TAXONOMIC STUDIES OF CYPERACEAE (SEDGES) IN SWAT PAKISTAN: USING A MULTIVARIATE APPROACH

NASAR ALI¹, ZAHID ULLAH^{1*}, AHMAD ALI¹, BUSHRA¹, ZAHEER ABBAS² AND AFTAB AHMAD KHAN¹

¹Center for Plant Sciences and Biodiversity, University of Swat, Pakistan ²Department of Botany, University of Education, Lahore, Dera Ghazi Khan Campus, Pakistan *Corresponding author's email: zahidmatta@gmail.com; zahidtaxon@uswat.edu.pk

Abstract

Cyperaceae (sedges) is the seventh largest flowering plant family, forming the dominant component of wetland flora. Taxonomically sedges are a difficult group, due to morphological simplicity, hybridization, polyploidy and species richness. Cyperaceae in district Swat - Pakistan have not been explored previously. The current study revealed 58 species of Cyperaceae belonging to 13 genera. The genus Carex was the largest having 15 species. Plant collections were carried out in the entire district from 2014 to 2016 particularly in typical habitats of sedges like wetland, marshes, rice field, along streams and rivers and alpine meadows. Using the collected specimens 84 phenotypic characters were studied using stereomicroscope. Based on these characters morphometric tree was inferred in Minitab16 and SPSS. Our results are in congruence with most phylogenetic studies of the family based on molecular data. In the present study leaf epidermal features of 35 species were observed using light microscopy. The overall results showed that size of stomata, shape of subsidiary cells, shape and wall sinuosity of long cells, presence/absence of intercostal short cells, presence/absence of silica bodies, presence/absence of bulliform cells and presence/absence of papillae represent reliable taxonomic characters. Palynological characters of 35 species were observed under LM. The study showed that pollen in Cyperaceae were pseudomonads. Pollen shapes were obovoidal, triangular or apple shaped with single aperture or four aperturate to polyporate. Based on P/E ratio most of the pollen were oblate-spheroidal to prolate spheroidal, subprolate, spheroidal and suboblate. Equatorial diameter ranged from 16 µm to 37µm while polar axis length ranged from 18.7 µm to 37.3 µm. Exine thickness, polar axis length and sexine sculpturing were found useful diagnostic features. Pollen characters in the family were in most cases uniform and showed variation at the level of subgenus and above. In conclusion systematic studies based multivariate approaches provide a clearer feature of relationship among the taxa studied.

Key words: Cyperaceae, Carex, Systematics, Swat, Pakistan, Pollen, Micromorphology.

Abbreviations: A= Absent, AB= Abaxial, CIZ= Costal and intercostal zonation, CS= Cell shape, Fn= Finger like, FWS= flushing with stomata, ICS= Inter stomatal cell, PR= Prickles, SCS= Subsidiary cell shape, SH= Sheath, ST= Stomata, Dom= Dome shaped, P= Present, Con = Conspicuous, WM= Wall Morphology, LC= Long cells, Cos= Costal, Fus= Fusiform, Sur = Surface PP= Papillae, Bu= Bulliforms, Int st=Interstomatal

Introduction

The sedge family *Cyperaceae* comprises of 106 genera and 5387 species (Govaerts *et al.*, 2021). It is the third largest family among monocots and seventh largest family of all angiosperms (Simpson *et al.*, 2011). In Pakistan it is represented by 22 genera and 179 species (Kukkonen, 2001). They are important ecologically and economically and form dominant vegetation type in wetlands and marshes (Simpson, 1995). The family is characterized by herbs, having trigonous, solid stems, closed leaf sheaths, highly reduced flowers, arranged into spikes or heads, scarious perianth and dry single-seeded achene. Leaf epidermis is provided with smooth silica bodies; dumb-bell shaped stomatal guard cells; pollen grains are pseudomonads, with a single ulcus and 2 or more lateral apertures (APG IV, 2016; Bruhl, 1995; Goetghebeur, 1986).

In the present project multivariate approach was used, incorporating morphometrics, palynology and leaf epidermal micromorphology in order to gain a better insight of the taxonomic and evolutionary relationship of the taxa. Morphological features are still the most useful, reliable and prime source of information in systematic studies (Taia, 2005). These characters provide the basis for practical identification (Judd *et al.*, 2015). Although

palynology has numerous applications in diverse fields, however it's most fundamental, crucial and valuable utilization is historically nested in solving taxonomic issues in higher plants (Huang, 1972). The remarkable diversity of pollen grains have been used extensively in solving different taxonomic issues like placing taxonomically controversial taxa into their correct position, studying evolutionary relationship between different groups and circumscription of cryptic taxa (Nair, 1980). In Cyperaceae the pollens are termed as pseudomonads and it is a synapomorphy for the family Cyperaceae (Coan et al., 2011). Apart from Cyperaceae the occurrence of pseudomonads has also been reported in few species of Juncaceae. Micromorphological features of the leaf epidermis provide valuable systematic data in rushes. and grasses. sedges Anatomical and micromorphological characters have been shown to be valuable tools for delimiting taxa and determining relationships in the Cyperaceae (Koyama, 1969). No scientific studies exist on the pollen morphology and leaf epidermal micromorphology of the sedges from district Swat. The present studies were therefore carried out to explore the utility of multiple approaches for authentic identification of sedges in order to provide identification guide to biodiversity related researchers.

Material and Methods

Study area, district Swat: Swat district is located, in the northwest corner of Pakistan between 34° 34' to 35°55'N latitude and 72°08' to 72°50'E longitudes. Chitral and Ghizar form the northern boundary of Swat, while Shangla and Kohistan districts are located to the east (Fig. 1). In the south are located Buner and Malakand districts and upper and lower Dir form the western boundary. The area is bestowed with natural beauties of diverse form including aak and conifer forests, alpine meadows, lush green cultivated fields, fruits orchards of various kinds, streams, waterfalls, springs, lakes, rivers, glaciers and high mountain peaks permanently covered with snow. This topographic, geological, climatic and habitat heterogeneity has given rise to equally rich and diverse cultural and economic diversity (Ullah *et al.*, 2015).

Taxa sampling and plant specimens: During field exploration standard methodologies recommended by Eymann *et al.*, (2010) were adopted. Plant collections were carried out in different areas of the entire district from 2014 to 2016, particularly in typical sedge habitats like wetlands, marshes, rice fields, alpine meadows and along streams and rivers. Preservation and mounting of specimens were done according to the method described in Judd *et al.*, (2015) and Eymann *et al.*, (2010).

Vouchers specimens were deposited in the Swat University Herbarium (SWAT) Table 5. Specimens were identified with the help of Flora of Pakistan (Kukkonen, 2001) and Flora of China (Dai *et al.*, 2010).

Morphology and morphometric studies: In the field magnifying glasses were used for studying specimens. Using the collected specimens from different areas of Swat district all possible phenotypic characters were studied under a stereo microscope (IM-SZ-500, IRMECO Germany) at Swat University Herbarium (SWAT) and were used for morphological descriptions. Descriptions of each species, synonyms, keys for determination, representative specimens, distributions and field photographs were taken for all the species. Terminology and character states are based on Jiménez-Mejías *et al.*, (2016) (Table 1). Characters were assigned to appropriate character states and were scored. The final data matrix was analyzed using correlation, neighbor joining and similarity statistics in SPSS and Minitab programs (Fig. 2).

Leaf epidermal micromorphology: For epidermal preparation mid portion of dried leaves were cut up to 2 cm and were placed in a test tube containing 88% lactic acid to soften the leaves for easy scraping. Preparative techniques given in Clarke (1960) and Cotton (1974) were followed. Test tubes with leaf sections were boiled in water bath at 100°C for 60 to 80 minutes. Sharps blades were used to obtain adaxial and abaxial epidermis. To obtain abaxial epidermis, similarly, abaxial surfaces were scraped leaving abaxial epidermis, similarly, abaxial surfaces were observed adjusted under the microscope for studying leaf microscopic features. Microhistological photographs of both epidermal surfaces were taken using 40 x objective lens of microscope,

using camera Lucida (Fig. 4). During observation cell width, cell length, size of stomata, number of stomata per unit area, type of stomata shape of stomata, number of rows of long cells, length and width of papillae and length and width of prickles were studied. Costal and intercostal zones were also studied whether it is conspicuous or not (Tables 3, 4). Terminology and description format were adopted after Clifford & Watson (1977) and Ellis (1979).

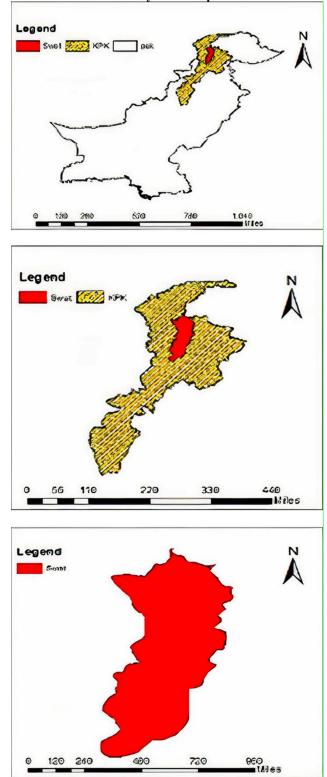
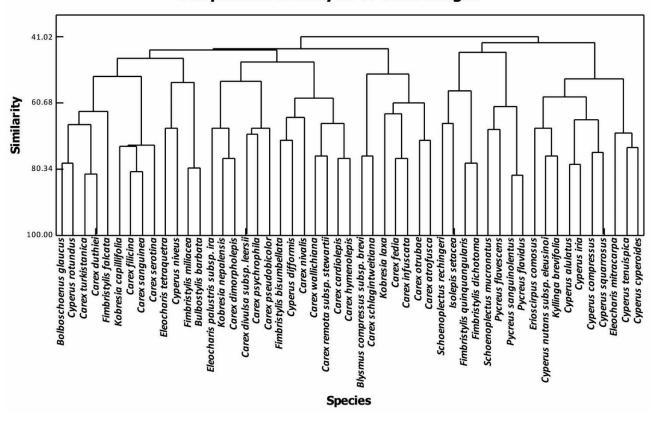



Fig. 1 Map of the study area, district Swat.

