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Abstract

Plant-plant interactions via herbivory-induced plant volatiles (HIPVs) have been shown to trigger plant anti-herbivore
defense responses. Such volatiles-regulated genes have been studied comprehensively in lima bean (Phaseolus lunatus) and
Arabidopsis thaliana at the transcriptional level, but not in soybean (Glycine max). The transcriptomes of soybean leaf
tissues responding to aphid infestation and volatiles released from neighboring aphid-infested plants were studied by RNA-
seq. Soybean aphid infested plants exhibited 2413 up-regulated and 3905 down-regulated genes, while leaf exposure to
volatiles resulted in 2153 up-regulated and 3572 down-regulated genes, which were endowed with a wide range of functions
including ‘hormone responses’, ‘pathogen-related’, and ‘oxidative stress’ functions. The results ultimately demonstrated that
aphid damage and volatiles exposure elicited drastic metabolic changes in soybean leaves. These results also emphasize that
RNA-seq analysis of repressed genes should contribute to our understanding of signal transduction in aphid-infested leaves,
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as well as in leaves exposed to herbivory-induced volatiles.
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Introduction

Some phytophagous insects obtain nutrition from their
plant hosts by sucking sap from underground or aerial plant
parts. To compensate, plants have developed various
distinct inducible defense strategies against insect
herbivores, including the activation of proteinase inhibitors,
polyphenol oxidases, chitinases, and so on. Induced
defense mechanisms also include the production and
release of herbivore-induced plant volatiles (HIPVs) that
attract carnivorous natural enemies of herbivores (Dicke et
al., 1990a; Dicke et al., 1990b; Turlings et al., 1990;
Takabayashi et al., 1994; Moraes et al., 1998; Dicke et al.,
1999; Aartsma et al., 2017). Previous research has shown
that wvolatiles affect herbivore predators while also
triggering resistance in neighboring plants exposed to
HIPVs (Godard et al., 2008; Ton et al., 2010) both in the
laboratory (Bruin et al., 1992; Arimura et al., 2000g;
Arimura et al., 2000b) and under natural conditions
(Rhoades 1983; Karban et al., 2000; Heil & Bueno, 2007).
More specifically, volatiles from insect herbivore-infested
plant leaves can activate expression of specific defense
genes in neighboring plants (Arimura et al., 2000b) to
attract herbivore predators to ultimately reduce insect
herbivore feeding and oviposition rates (Dicke et al., 1990a;
Arimura et al., 2000a; Arimura et al., 2000b).

Several studies have employed cDNA microarrays to
identify volatiles-responsive genes within whole-genome
transcription systems of lima bean (Phaseolus lunatus)
(Arimura et al., 2000a) and Arabidopsis thaliana (Zhang et
al., 2012). To date, investigations of the expression patterns
of some defense genes have demonstrated that both
volatiles-based and direct insect damage-based plant
defense responses share similar gene expression profiles,
but that direct damage induced much stronger responses in

these genes. Soybean (Glycine max) is an important crop
because its seed is rich in protein and oil. Both the
completion of the soybean genome sequencing and
technical advances in transcriptome sequencing analysis
have allowed for the large-scale study of soybean gene
expression (Schmutz et al., 2010). In this study, we
systematically monitored aphid- or volatiles-induced
variations of soybean gene transcription levels using RNA
sequencing (RNA-seq) transcriptome analysis. The results
revealed many soybean leaf transcriptome changes, with
gene expression changes of at least 13.61% and 12.33% of
genes observed in aphid and volatiles responses,
respectively. Among these genes, 6.99% with altered
transcriptome profiles were common to both aphid-infested
leaves and receiver leaves, with altered expression of ten
genes confirmed using quantitative PCR (qPCR). Gene
ontology (GO) term enrichment analysis of soybean genes
by aphid and volatiles-regulated revealed numerous
biological process response genes with functions assigned
to ‘hormone responses’, ‘pathogen-related’, and ‘oxidative
stress’ functions. These results provide new insight into the
roles of genes involved in soybean responses to aphid
infestation and volatiles exposure.

