0000 1.0000 0.169 3.085 -105201.116728 
 

Table 2. List of 43 ligand-binding active sites in coat protein predicted by several servers. 

Server Rank C-Score Predicted binding site residues 

COACH 1 0.06 (GLU)115, (TRP)116, (GLN)117, (THR)188, (ALA)190, (ASN)336, (THR)337  

TM-SITE 1 0.19 
(ILE)33, (ILE)37, (THR)57, (THR)59, (CYS)76, (THR)77, (PHE)78, (GLU)100, (GLN)117, 

(ASN)119, (LEU)128, (CYS)129, (TRP)131, (GLN)137, (LEU)140, (HIS)163  

S-SITE 1 0.11 (GLU)115, (TRP)116, (GLN)117, (THR)178, (THR)188, (ALA)190, (ASN)336, (THR)337  

ConCavity 1 0.34 
(ILE)244, (GLY)246, (SER)247, (VAL)248, (PHE)260, (ILE)262, (MET)284, (GLY)286, 

(PHE)290, (ILE)292, (LEU)311, (ILE)313, (PHE)331, (VAL)333, (HIS)334, (ILE)335 

COFACTOR 1 0.01 (ASP)39, (GLN)46, (ASN)130 

FINDSITE 1 0.05 
(THR)57, (THR)59, (GLU)115, (TRP)116, (GLN)117, (PRO)177, (THR)188, (ALA)190, 

(ASN)336, (THR)337 
 

Table 3. ADMET characteristics of different ligands in order to examine their toxic effects. 

Ligand 
Blood-brain 

barrier 

Human- 

intestinal absorption 

Caco-2- 

permeability 

P-glycoprotein 

substrates 

Toxicity (LD50 in 

𝒌𝒈mol−𝟏) 

1 0.9875 0.9771 0.7545 0.5000 3.391 

2 0.9788 0.9775 0.8405 0.7717 2.395 

3 0.9795 0.8734 0.8786 0.6598 2.875 

4 0.9795 0.8734 0.8786 0.6598 2.875 

5 0.9638 0.9915 0.8037 0.7085 2.346 

6 0.9875 0.9771 0.7545 0.5000 3.391 

7 0.9840 0.9919 0.8682 0.6103 3.291 

8 0.9795 0.8734 0.8786 0.6598 2.875 

9 0.9840 0.9919 0.8682 0.6103 3.291 

10 0.9735 0.9619 0.8521 0.8261 3.741 

11 0.9782 0.9619 0.8309 0.7531 4.009 

12 0.9737 0.9266 0.8562 0.8371 3.435 

13 0.9834 0.9411 0.8251 0.7774 3.013 

14 1.0000 0.9863 0.6396 0.5369 2.668 

15 0.9814 0.9907 0.8346 0.7830 3.176 

16 0.9351 0.9651 0.7936 0.7953 3.36 

17 0.9834 0.9411 0.8251 0.7774 3.013 

18 0.9930 0.6804 0.8138 0.9343 2.539 

19 0.9546 0.9834 0.8548 0.8347 2.54 

20 0.9829 0.9632 0.8626 0.5547 2.751 
 

 
 

Fig. 3. Represents the position of coat protein residues which 

present 98% in most favorably allowed regions (bright and light 

yellow and red color) while 2% residues (lightest yellow) lie in 

disallowed regions in the Ramachandran plot. 

In the binding sites, residues form hydrogen bonds or 

hydrophobic linkages or transient covalent bonds with the 

substrate to form a complex of protein and substrate (Chtterjee 

et al., 2017). Catalysis can commence after the binding is 

complete and aligned in the active site. Some residues of the 

catalytic site occur naturally near the binding site, and a few 

of them can play both functions in binding and catalysis 

(Chatterjee et al., 2011). Nearly 1501 medicines were 

identified against the binding site of CP using the ZINC 

database. For docking purposes, only a small number of top-

ranked compounds are chosen (Li & Shah, 2017). 