		Characters and character states of the sedges of district Swat.
S. No	Character	Character state
1.	Life form	Annual, perennial
2.	Growth habit	Growing singly, loosely tufted, cespitose
3.	Plant height	Up to 30 cm, 30-70cm, 70-120cm, >120 cm
4.	Rhizome	Present, absent
5.	Rhizome diameter	Up to 2mm, 2-5mm
6.	Rhizome length	Shorter, longer
7.	Stolon	Presence, absence
8.	Rhizome scales	Present, absent
9.	Stem outline	Circular / terete, triangular, more than 3 angles
10.	Stem sides	Concave, convex, straight
11.	Stem diameter	Up to 2mm, 2-6mm, 6-10mm, >10mm
12.	Blade p/a	Present, absent
13.	No. of sheaths	Up to 2, more than 2
14.	Sheath length	Up to 10 mm, 10-25mm, 25-50mm, >5cm
15.	Sheath pubescence	Glabrous, papilose
16.	Sheath colour	Green, yellowish, reddish, brownish, greenish
17.	Sheath mouth	Oblique, straight
18.	Sheath texture	Forming fibres, persistent
19.	Sheath channels	Channeled, not channeled
20.	Leaf length relative to stem	Shorter than stem, equalling to stem, longer than stem
21.	Blade length	Mucro, upto 15 cm, 16-50 cm, >50 cm
22.	Blade width	< 1 mm, 1-3 mm, 4-7 mm, 8-10 mm, >10 mm
23.	Blade surface	Flat, folded, keeled
24.	Blade apex	Acute, attenuate, obtuse, flat
25.	Blade surface (pubescence)	Glabrous, papillose
26.	Blade colour	Grey, green
27.	Ligule	Present, absent
28.	Ligule size	0.1 to 0.3 mm, 0.3 to 0.6 mm, 0.6 to 1mm, > 1mm
29.	Ligule texture	Fringe of hairs, scarious/membranous
30.	Flower	Bisexual, unisexual
31.	Inflorescence	Spike, compound anthelodium, simple anthelodium/headof spikes
32.	Length of inflorescence	To 5 cm, 6-10cm, 11-20 cm, 21-40 cm, >40 cm
33.	No of primary branches	To 3, 4 to 7, > 8
34.	Primary branch length	< 1cm, 1 to 5 cm, 5 to 10, 10 to 20, >20
35.	Secondry branch size	<1 cm, 1 to 5 cm, 5 to 10, 10 to 20, >20
36.	Tertiary branch size	<1 cm, 1 to 5 cm, 5 to 10cm, 10 t0 20cm, >20cm
37.	Number of bracts	0 to 3, 3 to 6, more than 6
38.	Bract size	< 1 cm, 1 to 10cm, 10 to 30cm, 30 to 50cm, > 50cm
39.	Bract foliose/ glume like	Foliose, glume like
40.	Size of lowest bract	Shorter than inflorescence, longer than inflorescence, < 5cm, 5 to 15 cm, 15 to 40, > 40cm
41.	Prophyll	Present, absent

Table 1. Characters and character states of the sedges of district Swat.

S. No	Character	Character state
42.	Prophyll shape	Tubular, glume like
43.	Prophyll size	<5mm, 5 to 20mm, 20 to 40mm, >40mm
44.	Prophyll colour	White, light brown, brown, yellowish
45.	Prophyll bi-nerved/tri-nerves	Binerved, three nerved
46.	Spike sessile/peduculat(stalked)	Pedunculated, sessile, subsessile
47.	Number of spikes	1, 2-30, 30 t0 70, 70 t0 100, more than 100
48.	Spike diameter	<3mm, 3 to 6mm, 6 t0 10 mm, >10
49.	Spike shape	Ovoid, obovoid, cylindrical, ellipsoid, acutish, fusiform, globose
50.	Spike colour	Yellow brown, brown, white, green, purplish
52.	Glume width	<2mm, 2 to 3mm, >3
53.	Glume arrangement	Spirall, digitate, spicate, opposite
54.	Glumes keeled /not keeled	Keeled, not keeled
55.	Glume apex	Round, mucro, truncate, acute, apiculate
56.	Glume surface	Scabrous, smooth, barbed/hairy
57.	Number of glumes / spikes	<10, 10 t0 20, 20 to 40, 40 to 60, > 60
58.	Glume with or without arista	Present, absent
59.	Glume colour	Brown, yellow brown, pale, reddish brown, white
60.	Glume margins	Narrowly scarious, widely scarious, fringed, not fringed
61.	Utricle	Present, absent
62.	Utricle length	<2mm, 2 to 5mm, 5 to 8mm, more than 8mm
63.	Utricle diameter	<0.5mm, 0.5 to 2.5mm, more than 2.5mm
64.	Utricle shape	Ovoid, ellipsoid, planoconvex, fusiform, cylindrical, trigonous, glabrous, obovoid
65.	Utricle colour	Red, yellow brown, light brown, green, yellow, grey, brown
66.	Utricle margins	Scabrous, smooth, setose (with bristle)
67.	Utricle beaked / non beaked	Beaked, not beaked
68.	Utricle nerve	Clearly nervel, nerveless
69.	Beak conical/cylindrical	Cylindrical, conical
70.	Perianth bristles	Present, absent
71.	Perianth bristle number	0, 1 to 3, 3 to 6, more than 6
72.	Bristle length	Half of the length of nut, longer than nut, equalling to nut
73.	Bristle colour	Reddish, brown, colourless
74.	Number of stamens	1, 2, more than 3
75.	Anther size	<1mm, 1 to 3mm, more than 3mm
76.	Number of stigmas	2, 3, more than 3
77.	Nut length	<1 mm, 1 to 3 mm, more than 3mm
78.	Nut diameter	<0.5mm, 0.5 to 1.5mm, >1.5 m
79.	Nut shape	Ovoid, obovoid, lenticular, trigonous, papillose, spherical, obconical, fusiform
80.	Nut surface	Reticulate (vein network), trabeculate, smooth, rugolose, glossy, papilose, puncticulate
81.	Nut apex	Round, conical, apiculate, obtuse
82.	Nut colour	Brown, pale brown, white, yellowish brown, dark brown, grey, blakish brown, yellow
83.	Nut concave/convex	Concave, biconvex, planoconves
84.	Glume shape	Cymbiform, ovate, lanceolate

Morphometric analysis of Swat sedges

Fig. 2. Morphometric analysis and phenetic tree of the sedges of Swat, Pakistan.

Palynology: Polliniferous materials of each species were isolated from mature flowers. Glycerin jelly was prepared according to modified method following Erdtman (1952). Pollen preparation procedure was followed after Erdtman (1966). Observations of pollen morphology were made using light microscope with 40 x and 100 x (with immersion oil) objective and 10x eye piece. Sexine, nexine and intine were marked in pollen grains. Quantitative measurements were recorded for polar axis length, equatorial axis length, exine thickness, pore diameter, number of colpi and colpi length. Qualitative features such shape, size and pore out line were also recorded (Table 2). Data were statistically analyzed including range, standard deviation and standard error using MS excel. Microphotographs were taken using Orthulux photomicroscope (BM-120, GmbH Germany) in the Center for Plant Sciences and Biodiversity, University of Swat (Fig. 5).

Results and Discussion

Morphology and Morphometric analysis: The present study provides a detailed checklist of 51 taxa of Cyperaceae, belonging to 13 genera, from subfamily Cyperioidae (Table 5). The largest genus *Carex* is represented by 22 species in three subgenera, followed by *Cyperus* with 11 species, *Fimbristylis* with six species, *Eleocharis* with four species, *Kobresia, Pycreus, Schoenoplectus* with three species each, while *Bolboschoenus, Blysmus, Isolepis, Eriocirpus, Bulbostylis* and *Kyllinga* each are represented by a single species (Fig. 3).

The morphometric analysis was based on 84 morphological characters including both quantitative and

qualitative features (Fig. 2). Fifty-one species were included in the final analysis (Fig. 2). Our results are in close congruence with phylogenetic trees obtained from molecular data (Muasya et al., 2009; Simpson et al., 2007) and morphological data (Hejazi, 2012; Pashirzad, 2014). Shoenoplectus formed outgroup to the rest of the species. In molecular analysis of (Muasya et al., 2009) Schoenopletus is nested in tribe Fuireneae with Scirpus, Isolepis and Fuirena. The remaining species form two large groups A and B. Fimbristylis. Bulboschoenus and Bulbostylis form one clade in Simpson et al., (2007), but in our study *Fimbristylis* seems paraphyletic on morphological grounds as two species are nested in Cyperus clade. Kobresia and Carex form single monophyletic group on morphological grounds. The most distinctive features seem to be the presence of perigynia, unisexual flowers and features of perigynia. However morphometric data does not support the division of the genus Carex into subgenera. Group B further splits into three subgroups. Subgroup B-I contains Bulbostylis, three species of Pycreus and three species of Cyperus. Subgroup B-II is represented by five species of Cyperus and one species of Kyllinga and Eriocirpus each. Subgroup B-III contains nine species including three species of *Fimbristylis* and three species of *Eleocharis*, one species of Bulbostylis and Cyperus niveus. Here in our study Cyperus and Fimbristylis both are polyphyletic. Same results were obtained from molecular data by Simpson et al., (2007) and Muasya et al., (2009). We conclude that morphometric data is extremely valuable in inferring phylogenetic relationships when compared to DNA sequences based phylogeny.