Materials and Methods

Plant and aphid materials: Soybean seeds were provided
by Shuzhen Zhang (Northeast Agricultural University).
Plants were grown in plastic pots (18-cm diameter, 16-cm
depth) in light incubator (25°C, 50% relative humidity and
16-h light/8-h dark conditions). Two-weeks-old plants with
two fully expanded primary leaves were used for all
experiments. Soybean aphids (Aphis glycines) were
obtained from soybean plants reared in laboratory under the
same conditions as those described above.
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Plant treatments: Soybean leaf transcriptome changes in
response to aphid attack and volatiles exposure were
measured. Soybean plants were infested with aphids by
transferring 40 nymphs and apterous adults to each plant
as the emitter leaves. In order to prevent the escape of
aphids from infested emitter leaves, we spread the net on
the surface of each plastic pot before placing infested
plants together with uninfested receiver plants in a light
incubator. The experimental device was maintained at
25°C, 50% relative humidity and 16-h light/8-h dark
conditions for 24 h. Ten uninfested plants were
maintained alone in a separate light incubator for 24 h as
negative controls. The infested emitter leaves, uninfested
receiver leaves and control leaves were used for the total
RNA extraction. Three biological replicates were
harvested for each group of samples.

Total RNA extraction and library construction: Total
RNAs from leaves were extracted using TRIzol reagent
(Invitrogen) and digested with RNase-free DNase |
(Promega) to remove genomic DNA. The quality and
integrity of the total RNA extracted were detected with
NanoDrop (Thermo) and 1 % agarose gel electrophoresis.
Before the RNA-seq library construction, the oligo (dT)-
linked magnetic beads were used to purify and
concentrate the mRNAs. The purified mRNAs were
fragmented and subjected to 5' adaptor ligation, and then
reverse transcripted with random hexamer primers and
RT primers with 3' adaptor. PCR products of 150bp-
200bp were obtained from the purified cDNAs.
Meanwhile, RNA-seq libraries were constructed and
submitted to Illumina Genome Analyzer for sequencing
by GENEWIZ Inc. (Suzhou, China).

Functional annotation and differential expression:
Sequencing reads were mapped to the soybean genome
using the HISAT2 (v2.0.1) tool. BLAST searches were
used to annotate genes to maximize the accuracy of
sequence recognition (Kent 2002). These genes were
compared with those in the databases of Kyoto
Encyclopedia of Genes and Genomes (KEGG) and
National Center for Biotechnology Information (NCBI)
(http://www.ncbi.nlm.nih.gov/). GO annotations were
obtained using the Gene Ontology database. Expression
levels of genes were evaluated and normalized using
RPKM (reads per kilobase of exon model per million
mapped reads) (Mortazavi et al., 2008). Differentially
expressed genes (DEGs) were identified using DESeq2
(V1.6.3) (Love et al., 2015) and edgeR (V3.4.6) software
(Robinson). Significantly differentially expressed gene
sequences exhibiting at least a two-fold change in RPKM
values between the two libraries (with adjusted P values <
0.001) were subjected to analysis in this work.

gPCR analysis: Soybean mRNA isolates (CK1, HI1, and
VI11) prepared for RNA-seq were reverse-transcribed into
cDNA then were validated for gene transcript abundance
via qPCR using Power SYBR Green Master Mix
(TaKaRa) and an Applied Biosystems 7500 Real-Time
PCR System. For qPCR, 22 primers were used and their
sequences are shown in (Table 1). The tubulin gene was
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used as an internal quantitative reference and all samples
were processed in triplicate. The AACT method was used
to normalize the CT value of each gene with that of the
reference gene to determine the relative fold change of
each sample (Livak & Schmittgen, 2001).