As a consequence, 20 of the most suitable medicines 

were identified as CP inhibitors. Structures such as 

(chemical), ZINC identification scores, and numbers are 

given in Fig. 4. The best docking scores were used to show 

all of the selected compounds that have a high binding 

affinity for various coat proteins. All compounds are 

chosen for the creation of efficient antiviral medicines 

based on their unique binding affinity (Joshi et al., 2021). 
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Ligand 1 (Mosapramine) 

ID Score (-10.90000) 

ZINC ID: - 597691 

 

Ligand 2 (Rimegepant) 

ID Score (-10.90000) 

ZINC ID: - 68267814 

 

Ligand 3 (Mk3207) 

ID Score (-10.80000) 

ZINC ID: - 103760978 

 
Ligand 4 (Mk3207) 

ID Score (-10.70000) 

ZINC ID: - 103760984 

 

Ligand 5 (Bolazine) 

ID Score (-10.60000) 

ZINC ID: - 8214506 

 

Ligand 6 (Mosapramine) 

ID Score (-10.60000) 

ZINC ID: - 3873789 

 
Ligand 7 (R428) 

ID Score (-10.40000) 

ZINC ID: - 51951669 

 

Ligand 8 (Mk3207) 

ID Score (-10.40000) 

ZINC ID: - 103760981 

 

Ligand 9 (R428) 

ID Score (-10.40000) 

ZINC ID: - 51951668 

 
Ligand 10 (Ledipasvir) 

ID Score (-10.30000) 

ZINC ID: - 150338819 

 

Ligand 11 (Losulazine) 

ID Score (-10.30000) 

ZINC ID: - 4216779 

 

Ligand 12 (Venetoclax) 

ID Score (-10.20000) 

ZINC ID: - 150338755 

 
Ligand 13 (Dihydroergocristine) 

ID Score (-10.20000) 

ZINC ID: - 3947496 

 

Ligand 14 (Lurasidone) 

ID Score (-10.20000) 

ZINC ID: - 3927822 

 

Ligand 15 (Posaconazole) 

ID Score (-10.20000) 

ZINC ID: - 60392778 

 
Ligand 16 (Metergotamine) 

ID Score (-10.20000) 

ZINC ID: - 72266819 

 

Ligand 17 (Dihydroergocristine) 

ID Score (-10.10000) 

ZINC ID: - 3947497 

 

Ligand 18 (Etoposide) 

ID Score (-10.10000) 

ZINC ID: - 11615744 

 
Ligand 19 (Velpatasvir) 

ID Score (-10.10000) 

ZINC ID: -504665933 

 

Ligand 20 (Conivaptan) 

ID Score (-10.10000) 

ZINC ID: - 12503187 

 

 

 

Fig. 4. This is the top twenty most appropriate ligands 2D structures with their docking scores selected for coat protein. All ligands 

were chosen based on their ability to attach to active sites. Their binding affinity increase as the binding score decrease. 
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Table 4. ADMET properties and Carcinogenicity profile for selected top twenty ligands. 

Ligand 
Blood-brain 

barrier 

Human- 

intestinal absorption 

Caco-2 

permeability 

P-glycoprotein 

substrates 

Toxicity (LD50 

in mol𝒌𝒈−𝟏) 

Carcino- 

genicity 

1 0.9875 0.9771 0.7545 0.5000 3.391 NC 

2 0.9788 0.9775 0.8405 0.7717 2.395 NC 

3 0.9795 0.8734 0.8786 0.6598 2.875 NC 

4 0.9795 0.8734 0.8786 0.6598 2.875 NC 

5 0.9638 0.9915 0.8037 0.7085 2.346 NC 

6 0.9875 0.9771 0.7545 0.5000 3.391 NC 

7 0.9840 0.9919 0.8682 0.6103 3.291 NC 

8 0.9795 0.8734 0.8786 0.6598 2.875 NC 

9 0.9840 0.9919 0.8682 0.6103 3.291 NC 

10 0.9735 0.9619 0.8521 0.8261 3.741 NC 

11 0.9782 0.9619 0.8309 0.7531 4.009 NC 

12 0.9737 0.9266 0.8562 0.8371 3.435 NC 

13 0.9834 0.9411 0.8251 0.7774 3.013 NC 

14 1.0000 0.9863 0.6396 0.5369 2.668 NC 

15 0.9814 0.9907 0.8346 0.7830 3.176 NC 

16 0.9351 0.9651 0.7936 0.7953 3.36 NC 

17 0.9834 0.9411 0.8251 0.7774 3.013 NC 

18 0.9930 0.6804 0.8138 0.9343 2.539 NC 

19 0.9546 0.9834 0.8548 0.8347 2.54 NC 

20 0.9829 0.9632 0.8626 0.5547 2.751 NC  

 