Carex

2

Key to the genera	of Cyneracea	e (adanted from Flo	ra of Pakistan	and modified accordingly)	
Key to the genera	I OI CYPETACEA	е (ацариец пош ги	ITA UI FAKISTAIL,	and mounted accordingly)	

10.	At least some nowers disexual	2
2a.	Leaf blades absent only basal sheaths present	Eleocharis
2b.	Leaf blades more or less developed	3
3a.	Inflorescence a single terminal spike	Eleocharis
3b.	Inflorescence a multiple spike or anthelodium	4
4a.	Spikelets spirally arranged	Schoenoplectus
4b.	Spikeletes distichous	Cyperus
5a.	Stylopodium well developed	6
5b.	Stylopodium absent	7
6a.	Stylopodium small and persistent	Bulbostylis
6b.	Stylopodium large but deciduous	Fimbristylous
7a.	Perianth bristles exceeding glumes	Erioscirpus
7b.	Perianth bristles shorter than glumes or absent	8
8a.	Perianth bristles present	Blysmus
8b.	Perianth bristles absent	9
9a.	Inflorescence a multiple spike or anthelodium, spikes with more than 8 glumes	Pycreus
9b.	Inflorescences consists of 1-3 heads, spikes with less than 8 glumes	Kyllinga

Palynology: Pollen grains in Cyperaceae are called pseudomonads, formed by the degradation of tetrads and is a distinguishing character for the family (Kirpes et al., 1996; Coan et al., 2011). Pollen morphology plays important role in the classification at subfamilial level and sometime at species level (Moar & Wilmshurst, 2003; Koyama, 1961). Important characters include pollen shape, polar axis length, exine thickness and sculpturing and number and type of aperture (Erdtman, 1966; Faegri et al., 1989; Wronska-Pilarek et al., 2010). These characters have been used to rectify the position of taxonomically contentious 1980). Koyama taxa (Nair, (1961)distinguished apple shaped, spheroidal colporate and spheroidal inaperturate type of pollen grain in Cyperaceae.

In the present study 35 species were included belonging to 10 genera Blysmus, Erioscirpus, Kyllinga Schoenoplectus, Eleocharis, Fimbristylis, Cyperus, Pycreus, Kobresia and Carex. Carex is the largest genus in the present study and is represented by 14 species. Minimum polar length (18 µm) was observed for Carex hymenolepis. Maximum polar length (44 µm) was observed for Eleocharis palustris (Table 2; Fig. 5). Ullah (2014) observed minimum polar length (P) P (25.2 µm) for Carex cruciata and maximum P (42.1 µm) for Carex divulsa. Meltsov et al., (2008) reported that pollen aperture and pollen size are variable and are useful at intraspecific level. Equatorial diameter ranges from 16 µm in Cyperus tenuispica to 40 µm in Schoenoplectus mucronatus, Carex sanguinea, Carex cardiolepis, Eleocharis geniculata and Carex pseudocyperus (Table 2). Equatorial diameter of pollen has no significant role in delimitation of the taxa (Ullah, 2014). Exine thickness ranges from 0.2 µm in Cyperus iria to 2.5 µm in Carex divisa.

Based on P/E ratio most of the pollens were prolate spheroidal (45%) or oblate spheroidal (25%). In genus Carex 57% of the pollen were oblate spheroidal and 35 % were prolate spheroidal (Table 2). These findings are almost similar to Ullah (2104). Wronska-Pilarek et al., (2010) observed 38.85% subprolate, 34.9% prolate spheroidal and 6.1% oblate spheroidal pollen grains in Cyperaceae. While

Hesse et al., (2009) and Moore et al., (1991) reported that pollen grain in Cyperaceae are spheroidal or apple shaped. Apple shaped pollen have been reported in Carex by Koyama (1961). Faegri et al., (1989) reported that pollen in some species of Cyperaceae are pear shaped.

The number of apertures ranges from 1-4 in Cyperaceae. In Cyperus 3-4 aperture were observed. This result is in congruence with Huang (1972). In Fimbristylis and Eleocharis 1-3 apertures were observed. Huang (1972) observed single aperture in both Fimbristylis and Eleocharis. In Carex 3-4 apertures were observedThese findings are similar to Haung (1972) who reported 1-4 apertures in Carex, whereas Ullah (2014) observed single aperture in Carex. Koyama (1961) reported 1+3 or 1+6 apertures in Carex (Fig. 5). The number of apertures is a good diagnostic character to differentiate Carex from other genera of the Cyperaceae (Ullah, 2014).

Leaf epidermal anatomy: Leaf epidermal cells show great variation and specialization in different taxa (Prat, 1936) and since the pioneer work of Metcalfe, (1960) and Ellis (1979) extensive data are available on this subject. Leaf epidermal features like panicot type of epidermal cells, cells containing silica bodies, stomatal features, hairs, length and breadth of intercostal cells, trichomes and presence or absence of papillae play an important role in explaining taxonomic and phylogenetic relationship in many taxa (Ogie-Odia et al., 2010. Metcalfe & Chalk, 1950; Metcalfe & Gregory, 1964).

In the present study 35 species belonging to 10 genera were observed. These genera include Blysmus, Erioscirpus, Kyllinga, Schoenoplectus, Eleocharis, Fimbristylis, Cyperus, Pycreus, Kobresia and Carex. Carex being largest genus in the present study, is represented by 14 species followed by Cyperus represented by 7 species. Our findings reveal that shape, wall morphology of the long cells, presence or absence of papillae, size of stomatal complex, shape of the subsidiary cells and presence or absence of prickles are the most valuable characters for the delimitation of taxa.

-	LJ	Equat	Equatorial view (μm	(u	Po	Polar view (µm)			Colpi L		Ex	Exine thickness		
S. No.	Name of 1axa	Mini-Max	Mean (±SE)	Stdev	Mini-Max	Mean (±SE)	Stdev	Mini-Max	Mean (±SE)	Stdev	Mini-Max	Mean (±Se)	Stdev	r/E
]_:	Blysmus compressus	32-39	35.5(±1.4)	2.9	33-40	37.3(±1.7)	3.4	12-35	24.3(±5.3)	10.3	0.5-1	$0.7(\pm 0.1)$	0.2	1.05
2.	Carex atrofusca	30-35	$32.5(\pm 1)$	2.1	28-38	35(±2.3)	4.7	10-22	$16.2(\pm 2.2)$	4.8	0.7-1	$0.8(\pm 1)$	0.2	1.07
3.	Carex cardiolepis	33-40	$36.5(\pm 1.4)$	2.9	32-39	35.3(±2)	3.5	12-26	$18.2(\pm 2.4)$	5.3	0.5-1.3	$0.9(\pm 0.2)$	0.3	0.96
4.	Carex divisa	33-36	$34.4(\pm 0.6)$	1.3	29-32	$30.5(\pm 1.3)$	1.3	14-17	$15.5(\pm 0.6)$	1.3	1.2-2.5	$1.8(\pm 0.3)$	0.6	0.88
5.	Carex duthiei	35-39	36.7(±1.2)	2.1	30-35	32.5(±2.5)	3.5	17-20	$18.5(\pm 0.6)$	1.3	1.2-2	$1.6(\pm 0.2)$	0.4	0.89
6.	Carex filicina	25-30	27(±1)	2.3	23-31	27.7(±2.4)	4.2	13-15	$14(\pm 0.6)$	1.2	1-1.5	$1.2(\pm 0.1)$	0.2	1.02
7.	Carex hymenolepis	17-25	$21(\pm 1.3)$	3.2	18-22	$20.3(\pm 0.9)$	1.7	12-20	$17.3(\pm 0.9)$	2.7	1-2	$1.6(\pm 0.2)$	0.4	0.96
8.	Carex infuscata	31-39	35.5(±1.7)	3.4	30-40	33.8(±2.2)	4.3	17-26	22(±2.1)	4.2	0-1	$1(\pm 0)$	0	0.95
9.	Carex melanantha	35-38	$36.7(\pm 0.9)$	1.5	32-35	33(±0.7)	1.4	22-28	$25.3(\pm 1.4)$	2.8	1-1.5	$1.2(\pm 0.1)$	0.2	0.89
10.	Carex otrubae	29-35	32(±3)	4.2	32-38	$34.3(\pm 1.3)$	2.6	10-22	$16(\pm 2.9)$	5.9	0.4-1	$0.7(\pm 0.1)$	0.3	1.07
11.	Carex pseudocyperus	35-40	$37.2(\pm 0.9)$	1.9	33-39	$36.8(\pm 1.3)$	2.6	16-26	$22.4(\pm 1.3)$	3.3	1.2-2.3	$1.9(\pm 0.2)$	0.5	96.0
12.	Carex psychrophila	30-39	35.5(±2)	4	32-40	$36.3(\pm 1.8)$	3.5	20-27	$24.5(\pm 1.6)$	3.1	0.6-1	$0.8(\pm 0.1)$	0.2	1.02
13.	Carex remota subsp. stewartii	30-36	$33.5(\pm 1.3)$	2.6	27-32	$30.2(\pm 0.7)$	1.8	11-17	$13.8(\pm 1.1)$	2.4	0.5-1	$0.8(\pm 0.1)$	0.3	0.9
14.	Carex sanguinea	33-40	$36(\pm 1.5)$	2.9	35-40	$37(\pm 1.5)$	2.6	18-25	$21.8(\pm 1.7)$	3.3	0.5-1	$0.8(\pm 0.1)$	0.3	1.02
15.	Carex schlagintweitiana	35-39	$37(\pm 0.9)$	1.8	30-40	$35.3(\pm 2.3)$	4.6	15-27	22(±2.8)	5.6	0.5-1	$0.8(\pm 0.1)$	0.3	0.95
16.	Cyperus alulatus	20-28	$25(\pm 1.5)$	3.4	23-31	$28(\pm 1.1)$	2.8	15-22	$18.1(\pm 0.9)$	2.4	1-1.2	$1(\pm 0)$	0.1	1.12
17.	Cyperus glomeratus	20-25	$22.3(\pm 1.5)$	1.5	20-21	$20.3(\pm 0.3)$	0.6	8-13	$10.8(\pm 1.1)$	2.2	0.8 - 1.8	$1.3(\pm 0.2)$	0.5	0.91
18.	Cyperus iria	28-33	$30(\pm 1.5)$	2.6	25-31	$28.3(\pm 1.4)$	2.8	11-118	$15(\pm 1.2)$	2.7	0.2-1.2	$1(\pm 0.1)$	0.2	0.94
19.	Cyperus niveus	21-24	$22.5(\pm 0.6)$	1.3	21-21	$21(\pm 0)$	0	8-16	$12.3(\pm 1.3)$	2.8	0.5-1.2	$0.9(\pm 0.1)$	0.3	0.93
20.	Cyperus nutans subsp. eleusinoides	19-26	$21.5(\pm 1.3)$	3.3	20-26	22.3-(±0.9)	2.3	11-16	$14(\pm 1.1)$	2.2	1-1.3	$1.2(\pm 0.1)$	0.2	1.03
21.	Cyperus rotundus	25-27	26.3(0.7)	1.2	23-25	24(1)	1.4	13-20	16.5(1)	2.4	1-1.5	1.2(0.1)	0.2	0.91
22.	Cyperus tenuispica	16-30	$21.8(\pm 2.1)$	5.2	19-22	$20.3(\pm 0.6)$	1.3	8-19	$12.2(\pm 1.7)$	4.2	0.5-1.5	$1(\pm 0.2$	0.4	0.934
23.	Eleocharis geniculata	32-40	35.7(±2.3)	4	30-32	$31(\pm 0.6)$	1	20-27	$24(\pm 1.5)$	2.9	1-1.5	$1.2(\pm 0.1)$	0.3	0.87
24.	Eleocharis mitracarpa	28-36	$32.2(\pm 1.5)$	3.3	32-35	$33.8(\pm 0.8)$	1.5	18-25	$21.6(\pm 1.2)$	2.7	0.6-1.8	$1.2(\pm 0.3)$	0.5	1.04
25.	Eleocharis palustris	30-37	$33.8(\pm 1.3)$	2.9	30-44	$34.9(\pm 1.9)$	4.9	15-26	$19.8(\pm 1.4)$	4	0.7-1	$0.9(\pm 0.1)$	0.1	1.03
26.	Erioscirpus comosus	20-25	22.7(±1.5)	2.5	26-29	$27.8(\pm 0.6)$	1.3	9-24	$13(\pm 1.9)$	5.1	0.7-1	$0.8(\pm 0.1)$	0.2	1.22
27.	Fambristylis squarrosa	22-25	$24(\pm 0.7)$	1.4	23-27	$25.3(\pm 1.2)$	2.1	8-17	$13(\pm 1.4)$	3.5	1-1	$1(\pm 0)$	0	1.05
28.	Fimbristylis bisumbellata	24-25	$24.7(\pm 0.3)$	0.6	24-28	$26.3(\pm 1.2)$	2.1	12-15	$13.7(\pm 0.9)$	1.5	1-1	$1(\pm 0)$	0	1.06
29.	Fimbristylis dichotoma	20-32	27.4(±2.1	4.7	27-30	28.5(±1.5)	2.1	8-20	$13.4(\pm 2.2)$	4.4	0.8-1	$1(\pm 0)$	0.1	1.04
30.	Fimbristylis miliacea	21-30	$24.8(\pm 1.9)$	3.9	22-31	26(±1.5)	3.3	8-17	$12.5(\pm 1.3)$	3.6	0.7-1.2	$0.9(\pm 0.1)$	0.2	1.04
31.	Kobresia laxa	23-30	$27.2(\pm 1.2)$	2.8	28-37	$31.9(\pm 1.2)$	3.2	10-17	$13(\pm 1.1)$	2.6	0.5-1	$0.8(\pm 0.1)$	0.2	1.17
32.	Kyllinga brevifolia	22-25	$23.5(\pm 0.6)$	1.3	22-25	$20(\pm 2.6)$	4.6	8-15	$11.2(\pm 1.3)$	2.9	1-1.5	$1.3(\pm 0.1)$	0.2	0.85
33.	Pycreus flavidus	18-24	$21.8(\pm 1.3)$	2.6	22-24	$23(\pm 0.4)$	0.8	10-19	$15.8(\pm 2)$	4	1-1.6	$1.3(\pm 0.1)$	0.3	1.05
34.	Schoenoplectus mucronatus	25-40	31.7(4.4)	7.6	33-35	34(1)	1.4	17-25	22(2.5)	4.4	0.8-1	1(0.1)	0.1	1.07
35.	Schoenonlectus lacustris	28-33	30 3(1+1 5	25	29-34	31(+0.7)	с	9-17	13 3(+1 3)	2 2	0 8-1	1(+01)	0.1	1.02