Results and Discussion

Soybean (G. max) transcriptome analyses: Soybean
transcriptomes were analyzed by RNA-seq Analyzer II.
Total RNA was prepared from plants that were grown at
25°C for 2 weeks then infested with aphids. For 24 h,
aphid-damaged leaves (the emitter leaves) generated
volatiles that interacted with uninfested receiver leaves,
then total RNA was separately extracted from emitter and
receiver leaves and analyzed. Three biological replicates
were harvested for each group of samples (emitter, receiver,
negative control). More than 467 million raw reads were
produced that generated about 52 million clean reads per
sample (Table 2). We aligned the clean reads against the
whole soybean reference genome using the HISAT2
(v2.0.1). 78.22%-88.14% of reads were uniquely mapped
to a single genomic location, while 4.18%-7.65% of reads
were filtered into multiple-mapped reads.

Differential expression in response to aphid damage
and volatiles: In order to study the effects of aphids and
volatiles on soybean gene expression, the transcriptional
abundance of each gene was evaluated by RPKM. For
comparison of transcriptomes, a heat map was used to
show the transcriptional abundance of all DEGs. The
results indicated that after 24 hours of exposure to
aphids and volatiles, a series of transcriptome changes
occurred in soybean.

A threshold minimum of a 2-fold change in
abundance between any two groups of samples was used
to define DEGs during the analysis. Gene expression
profiles of G. max leaf tissues after aphid infestation and
exposure to volatiles significantly differed from control
leaf tissue profiles, with aphid infestation resulting in
2413 up- and 3905 down-regulated genes and volatiles
exposure of leaves resulting in 2153 up- and 3572 down-
regulated genes (Fig. 1; Table 3). Among these DEGs,
3247 were observed in both infested leaves and receiver
leaves. The results showed that gene expression were
differences between soybean responses to aphid damage
and volatiles exposure. These results align with results
obtained for other plant species, as several previous
studies have revealed volatiles-responsive genes in lima
bean plants, although these studies did not focus on
suppressor genes due to limitations of microarray analysis
(Arimura et al., 2000a). Here, analysis of suppressor
genes in leaves infested by aphids or exposed to induced
volatiles was important to increase understanding of
signal transduction. To verify RNA-seq results,
expression profiles of several genes implicated using
RNA-seq were also analyzed using qRT-PCR. The gRT-
PCR results demonstrated expression patterns similar to
patterns revealed using RNA-seq (Table 1).
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Fig. 1. 2-fold differentially expressed genes of Glycine max in response to aphid damage and volatiles exposure. CK: control sample.
HI: emitter leaves infested by aphid. VI: uninfested receiver leaves exposed to volatiles. The CK-VS-HI and CK-VS-VI represent
differentially expressed genes in response to aphid damage and volatiles exposure, respectively.

GO term enrichment and KEGG analysis: In order to
elucidate the obvious changes of biological processes in
response to aphid damage and volatiles exposure in
soybean, DEGs were subjected to GO and KEGG
enrichment analysis (Figs. 2 and 3). The results indicated
that these genes were associated with broad functions,
including amino sugar metabolism, biosynthesis of
amino acids, carbon metabolism, glycine metabolism,
nucleotide sugar metabolism, photosynthesis, serine
metabolism, starch metabolism, sucrose metabolism, and
threonine metabolism.