 
 
Fig. 5. Shows the 3D binding complex in the left side part while 

in the right-side part 2D binding complex of coat protein along 

with the best ligand. Both complexes represent the binding 

interaction of the best ligand with coat protein. 

 

Through the AdmetSAR server (Cheng et al., 2012), top 

20 compounds were more examined for toxic effects and 

drug ability, and the results were obtained (Table 3). The 

ligands underwent an evaluation of their absorption, 

metabolism, distribution, excretion, and toxicity (ADMET) 

profile, which assessed the drugs overall ADMET 

effectiveness. The ligands showing promise in terms of 

favorable pharmacokinetic and pharmacodynamics 

characteristics are more likely candidates for future drug 

development (Yousuf et al., 2017). 

Based on their minimum toxicity and high ADMET 

(Merlot, 2010) properties, Zn ID-597691 had exhibited top 

docking result (-10.90 kcal/mol) out of twenty tested 

compounds. This target CP can cross the blood–brain 

barrier, which may be used as a criterion for selecting the 

optimal ligand. After docking ligands with CP using a laser 

(https://lazar.in-silico.ch/predict), the best ligand (Zn ID-

597691) was shown to have the minimum toxicity and 

carcinogenic effects (Table 4) and was chosen as the final 

best ligand to bind with CP. ADMET screening plays a 

crucial role in drug discovery and development, as it 

facilitates the achievement of the desired balance of 

properties that ensure safety and efficacy during lead/hit 

discovery. The compounds obtained after virtual screening 

were selected based on their drug-like characteristics 

(Chauhan et al., 2023). By using PyRx software 

(Dallakyan & Olson, 2015), the final ligand was redocked 

against the CP of TRSV. The complexes of the final ligand 

and CP were viewed through Drug Discovery Studio 

(Jejurikar & Rohane, 2021) (Fig. 5). The interpretation of 

molecular docking plays a vital role in the determination of 

results. Docking is a widely employed technique for 

investigating bimolecular interactions, primarily focusing 

on protein-ligand interactions and the exploration of 

molecular mechanisms (Baroroh et al., 2023). The top and 

most effective ligand for the CP of TRSV was found to be 

the first ligand with Zn ID-597691. 

The CP is characterized by docking and binding site 

details obtained from PyRx, which compares their lowest 

toxic effects, absorption, comparative docking, and 

binding energy by utilizing the grid resolution (3.50 Å) and 

Auto Docking. Docking was set moldable docking as well 

as excellent precision. This interaction mechanism was 

studied by describing the size of the ligand's binding site 

and the docking box, Z = 121.2615, X = -18.7121, Y = 

31.9344, and 404040. In the present investigation, our goal 

was to perform a computational-based virtual analysis and 

we have found the best binding affinity molecule (Zn ID-

597691) with -10.40000 kcal/mol residual energy. 

 

Conclusion 
 

In this study, we screened the chain A coat protein of 

tobacco ringspot virus strain NC-87 for the prediction of 

potential inhibitors. The secondary structure was predicted, 

which aided in the prediction of tertiary structure. The 
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refinement of the CP consequences resulted in five refined 

models, with the fifth model having the lowest energy and 

being selected for further study. By using the coach server, 

we predicted 43 active sites in CP that might act as binding 

sites for ligands. Through virtual screening, we obtained 

1501 compounds, 20 of which were selected on the basis 

of docking scores for CP inhibitors. These 20 compounds 

were further examined for toxic effects and drug ability 

based on their minimum toxicity and high ADMET 

properties. Zn ID-597691 had exhibited the top docking 

result (-10.90 kcal/mol) out of these 20 tested compounds 

and was selected as the final best ligand with -10.40000 

kcal/mol binding energy to make the protein complex. 
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