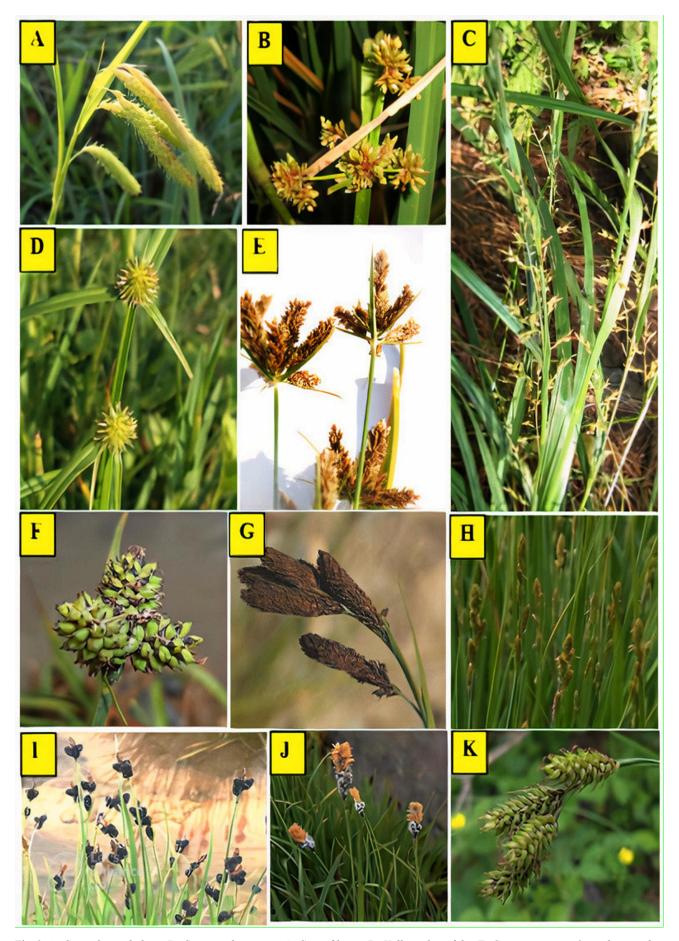


Fig. 3. A. Carex dimorpholepis, B. Cyperus glomeratus, C. Carex filicina, D. Kyllinga brevifolia, E. Cyperus nutans subsp. eleusinoides, F. Carex infuscata, G. Carex nivalis, H. Carex divulsa, I. Carex infuscata, J. Carex melanantha, K. Carex psychrophile.

Table 3. Qualitative features of leaf epidermis in sedges (Cyperaceae) of Swat, Pakistan.

				af epidermis in sedges (Cype				T		
S. No.	Names		CIZ	· · · · · · · · · · · · · · · · · · ·	WM	ST	SCS	PP		PR
1.	Blysmus compressus			LC, Bu, Cos, St, int st, Fus	Sin-Str	Р	Dom	Р	FWS	A
		AB		LC, Bu, Cos, St, int st	Sin	Р	Dom	A	FWS	A
2.	Carex atrofusca	AD		LC, Bu, Cos, St	Sin Wv	Р	Dom	Fn En	FWS	A
	5	AB AD		LC, Bu, Cos, St, int st	Sin Sin	P P	Dom	Fn P	FWS	A
3.	Carex cardiolepis	AD AB		LC, Cos, St, Fus LC, Bu, Cos, St, int st	Sin	P P	Dom Dom	P P	FWS FWS	P P
		AD AD		LC, Bu, Cos, St, int st LC, Bu, Cos, St, int st	Sin	г Р	Dom	FN	FWS	г А
4.	Carex divisa	AB		LC, Cos, St, int st, Fus	Sin	P	Dom	P int st		A
		AD		LC, Bu, Cos	Sin	A				A
5.	Carex duthiei	AB		LC, Bu, Cos, St, int st	Sin	P	Dom	A	FWS	A
<i>(</i>		AD		LC, Bu, Cos	Sin	A		A	FWS	A
6.	Carex filicina	AB		LC, Bu, Cos, St, int st,	Sin	Р	Dom	Р	FWS	А
7	Comercia la comercia	AD		LC, Cos, St, Fus	Sin	Р	Dom	Р	FWS	А
7.	Carex hymenolepis	AB	Con	LC, Bu, Cos, St	Sin	Р	Dom	Р	FWS	Α
8.	Carex infuscata	AD	Con	LC, Cos Fus	Sin	Α		А		А
о.	Curex injusculu	AB		LC, Bu, Cos, St, int st	Sin	Р	Dom	Fn	FWS	А
9.	Carex melanantha	AD		LC, Bu, Cos	Sin	А				Р
).	Curex metananina	AB		LC, Bu, Cos, St, int st	Sin	Р	Dom	Fn	FWS	А
10.	Carex otrubae	AD		LC, Cos, St, int st,	Sin	Р	Dom	Fn	FWS	Α
10.		AB		LC, Bu, Cos, St, int st,	Sin	Р	Dom	Р	FWS	A
11.	Carex pseudocyperus	AD	Con	LC, Bu, Cos, St	Sin	Р	Dom	A	FWS	Α
	eur eu pseudo esperas	AB		LC, Cos, St, int st	Sin	Р	Dom	P int st		A
12.	Carex psychrophila	AD		LC, Cos, St, int st, Fus	Sin-Wv	Р	Dom	Fn	FWS	A
	euren psyeni op inta	AB		LC, Bu, Cos, St, int st	Sin-Wv	Р	Dom	Fn	FWS	A
13.	Carex remota subsp. stewarti	AD		LC, Cos, St, int st, Fus	Sin	Р	Dom	Fn	FWS	A
	I			LC, Bu, Cos, St, int st,	clearly Sin	Р	Dom	Fn	FWS	A
14.	Carex sanguinea			LC, Bu, Cos, St, int st, Fus	Sin	Р	Dom	Р	FWS	A
15	-	AB		LC, Bu, Cos, St, int st	Sin Sin	P	Dom	Р	FWS	P P
15. 16.	Carex schlagintweitiana	AD AB		LC, Cos	Sin	A	 Dom	••••	 FWS	
10. 17.	Cyperus alulatus Cyperus glumeratus	AD AD		LC, Bu, Cos, St, int st, Fus LC, Bu, Cos, St, int st, Fus	Sin	P P	Dom Dom	A P	FWS	A A
	Cyperus giumeratus			LC, Bu, Cos, St, int st, Tus LC, Bu, Cos, St, int st,	Sin	г Р	Dom	A	FWS	A
18.	Cyperus iria			LC, Bu, Cos, St, int st,	Str-Sin	P	Pa	A	FWS	A
		AB		LC, Bu, Cos, St, int st, Fus	Sin	P	Pa-Dom	A	FWS	A
19.	Cyperus niveus	AD		LC, Cos, St, int st,	Str to Sin	P	Dom	p	FWS	A
•	~	AB		LC, Cos, St, int st,	Sin	P	Dom	P	FWS	A
20.	Cyperus nutans subsp. eleusinoides	AD		LC, Bu, Cos	Sin	Ā		A	Α	A
21				LC, Bu, Cos, St, int st,	Str-Wv-Sin	Р	Dom	Р	FWS	А
21.	Cyperus rotundus	AD		LC, Bu, Cos, St, int st, Fus	Sin	Р	Dom	А	FWS	А
22	Com anna tanaismis a	AB		LC, Bu, Cos, St, int st	Sin	Р	Dom	А	FWS	А
22.	Cyperus tenuispica	AD	Con	LC, Bu, Cos, St, int st, Fus	Str to Sin	Р	Dom	р	FWS	Α
23.	Eleocharis geniculate	AB		LC, Bu, Cos, St, int st, Fus	Sin	Р	Dom	Р	FWS	А
23.	Eleocharis geniculate	AD	Con	Bu, Cos, St, int st, Fus	Sin	Р	Dom	Р	FWS	А
24.	Eleocharis mitracarpa	AB		LC, Bu, Cos, St, int st, Fus	Sin	Р	Dom	Р	FWS	А
27.	Liebenaris miracarpa	SH		LC, Bu, Cos, St, Fus	Sin	Р	Dom	А	А	А
25.	Eleocharis palustris	SH		Bu, Cos, St, int st, Fus	Sin	Р	Dom	Α	Str	Α
201	Liebenan is panasir is	SH		LC, Cos, St, int st	Wv, Str	Р	Dom	Ps	Str	A
26.	Erioscirpus comosus			LC, Bu, Cos	Sin to Wv	A	D	A	FILIO	Р
	X	AB		LC, Bu, Cos, St, int st, Fus	Wv, Sin	Р	Dom	Р	FWS	A
27.	Fimbristylis squarrosa	AD		LC, Bu, Cos, St, int st, Fus	Sin/Wv	Р	Dom	P	FWS	A
		AB		LC, Bu, Cos, St, int st,	Sin	Р	Dom	A	FWS	A
28.	Fimbristylis bisumbellata	AD		LC, Cos, St, int st, LC, Cos, St, int st,	Sin Sin	P P	Dom Dom	A P	FWS	A
29.	Fimbristylis dichotoma	AD AD		LC, Cos, St, int st, Fus	Sin	г Р	Dom Dom	A	FWS FWS	A A
29.	•	AB		LC, Cos, St, Int st, Fus LC, Bu, Cos, St, int st,	Sin	г Р	Dom	P P	FWS	
30.	Fimbristylis miliacea			LC, Cos, St, int st, Fus	Sin	P	Dom	P	FWS	A A
		AB		LC, Bu, Cos, St, int st	Sin	P	Dom	A	FWS	A
31.	Kobresia laxa	AD		LC, Cos	Sin	A	Dom	A	FWS	A
		AB		LC, Cos, St, int st, Fus	Sin	P	Dom	P P	FWS	A
32.	Kyllinga brevifolia	AD		LC, Bu, Cos, St, int st, Fus	Sin	P	Dom	P	FWS	A
22		AB		LC, Bu, Cos, St, int st,	Sin	P	Dom	P	FWS	A
33.	Pycreus flavidus			LC, Cos, St, int st, Fus	Sin	P	Dom	P	FWS	A
24	Saha an an la atua museu stur	AB		LC, Cos, St, int st	Sin	Р	Dom	Р	FWS	А
34.	Schoenoplectus mucronatus	SH		fus.	Str	А				А
35.	Schonoplectus lacustrus	SH	Con	LC, Bu, Cos, St, int st, Fus	Wv	Р	Dom	EWC_fl		Α