Previous studies have demonstrated that hormones, as
signaling molecules, play an important role in regulating
gene expression in response to herbivory and volatiles
exposure (Ruther & Kleier, 2005; Ton et al., 2010; Li et
al., 2022; Huang et al., 2022; Ye et al., 2022;
Karssemeijer et al., 2022). RNA-seq results revealed
altered expression of many genes associated with
hormone signaling functions after aphid infestation and
exposure to volatiles. For example, we found more than
ten auxin-induced protein genes, such as Glyma.
13G091100, Glyma. 06G123500, Glyma. 16G084300,
Glyma. 06G278400, Glyma. 19G161000, Glyma.
04G250600, Glyma. 12G124500, Glyma. 10G031800,
Glyma. 10G031900, Glyma. 13G142900, Glyma.
10G180100, Glyma. 02G142500, Glyma. 02G142600,
Glyma. 09G221600, Glyma. 15G012800, Glyma.
13G189700, and Glyma. 06G025500. Of these, some
genes were up-regulated in response to aphid damage or
volatiles, while others were down-regulated (Table 4).
Notably, an ACX (acyl-CoA oxidase) gene involved in
jasmonic acid (JA) biosynthesis (Schilmiller et al., 2007)
aligns with a soybean gene identified here that encodes an
ACX gene (Glyma.11G035200) which showed decreased
transcript abundance after aphid infestation (Table 4). In
another study, microarray analysis showed up-regulation
of a tyrosine aminotransferase gene and allene oxide
synthase (AOS) gene of aphid-infested A. thaliana
(Kusnierczyk et al., 2007). Here, our data confirmed

increased  transcripts of the soybean tyrosine
aminotransferase gene (Glyma.06G235500) in response to
aphid damage and volatiles (Table 4). By contrast, two
AOS genes (Glyma.17G246500 and Glyma.14G078600)
exhibited decreased transcript abundance in soybean after
aphid infestation (Table 4).

In our RNA-seq analysis of soybean transcriptomes,
we also examined the expression of known plant defense
genes revealed in previous studies. Of these genes, several
were up-regulated, including callose synthase 7-like
(Glyma.18G107900) (in response to aphids), disease
resistance  protein  (in  response to  volatiles)
(Glyma.18G195200), callose synthase 2-like
(Glyma.15G268800) (in response to volatiles), and
regulatory protein NPR3-like (Glyma.02G283300) (in
response to volatiles). Meanwhile, several genes with
previously established roles in pathogen-induced plant
immunity were down-regulated during aphid infestation,
including alpha-1,4-glucan-protein synthase
(Glyma.01G063000) and microsomal omega-3 fatty acid
desaturase (Glyma.18G062000) (Table 4) (Asai et al.,
2002; Lai et al., 2008; Lu et al., 2011; Wang 2009; Will
and van et al., 2006; MacWilliams et al., 2023).

Because  microarray results had  previously
demonstrated up-regulation of other plant defense DEGs
in wheat (Smith et al., 2010), we examined expression
profiles of their soybean counterparts here. Our results
showed increased transcript abundance in soybean of
genes encoding glutathione S-transferase GST 6
(Glyma.07G140100) (after infestation by aphids and
exposure to volatiles), heat stress transcription factor Hsf-
21 (Glyma.10G029600) (after infestation by aphids), and
glutathione S-transferase GST 7 (Glyma.07G140000)
(after exposure to volatiles) (Table 4). However, our
results showed decreased transcript abundance reflecting
down-regulation of expression of soybean genes encoding
putative calcium-binding protein (Glyma.17G128900)
and nitrate reductase [NADH] 2 (Glyma.14G165000)
after aphid infestation and volatiles exposure (Table 4).
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Fig. 2. Functional categories of the GO terms of all Glycine max genes in response to aphid (A) and volatiles (B). The red, green, and
blue color represents molecular function, cellular component, and biological process, respectively.
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Conclusions

After 24 hours of aphid infection and exposure to
volatiles, a series of transcriptome changes occurred in
soybean. Soybean aphid infested plants exhibited 2413
up-regulated and 3905 down-regulated genes, while leaf
exposure to volatiles resulted in 2153 up-regulated and
3572 down-regulated genes. These genes were endowed
with a wide range of functions including ‘hormone
responses’, ‘pathogen-related’, and ‘oxidative stress’
functions. The results ultimately demonstrated that aphid
damage and volatiles exposure elicited drastic metabolic
changes in soybean leaves. These results also emphasize
that RNA-seq analysis of repressed genes should
contribute to our understanding of signal transduction in
aphid-infested leaves, as well as in leaves exposed to
herbivory-induced volatiles.
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