Abbreviations: A=Absent, AB=Abaxial, CIZ=Costal and intercostal zonation, CS=Cell shape, Fn=Finger like, FWS=flushing with stomata, ICS=Inter stomatal cell, PR=Prickles, SCS=Subsidiary cell shape, SH=Sheath, ST=Stomata, Dom=Dome shaped, P=Present, Con =Conspicuous, WM=Wall Morphology, LC=Long cells, Cos=Costal, Fus=Fusiform, Sur =Surface PP=Papillae, Bu=Bulliforms, Int st=Interstomatal

		LCL (µm)	LCW (µm)	BuC L (µm)	Cos L (µm)	Cos W (µm)	StL (µm)	StW (µm)
Names of the taxa		Min-Max (Mean)±SE)	Min-Max (Mean)±SE)	Min-Max (Mean)±SE)	Min-Max (Mean)±SE)	Min-Max (Mean)±SE)	Min-Max (Mean)±SE)	Min-Max (Mean)±SE)
10	Ad	70-137.5(113.1)±8.8	15-45(29.5)±3.9	62.5-100(78.5)±3.8	20-87.5(46)±6.9	10-15(12.5)±0.7	37.5-45(40)±0.8	25-27.5(26.8)±0.4
biysmus compressus	Ab	62-150(106.9)±10.2	10-15(12.3)±0.7	50-87.5(60.5)±3.6	12.5-100(50.5)±8.7	7.5-17.5(12.2)±1.6	35-42.5(39(±0.9	22.5-27.5(25.3(±0.7
	Ρd	62.5-125(100)±8	15-27.5(21.3)±1.3	67.5-107.5(91.8)±4.6	37.5-112.5(73.8)±6.2	12.5-20(15.6)±1	37.5-42.5(38.8)±0.6	20-30(24)±1.1
carex airojusca	Ab	50-85(68.1)±4.3	15-25(17.8)±0.9	37.5-87.5(55)±5.3	25-92.5(54)±6.8	10-15(12.8)±0.6	20-37.5(33.8)±1.6	5-30(25)±2.4
Course condictania	ΡY	50-95(73.8)±5.2	17.5-37.5(28.3)±2.4	ï	12.5-37.5(27.3)±3.2	12.5-20(15.9)±0.8	32.5-42.5(37.3)±0.9	20-30(24.3)±0.9
carex caratotepis	Ab	62.5-10083.4)±4.6	17.5-22.5(19)±0.6	37.5-75(86.3)±7.8	25-50(36)±2.8	$10-15(11.9)\pm0.6$	37.5-45(41.3)±0.8	22.5-32.5(28)±1.1
	Ad	50-112.5(86.3)±7.9	20-25(16)±0.6	30-100(67.5)±7.6	37.5-87.5(66.5)±4.7	10-20(14.1)±1.2	35-40(37.5)±0.6	22.5-27.5(25)±0.4
Carex aivisa	Ab	62.5-112.5(90)±6	12.5-20(15.3)±0.9	30-75(51.8) ±4.6	30-67.5(50.5)±4.1	12.5-17.5(14.49)±0.8	35-42.5(37.5)±0.7	25-37.5(27.8)±1.3
	Ρq	62.5-87.5(75.6)±2.6	20-30(23.8)±0.9	45-75(64)±2.6	50-100(73.3)±5	12.5-17.5(14.7)±0.7	æ	
Carex autmet	Ab	62.5-100(75.6)±4.9	12.5-17.5(14.7)±1.7	50-125(73.5)±7	45-75(58.8)±3.2	12.5-15(13.4)±0.5	47.5-52.5(49)±0.6	25-30(26.3)±0.6
UI	ΡQ	107-150(128.3)±4.7	25-37.5(31.4)±1.5	30-155(102.3)±11	25-102.5(61.6)±7.6	10-25(13.6)±1.5	X	т
Carex Juicina	Ab	87.5-150(115.9)±8.7	17.5-27.5(22.5)±1.1	57.5-112.5(83.8)±5.9	37.5-80)62(±4.8	7.5-22.5(14.1)±1.8	45-57.5(51.3)±1.4	17.5-25(21.3)±0.7
	Ad	50-87.5(66.9)±5.4	17.5-25(21.5)±1	ı	12.5-50(26.5)±4.3	12.5-15(13.4)±0.5	30-52.5(33.8)±2.2	25-27.5(26.8)±0.4
carex nymenotepts	Ab	50-87.6(66.9)±3.2	10-17.5(13)±1	30-62.5(43)±2.9	12.5-65(37.3)±5.4	12.5-15(12.8)±0.3	32.5-40(35.5)±0.7	17.5-22.5(19.8)±0.6
	Ad	60-82.5(71.6)±3	20-27.5(24.8)±0.7	ĩ	17.5-55(37)±4	15-20(18.4)±0.8	ı	ч
carex injuscata	Ab	67.5-10083.4)±3.9	12.5-17.5(15.5)±0.7	30-82.5(60.5)±5.6	25-75(51.5)±4.5	10-15(13.1)±0.8	25-32.5(29.8)±0.8	25-27.5(25.5)±0.3
Course malanandra	ΡY	70-112.5(93.4)5.3	20-30(25.8)±1.1	62.5-105(78)±5.1	55-87.5(72)±3.6	15-20(18.4)±0.7	ı	T
cares metananna	Ab	$50-80(65.3)\pm 4$	15-22.5(18.3)±0.8	37.5-60(48.3)±2.6	22.5-62.5(39.8)±4.3	$10-15(13.1)\pm 0.8$	35-47.5(40)±1.2	25-30(26.5)±0.6
	Ad	95-140115.9)±4.9	15-32.5(27.3)±2.1	ı	12.5-47.5(29.8)±3.4	17.5-22.5(20)±0.7	22.5-25(24.5)±0.3	20-30(24)±0.8
Carex oirubae	$\mathbf{A}\mathbf{b}$	62.5-112.5(86.9)±5.7	15-20(17.5)±0.7	25-55(38.5)±3.8	25-90(61.8)±7.1	$15-20(16.6)\pm 0.8$	20-37.5(32)±2.1	20-27.5(24.3)±0.8
	Ad	75-112.5(94.4)±4.6	15-22.5(19.8)±1	45-100(70.3)±5.5	35-87.5)58.5(±5.6	10-15(11.9)±0.6	37.5-50(46)±1.2	30-37.5(34)±0.7
carex pseuaocyperus	Ab	50-95(69.7)±5.8	15-20(19)±0.6	25-67.5(43.8)±4.4	a	ā	30-47(37.5)±1.7	27.5-37.5(33.5)±1
	ΡY	62.5-105(79.9)±5.7	20-30(23)±1	T	5-45(29.5)±4.3	7.5-15(11.9)±0.9	27.5-32.5(29.5)±0.5	20-25(22.8)±0.6
cares psychrophia	Ab	35-75(54.1)±4.8	12.5-20(16.3)±0.9	25-55(37.8)±2.7	20-57.5(39.3)±4.3	$10-20(15.9)\pm 1.2$	27.5-35(31.5)±0.7	25-32.5(29.3)±0.8
Course nomoto milion etonicutii	ΡY	75-125(109.4)±6.6	15-30(21.8)±1.9		17.5-52.5(34)±3.9	7.5-12.5(10)±0.7	22.5-30(28.3)±0.8	20-37.5(26.5)±1.7
carex remota suosp. stewartu	Ab	62.5-135(95.9)±8.5	12.5-27.5(17.5)±1.7	50-100(74)±5.8	22.5-110(52.8)±9.4	7.5-15(11.6)±0.9	25-32.5(29)±0.9	20-27.5(22)±0.8
Canor converting	ΡV	62.5-137.5(104.7)±9.4	10-37.5(20.5)±3	75-125(103.8)5.7	22.5-87.5(55.3)±7	7.5-17.5(12.2)±1.1	32.5-50(39.8)±1.8	22.5-27.5(25.5)±0.5
carex sangunea	Ab	70-112.5(88.4)±5.8	15-35(24.3)±2	60-137.5(86.3)±7.8	17.5-65(39)4.9	12.5-20(15.6)±0.9	45-57.5(51)±1.4	25-40(34.3)±1.3
Course cohlassint with and	\mathbf{Ad}	45-100(72.2)±6.8	15-22.5(18.8)±0.8	ä	22.5-60(39.3)±4.3	12.5-15(13.4)±0.5	ı	ı
cares schiaghtiventana	Ab	45-112.5(71.6)±10.1	12.5-15(13.8)±0.4	37.5-77.5(56.3)±3.3	20-70(44)±4.6	7.5-12.5(10.3)±0.6	$30-40(34.5)\pm 0.8$	17.5-22.5(20.5)±2.5
Cyperus alulatus	ΡY	100-130(113.8)±4	10-37.5(23)±3.3	62.5-125(94.5)±7.5	45-190(90.8)±14.9	12.5-17.5(15.3)±0.6	30-37.5(33.8(±1	22.5-45(31.5)±2.8
	Ab	50-122.5(87.2)±8.1	12.5-25(17)±1.5	35-87.5(51)±5.1	42.5-100(75.8)±5.8	$10-20(15.9)\pm 1.6$	37.5-42.5(38.8)±0.7	27.5-37.5(32.3)±1.1
cyperus giomeratus	ΡV	125-162.5(142.8)±5.2	25-45(38.8)±1.7	37.5-137.5(80.5)±10.1	37.5-92.5(79)±5.7	10-15(12.5)±0.7	30-40(35.8)±1.1	22.5-35(27)±1.4

10

		LCL (µm)	LCW (µm)	BuCL (µm)	Cos L (µm)	Cos W (µm)	StL (µm)	StW (µm)
Names of the taxa		Min-Max (Mean)±SE)	Min-Max (Mean)±SE)	Min-Max (Mean)±SE)	Min-Max (Mean)±SE)	Min-Max (Mean)±SE)	Min-Max (Mean)±SE)	Min-Max (Mean)±SE)
	Ab	75-130(104.7)±5.7	15-35(26.8)±2.2	50-87(68.8)±4.1	45-127.5(69.8)±7.9	15-19(16.8)±0.5	6-11(8.5)±0.7	25-47.5(33.8)±2.3
cyperus tria	ΡY	142-145(143.8)±1.3	42.5-50(45.8)±2.8		62-100(11.5)±19.8	12.5-15(14.2)±0.8	35-40(38.3)±1.7	27.5-30(28.)(±0.8
	Ab	77.5-112.5(100)±4.1	17.5-25(22.5)±0.8		35-95(75.3)±6.7	7.5-12.5(11.3)±0.7	37.5-40(39)±0.4	20-35(28.3)±1.3
cyperus niveus	ΡY	62.5-97.5(74.7)±3.6	15-20(17)±0.6	40-62.5(49.3)±2.4	20-57.5(41)±4.23	12.5-15(13.8)±0.5	×	
Cyperus nutans subsp.	Ab	40-50(44.4)±1.3	12.5-15(13.3)±0.4	25-50(34)±2.7	30-50(40.8)±2.1	7.5-132.5(±12	22.5-25(24.3)±0.4	15-22.5(20)±0.7
eleusinoides	ΡV	62.5-137.5(96.9)±8.4	12.5-30(20)±1.8	45-100(69.5)±5			25-35(31)±0.9	20-27.5(23.3)±0.8
r	Ab	75-112.5(92.1)±4	12.5-25(19.8)±1.2	50-87.5(67.3)±3.6	25-75(55.8)±5.2	12.5-25(20.6)±1.4	42.5-50(45.5)±0.7	30-40(33.3)±1.2
Cyperus rounaus	ΡV	87-237(144)±16.3	20-32.5(26.8)±1.4	100-187.5(136.3)±9.9	62.5-150(104.5)±9.1	17.5-22.5(20.3)±0.6	32.5-40(36.3)±0.7	15-20(18.3)±0.5
-	Ab	67.5-112.5(89.1)±6	10-25(14.8)±1.5	37.5-95(64.5)±5.6	62.5-162.5(99.8)±9.5	10-12.511.3)±0.5	27.5-50(43.3)±2	20-27.5(22.8)±0.9
cyperus tenutspica	ΡY	·	·	62.5-125(82.3)±6.9	37.5-100(70.8)±6.2	12.5-17.5(15)±0.7	42.5-55(48.8)±1.3	25-32.5(28.3)±1.1
	Ab	87.5-125(109.7)±4.5	25-42.5(31.9)±2.2	52.5-11.5(80.3)±7.4	52.5-140(98.8)±9.2	12.5-20(16.6)±1	52.5-67.5(60)±1.3	32.5-42.5(38.5)±0.9
Eleocharts geniculata	Sh	30-50(41.4)±2.1	10-12.6(11.1)±0.4	25-56(34.8)±2.8	17.5-42.6(28.8)±2.7	$10-12.6(1\pm0.6$	25-36(28.8)±0.9	25-36(27.5)±1.1
Eleocharis mitracarpa	Sh	r	ı	100-137.5(115)±3.5	62.5-100(77.3)±3.9	10-12.5(11.30)±0.5	35-40(38.8)±0.6	20-22.5(21.5)±0.4
Eleocharis palustris	Sh	100-262(181.6)±20.7	10-15(12.3)±0.4		30-100(56.5)±7.2	7.5-17.5(10.6) ±1	37.5-42.5(40.3)±0.7	20-22.5(21.5)±0.4
	ΡV	35-57.5(45.9)±2.9	10-20(16.8)±1.2	37.5-65(48)±2.6	20-50(33.3)±3.1	12.5-22.5(15.3)±1.3		Ŧ
Erioscirpus comosus	$\mathbf{A}\mathbf{b}$	50-85(66.6)±4.7	$10-20(14.8)\pm 0.9$	30-75(46.5)±4.2	20-50(34.3)±2.8	12.5-20(17.5)±0.8	40-50(46)±1.1	25-32.5(28.3)±0.8
Tankat de la sur sur sur sur	ΡY	67.5-150(122.5)±8.7	15-37.5(24.3)±3	42.5-137.5(85.8)±9.1	45-125(82.3)±8	15-22.5(18.4)±1.2	37.5-50(40.5±1.4	22.5-25(23.3)±0.4
r impristytis squarrosa	Ab	75-125(105.3)±5.4	17.5-30(23.3)±1.3	37.5-87.5(56.5)±4.8	45-135(95.5)±8.9	12.5-22.5(18.1)±1.3	22.5-30(26.3)±0.9	32.5-37.5(34.5)±0.6
"	ΡY	62.5-92.5(81.9)±3.8	17.5-27.5(22.3)±1	,	27.5-77.5(49.3)±5.1	12.5-17.5(15.5)±0.8	$30-40(35)\pm 1.1$	22.5-27.5(26)±0.6
r imoristylis olsumoellala	Ab	55-82.5(74.7)±3	17.5-22.5(20.5)±0.6	u	30-105(60.8)±8.2	12.5-17.5(14.1)±0.7	30-47.5(42.5)±1.7	25-47.5(33.8)±2.3
Fimbristylis dichotoma	ΡQ	70-105(89.2)±3.7	22.5-42.5(30.5)±2.4	P	25-62.5(47.8)±0.3	10-22.5(16.6)±1.7	32.5-42.5(38.8)±0.9	20-32.5(27.3)±1.2
Turbuich die milionen	Ab	87-142.5(118.8)±6.3	22.5-35(28.3)±1.4	25-127.5(85.8(±9.1	40-125(75)±9.2	10-22.5(15.3)±1.4)	42.5-52.5(47.5)±1.1	22.5-30(26.3)±0.7
<i>Γ ιmDTStyuSmuuacea</i>	ΡЧ	62.5-125(93.8)±7.8	17.5-45.5(25.8)±2.7		55-90(73)±4.1	10-17.5(12.8)±1	37.5-42.5(39.5)±0.6	20-27.5(24.3)0.8
abuaria lava	Ab	62.5-137.5(98.1)±9.2	17.5-2520.5)±0.8	50-80(67.8)±3.6	42.5-100(78)±5.5	10-17.5(13.8)±0.9	47.5-55(50.8)±0.7	25-30(28.5)±0.6
Nobresia iaxa	ΡV	50-125(88.4)±9.1	12.5-25.5(18.3)±1.1		20-100(54.5)±8	12.5-20(15.9)±1.2		
- H	Ab	57.5-120(93.1)±7.6	$10-20(15)\pm 0.9$	55-100(79)±4.3	30-77.5(48.3)±4.4	7.5-15(10.3)±1	27.5-37.5(31.3(±0.9	22.5-35(26)±1.5
Ayunga orevijoua	ΡV	87.5-137(117.8)±5.4	10-42.5(26.5)±3.4	30-75(57.3)±5	37-105(72.3)±7.5	10-15(13.1)±0.6	27.5-32.5(30)±0.6	17.5-22.5(19.5)±0.5
Distance flowing to	Ab	37.5-125(89.1)±11.8	10-22.5(15.3)±1.1	42.5-100(66.5)±5.7	32.5-87.5(66)±6.7	7.5-20(12.8)±1.5	27.5-35(30.8)±0.7	25-27.5(26.5)±0.4
rycreus juviaus	ΡЧ	10-167(126.9)±8.3	17.5-30(24)±1.7	,	50-97.5(77.8)±5.4	17.5-22.5(20)±0.7	37.5-52.5(47)±1.4	25-40(32)±1.6
alpononia minonatio	Ab	95-142(117.8)5.4	15-22(19.8)±0.9	28-115(95)±10.1	ı	ı	37.5-47.5(41)±1.2	25-30(27.3)±0.7
эспоепорієсная тистопиная	Sh		a.	æ			2	÷
Schononlectus lacustris	45	60-100(75)+5 2	17 5-22 5(19 5)+0 6	50-75(64 5)+2 6	2 5+12 (2)22-27	10-12 5/11 60+0 5	50 57 5/51)+0 A	2 0+12 202 20-2 0

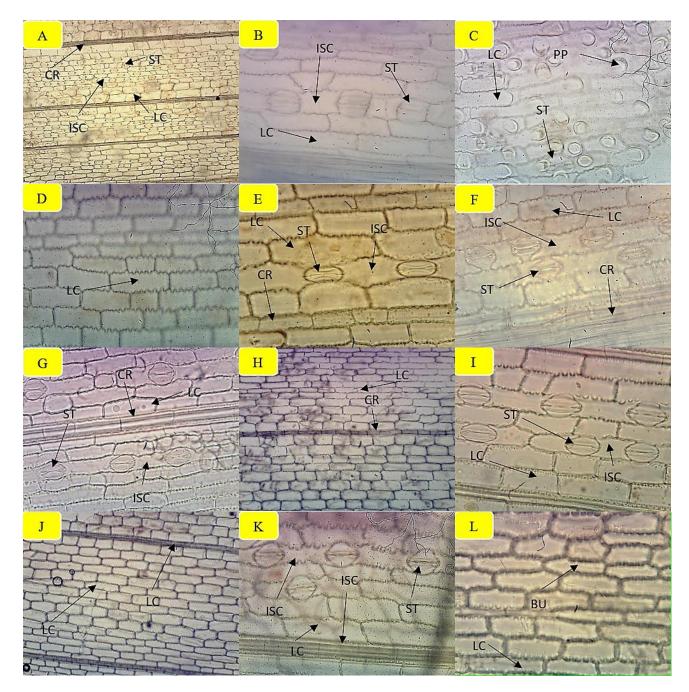


Fig. 4. A-B, Cyperus glumeratus; C-D, Carex infuscata; E-F, Fibristylis dichotoma; G-H, KyLlinga brevlfolia I-J, Cyperus iria; K-L Cyperus nutans.

Key. ST, stomata; ICS, inter stomata cells; CR, costal region; BU, bulliform cells; LC, long cells; PP, papillae; PR, prickles

In the present study all the species have conspicuous costal and inter-costal zonation except the sheath of *Schoenoplectus mucronatus*. Mostly the walls of mid intercostal cell were sinuous however the adaxial surface of *Cyperus iria*, *Cyperus rotundus* and *Blysmus compressus* showed sinuous to straight wall morphology. The sheath of *Schoenoplectus lacustris* shows wavy wall while in *Schoenoplectus mucronatus* walls were straight (Fig. 4).

Stomata were common on the abaxial surface. Stomata were absent on the adaxial surface of *Cyperus nievus*, *Carex filicina, Kobresia laxa, Erioscirpus comosus, Carex schlagintweitiana, Carex infuscata, Carex melanantha,* and *Carex duthiei*. Moreover, subsidiary cells were dome shaped (Fig. 4).

The occurrence of papillae is considered to be useful at generic level (Ullah, 2009). Two types of papillae were observed in the present study viz., small round and fingerlike. Finger-like papillae were found in species of *Carex*. Metcalfe (1960) has already emphasized the role of papillae in taxonomy. Prickles were not of common occurrence. However, *Erioscirpus comosus, Carex* sanguinea, Carex cardiolepis, Carex schlagintweitiana, and Carex melanantha showed the presence of prickles.

The present study showed the absence of trichome, micro-hairs and silica bodies. Though the distinctive silica bodies are reported in Poaceae. Their occurrence and arrangement are very useful in grouping Poaceae (Prat, 1960). The absence of trichome, micro-hairs and silica bodies distinguishes Cyperaceae from Poaceae.

Name of the species	Collector	Locality	Voucher number
Bolboschoenus glaucus	Nasar Ali	Shamozai	NA-304
Schoenoplectus rechingeri	Zahid Ullah	Shamozai	NA-11
Schoenoplectus mucronatus	Zahid Ullah	Matta	NA-307
Blysmus compressus subsp. brevifolius	Zahid Ullah	Mahodand	NA-309
Isolepis setacea	Nasar Ali	Miandam	NA-331
Erioscirpus comosus	Nasar Ali	Charbagh	NA-427
Eleocharis mitracarpa	Zahid Ullah	Charbagh	NA-310
Eleocharis palustris subsp. iranica	Nasar Ali, Rahman Ali	Matta	NA-271
Eleocharis tetraquetra	Zahid Ullah, Aftab Khan	Baghderai	NA-12
Fimbristylis falcata	Nasar Ali	Shamozai	NA-31
Fimbristylis miliacea	Zahid Ullah	Barikot	NA-36
Fimbristylis quinquangularis	Nasar Ali, Zahid Ullah	Barikot	NA-56
Fimbristylis dichotoma	Zahid Ullah	Matta	NA-57
Fimbristylis bisumbellata	Nasar Ali	Matta	NA-81
Bulbostylis barbata	Nasar Ali	Shamozai	NA-90
Cyperus rotundus	Nasar Ali, Zahid Ullah	Kanju	NA-317
Cyperus nutans subsp. eleusinoides	Zahid Ullah	Chota Kalam	NA-322
Cyperus alulatus	Zahid Ullah	Matta	NA-335
Cyperus iria	Zahid Ullah	Matta	NA-339
Cyperus compressus	Nasar Ali, Zahid Ullah	Marghuzar	NA-265
Cyperus niveus	Nasar Ali, Zahid Ullah	Kanju	NA-278
Cyperus tenuispica	Nasar Ali	Barikot	NA-254
Cyperus difformis	Nasar Ali, Zahid Ullah	Shakar Dara	NA-255
Cyperus squarrosus	Zahid Ullah	Mingora	NA-41
Cyperus cyperoides	Nasar Ali	Mingora	NA-43
Pycreus sanguinolentus	Nasar Ali, Zahid Ullah	Matta	NA-367
Pycreus flavidus	Nasar Ali	Barikot	NA-393
Pycreus flavescens	Nasar Ali	Hazara	NA-213
Kyllinga brevifolia	Nasar Ali, Zahid Ullah	Matta	NA-332
Kobresia laxa	Nasar Ali	Mankyal	NA-68
Kobresia capillifolia	Nasar Ali	Utror valley	NA-305
Kobresia nepalensis	Nasar Ali, Zahid Ullah	Chukail meadow	NA-321
Carex filicina	Nasar Ali, Zahid Ullah	Miandam	NA-314
Carex sanguinea	Nasar Ali, Zahid Ullah	Miandam	NA-353
Carex otrubae	Nasar Ali, Zahid Ullah	Miandam	NA-377
Carex divulsa subsp. leersii	Nasar Ali, Zahid Ullah	Gabral	NA-370
Carex wallichiana	Nasar Ali, Zahid Ullah	Gabin Jabba	NA-369
Carex remota subsp. stewartii	Nasar Ali, Zahid Ullah	Kandol lake	NA-341
Carex fedia	Nasar Ali, Zahid Ullah	Miandam	NA-348
Carex serotina	Nasar Ali, Zahid Ullah	Shahi Bagh	NA-312
Carex cardiolepis	Nasar Ali, Zahid Ullah	Lalku	NA-345
Carex schlagintweitiana	Nasar Ali, Zahid Ullah	Malam Jabba	NA-72
Carex hymenolepis	Nasar Ali, Zahid Ullah	Nelawai	NA-405
Carex turkistanica	Nasar Ali, Zahid Ullah	Utror valley	NA-237
Carex psychrophila	Nasar Ali, Zahid Ullah	Miandam	NA-388
Carex atrofusca	Nasar Ali, Zahid Ullah	Mahodand	NA-383
Carex unojuscu Carex infuscata	Nasar Ali, Zahid Ullah	Miandam	NA-313
Carex Infuscula Carex duthiei	Nasar Ali, Zahid Ullah	Spin Sar	NA-313 NA-45
Carex aumer Carex nivalis	Nasar Ali, Zahid Ullah	Kandol lake	NA-401
Carex nivalis Carex pseudobicolor	Nasar Ali, Zahid Ullah	Gabral valley	NA-401 NA-431
Curen pseudolicoloi	Nasar Ali, Zahid Ullah	Jarogo banda	NA-451 NA-366

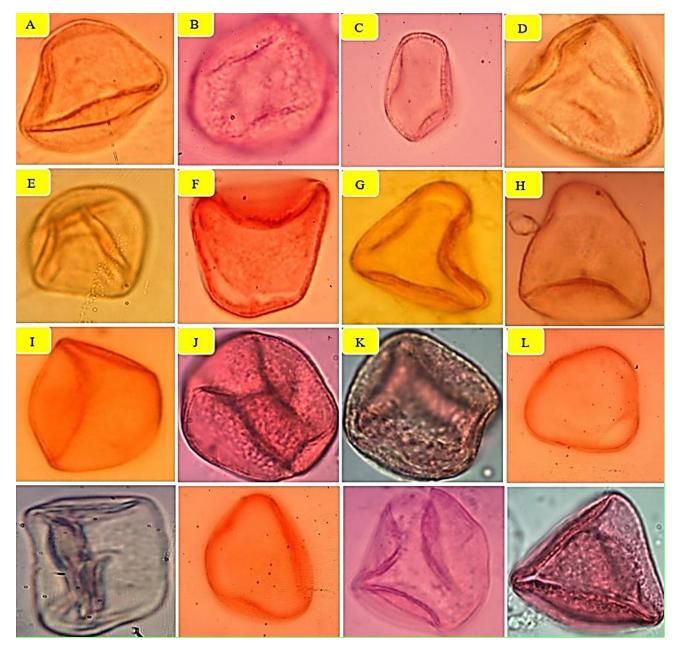


Fig. 5. Diversity of pollens in Cyperaceae. A, Schoenoplectus lacustrus; B, Cyperus glumeratus; C, Cyperus tenuispica; D, Cyperus alulatus; E Pycreus flavidus; F, Carex filicina; G, Carex atrofusca; H, Carex infuscata; I, Carex cardiolepis; J Carex duthiei; K, Carex melanantha; M, Carex remota; N, Carex otrubae; O, Carex sanguinea; P, Eleocharis geniculate.

Conclusion

It is concluded that systematic studies based on multivariate approaches provide clearer picture of relationship among the studied taxa. Further it is suggested that SEM observation of pollen grain and molecular data will also be helpful in taxonomic study of the family.

References

- APG IV. 2016. An update of the Angiosperm Phylogeny Group classification of the orders and families of flowering plants. *Bot. J. Linn. Soc.*, 161: 105-121.
- Bruhl, J.J. 1995. Sedge genera of the world: relationships and a new classification of the Cyperaceae. *Aust. Syst. Bot.*, 8: 125-305.
- Clarke, J. 1960. Preparation of Leaf Epidermis for Topographic Study. *Stain. Technol.*, 35(1): 35-39.

- Clifford, H.T. and L. Watson. 1977. Identifying Grasses: Data Methods and illustrations. Queensland University Press, Brisbane, Australia.
- Coan, A.I., M.V. Alves and V.L. Scatena. 2011. Evidence of pseudomonad pollen formation in *Hypolytrum* (Mapanioideae, Cyperaceae). Aust. J. Bot., 58: 663-672.
- Cotton, R. 1974. Cytotaxonomy of the genus *Vulpia*. Ph.D Thesis, University of Manchester, UK.
- Dai L.K., S.Y. Liang, Y.C. Tang and P.C. Li. 2000. Carex L. In: Dai LK, Liang SY. (Eds) Flora Reipublicae Popularis Sinicae (Vol.12). Science Press, Beijing, 56-518.
- Ellis, R.P. 1979. A procedure for standardizing comparative leaf anatomy in the Poaceae. II. The epidermis as seen in surface view. *Bothalia*, 12(4): 641-671.
- Erdtman, G. 1952. Pollen morphology and plant taxonomy-Aniosperms. Almquist and Wiksell Press, Stockholm.: Almquist and Wiksell. Pp 539, 261 illustrations.

- Erdtman, G. 1966. Pollen morphology and Plant Taxonomy: Angiosperms. Hafner Publishing Company, New York.
- Eymann, J. 2010. Manual on field recording techniques and protocols for All Taxa Biodiversity Inventories and Monitoring. Belgian Development Cooperation.
- Faegri, K., P.E. Kaland and K. Krzywinski. 1989. Textbook of pollen analysis (4th Ed.). John Wiley & Sons Ltd.
- Goetghebeur, P. 1986. Genera Cyperacearum: Een bijdrage tot de kennis van de morfologie, systematiek en fylogenese van de Cyperaceae-genera. Ph.D thesis Rijksuniversiteit Gent, Belgium.
- Govaerts R., P. Jiménez-Mejías, J. Koopman, D. Simpson, P. Goetghebeur, K. Wilson, T. Egorova and J. Bruhl. 2021. *World Checklist of Cyperaceae*. Facilitated by the Royal Botanic Gardens, Kew.
- Hejazi, J., A.R. Bahrami, J. Vaezi, F. Memariani and M.R. Joharchi, 2012. Application Morphometric and taxonomic study of the genus *Carex* L. (Cyperaceae) in Northeast of Iran. J. Biol. Today's World, 1(1): 21-31.
- Hesse, M., H. Halbritter, M. Weber, R. Buchner, A. Frosch-Radivo, S. Ulrich and R. Zetter. 2009. *Pollen terminology: an illustrated handbook*. Springer Science & Business Media.
- Huang, T.C. 1972. *Pollen Flora of Taiwan*. (National Taiwan University: Botany Department Press). Introduction to Forensic Science. 6th Edition.
- Jiménez-Mejías, P., M. Hahn, K. Lueders, J.R. Starr, B.H. Brown, B.N. Chouinard and E.H. Roalson. 2016. Megaphylogenetic specimen-level approaches to the *Carex* (Cyperaceae) phylogeny using ITS, ETS, and matK sequences: implications for classification. *Syst. Bot.*, 41(3): 500-518.
- Judd, W.S., C.S. Campbell, E.A. Kellogg, P.F. Stevens and M.J. Donoghue. 2015. Plant systematics: A phylogenetic approach, 4h edition (Sinauer Associates: Sunderland, MA).
- Kirpes, C.C., L.G Clarkst and N.R. Lersten. 1996. Systematic significance of pollen arrangement in microsporangia of Poaceae and Cyperaceae: review and observations on representative taxa. *Amer. J. Bot.*, 1609-1622.
- Koyama, T. 1961. Classification of the family Cyperaceae 1. J. Fac. Sci. Univ. Tokyo Sect. III Bot., 8: 84-99.
- Koyama, T. 1969. Delimitation and Classification of the Cyperaceae-Mapanioideae. In: (Ed.): Gunkel, J.E. Current Topics in Plant Science (pp. 201-228). Academic Press New York, NY.
- Kukkonen, I. 2001. Cyperaceae In: S.I. Ali and M. Qaiser (Eds.) Flora of Pakistan, 206, Department of Botany, University of Karachi and Missouri Botanical Garden, Missouri.
- Meltsov, V., A. Poska and M. Saar. 2008. Pollen size in *Carex*: the effect of different chemical treatments and mounting media. *Grana*, 47(3): 220-233.judd
- Metcalfe, C.R. and L. Chalk. 1950. *Anatomy of the Dicotyledons*. The Clarendon Press, Oxford.
- Metcalfe, C.R. and M. Gregory. 1964. Some new descriptive terms for Cyperaceae with a discussion of variations in leaf form noted in the family. *Notes Jodrell Lab.*, 1: 1-11.

- Metcalfe, C.R. 1960. Anatomy of the monocotyledons. 1. Gramineae. *Anatomy of the monocotyledons. 1. Gramineae.* Oxford University Press, New York, 731 pp.
- Moar, N.T. and J.M. Wilmshurst. 2003. A key to the pollen of New Zealand Cyperaceae. *N.Z. J. Bot.*, 41(2): 325-334.
- Moore, P.D., J.A. Webband and M.E. Collison. 1991. Pollen analysis. Blackwell scientific publications.
- Muasya, A.M., D.A. Simpson, G.A. Verboom, P, Goetghebeur, R.F. Naczi, M.W. Chase and E. Smets. 2009. Phylogeny of Cyperaceae based on DNA sequence data: current progress and future prospects. *Bot. Rev.*, 75(1): 2-21.
- Nair, P.K.K. 1980. Pollen morphology in relation to plant taxonomy and evolution. *Glimpses Plant Res.*, 5: 253-271.
- Ogie-Odia, E.A., D. Eseigbe, M.N. Ilechie, J. Erhabor and E. Ogbebor. 2010. Foliar epidermal and phytochemical studies of the grasses *Cymbopogon citratus* (stapf.), *Axonopus compressus* (P. Beauv.) and *Eragrostis tremula* (SW Beauv) in Ekpoma, Edo state, Nigeria. *Sci. World J.*, 5(1): 549-570.
- Pashirzad, M., J. Vaezi, D.A. Moghaddam, F. Memariani and M.R. Joharchi. 2014. A Species-Level of Morphological and Nut Micromorphology Study of the *Cyperus* Complex (Cyperaceae) in Northeast of Iran. *Ann. Res. Rev. Biol.*, 4(24): 3848-3862.
- Prat, H. 1936. The epidermis of Gramine'es. El systematic anatomical study. Ann. Sci. Nat. Bot. Ser., 10: 18: 165-258.
- Simpson, D., A. Muasya, M. Alves, J. Bruhl, S. Dhooge, M. Chase and A. Marchant. 2007. Phylogeny of Cyperaceae based on DNA sequence data–a new rbcL analysis. *Aliso.*, 23(2): 72-83.
- Simpson, D., C. Yesson, A. Culham, C. Couch and A. Muasya. 2011. Climate change and Cyperaceae. *Ecol. System.*, 439-456.
- Simpson, D.A. 1995. Relationships within Cyperales. In: (Eds.): Rudall, P.J., P.J. Cribb, D.F. Cutler & C.J. Humpries. *Monocotyledons: Systematics and Evolution* (pp. 497–509). Royal Botanic Gardens, Kew publishing Kew, Richmond.
- Taia, W.K. 2005. Modern Trends in Plant Taxonomy. Asian J. Plant Sci., 4: 184-202.
- Ullah, Z. 2009. Systematic studies of the grasses of district Swat. M. Phil thesis submitted to Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
- Ullah, Z. 2014. Systematics and phytogeography of temperate and alpine Poales *s.l.* from Northern Pakistan. PhD thesis submitted to Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
- Ullah, Z., M. Ahmad, H. Sher, H. Shaheen and S.M. Khan. 2015. Phytogeographic analysis and diversity of grasses and sedges (Poales) of Northern Pakistan. *Pak. J. Bot.*, 47: 93-104.
- Watson, L. and M.J. Dallwitz. 1992. The families of flowering plants: descriptions, illustrations, identification, and information retrieval. Version:
- Wronska-Pilarek, D., M. Janyszek and A.M. Jagodzinski. 2010. Pollen morphology of selected Central European species from subgenera *Vignea* and *Carex* (*Carex*, Cyperaceae) and its relation to taxonomy. *Bot. J. Linn. Soc.*, 164(4): 422-439.

(Received for publication 08 December 2022)