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Abstract

Salt indicator species inhabiting wild habitats could provide important information regarding salinity-tolerance
mechanisms in plants. In this study, Tamarix dioica populations were collected from saline habitats all over the Punjab i.e.,
from Khabeki Lake, Uchali Lake, Kallar Kahar Lake, Katha Saghral, Lilla range, Kirrana hills, and Faisalabad. Their
salinity tolerance potential was accessed based on growth, photosynthetic pigments, oxidative stress indicators, anti-
oxidative enzyme activities, and anatomical attributes. Many populations of Tamarix dioica maintained chlorophyll contents
at high salinities. Higher accumulation of proline, glycine betaine, free amino acids, soluble sugars, soluble proteins, and
ascorbic acid contributed to growth maintenance under saline environments. An increase in the shoot potassium, calcium,
and magnesium was consistent with a concurrent decrease in shoot sodium. Among the anatomical features, an increase in
root epidermis thickness, cortex, endodermis, phloem, vascular bundle, metaxylem, pith, and sclerification was recorded
intolerant populations. Similarly, stem epidermis, cortex, metaxylem, phloem, and vascular bundle areas increased under salt
stress. All these features differentially enabled 7. dioica populations to survive in highly saline environments.

Key words: Ion homeostasis, Osmoregulation, Anatomical modifications, Salinity tolerance, Tamarix dioica.

Abbreviations: 153R: Chak 153 RB; ASA: Ascorbic acid; Ca?*: Shoot calcium; Car: Carotenoids; CellRTh: Stem thickness; Chl a:
Chlorophyll a; Chl b: Chlorophyll b; CortCA: Cortical cell area; CortTh: Cortical thickness; CRCA: Cortical region cell area;
CRTh: Cortical region thickness; EndCA: Endodermal Cell area; EndoTh: Endodermal thickness; EPiCA: Epidermal cell area;
EpiCA: Epidermal cell area; EpiTh: Epidermal thickness; EpiTh: Epidermal thickness; FAA: Free amino acids; GB:
Glycinebetaine; H,0,: Hydrogen peroxide; K*: shoot potassium; Khab: Khabike Lake; Kir: Kirrana Hills; lai: Leaf area index; Lill:
Lillah 1; Llil 2: Lillah 2; Lpp: Leaves per plant; Mg**: Shoot magnesium; MXCA: Metaxylem cell area; MXCA: Metaxylem cell
area; MXTh: Metaxylem thickness; MXTh: Metaxylem thickness; Na*: Shoot sodium; P111: Pull 111; Ph: Plant height; PhCA:
Phloem cell area; PhCA: Pith cell area; PhTh: Phloem thickness; PhTh: Pith thickness; PithCA: Pith Cell area; PithTh:
Piththickness; Pkh 2: Peer Khara 2; Pkh1: Peer Khara 1; POD: Peroxidase; Pro: Proline; RR: Root radius; Rt: Root length; ScA:
Sclerenchymatous cell area; SelTh: Sclerenchyma thickness; Sdw: Shoot dry weight; Sfw: Shoot fresh weight; SHA: Sahianwala A;
SHB: Sahianwala B; SHC: Sahianwala C; SP: Soluble proteins; SS: Soluble sugars; Sug: Katha Saghral; Ucha: Uchali Lake; VBCA:

Vascular bundle cell area; VBNo: Vascular bundle number; VBTh: Vascular bundle thickness; VBTh: Vascular bundle thickness

Introduction

Soil salinization is the driving factor for land
degradation all over the world. Salt-induced soil
degradation is increasing rapidly, mainly due to the
excessive use of fertilizers, poor irrigation practices, and
increasing dryness (Meena et al., 2019). Worldwide,
saline soils account for more than 831 Mha of the total
world’s area (Amini et al., 2016), including 434 Mha of
sodic and 397 Mha of saline soils (Anon., 2015). In
Pakistan, salinity-affected areas are more than 7 Mha
containing both saline and sodic soils (Anon., 2017).
Therefore, targeting salt-tolerant plant species to
rehabilitate these salt-affected soils is the basic necessity
for the current era (Liang et al., 2017). Identifying salt-
tolerant plant species has a massive potential to
rehabilitate these salt-affected soils (Glenn et al., 2013).

Salt stress causes numerous effects on plant growth
and development. These effects can be observed at
cellular and whole plant levels due to physiological and
molecular processes disturbance. For example, salt stress
caused a higher accumulation of Na' in the chloroplast,
which ultimately resulted in chlorosis and disruption of
plant tissues (Flowers et al., 2015). Furthermore, such a
high accumulation of cytosolic Na' reduces the osmotic

potential of mesophyll cells in leaves, impairing the
photosynthetic electron transport chain (Chaves et al.,
2009). Apart from this, higher production of reactive
oxygen species further inhibits plant growth in saline soils
(Flowers et al., 2015). By contrast, salt-tolerant plant
species efficiently quench reactive oxygen species (ROS)
by up-regulation of antioxidant enzymes and maintaining
ionic homeostasis in the cytosol (Guo et al., 2021).

Halophytes counter salinity mainly by osmotic
adjustments, exclusion, and homeostasis of Na' to achieve
tolerance by tissue-specific modifications (Kumari ef al.,
2019). These salt-tolerant plants have achieved
modifications in photosynthetic machinery over the
course of evolution, which enable them to thrive under
saline extremities without compromising growth and
photosynthesis (Himabindu et al, 2016). Major
adaptations  include  structural ~and  functional
modifications to avoid Na" and CI” accumulation at the
cellular level (Joshi et al., 2015). In addition, salt-tolerant
plants exhibit many structural and functional changes in
the ultrastructure of leaf chloroplast i.e., having larger
mesophyll cells in the broad lamina (Rozentsvet et al.,
2016). Furthermore, many obligate halophytes show
improved water use efficiency, leading to an improved net
CO, assimilation rate (Rabhi et al., 2012).
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Tamarix dioica Roxb. ex Roth is the most suitable
species to combat land degradation in changing climatic
conditions. This genus consists of halophytic shrubs and
trees native to Southern Europe, North Africa, the Middle
East, and South Asia (Gaskin & Schaal, 2002). Due to their
fast growth, easy vegetative propagation, and acclimation
capability to a wide range of contrasting environmental
conditions, these plants are of particular interest (Daoyuan
et al., 2003). Most importantly, members of this genus
show various protective mechanisms that ensure survival
and growth in harsh environments (Jasiem et al., 2019).
One of the primary mechanisms includes the presence of
salt glands on leaves, which play an important role in
regulating ionic balance and regulating osmotic and turgor
pressure under high salinity. It was hypothesized that
different populations growing in hyper-saline habitats
should have evolved different structural adaptations to
assist ion homeostasis for enhanced salinity tolerance.
Keeping in view, the current study was conducted to
investigate the role of ion homeostasis and osmoregulation
in the adaptability of Tamarix dioica Roxb. ex Roth to
diversified environments through modulation of structural
and functional features.

Materials and Methods

Site Selection and sampling: Eleven sites [Kirrana hills
(31.97N, 72.70E), Katha Saghral (32.52N, 72.44E),
Kallar Kahar 1 (32.79N, 72.69E), Kallar Kahar 2
(32.76N, 72.69E), Lilla 1 (32.58N, 72.73E), Lilla 2
(32.54N, 72.78E), 153 Rakh branch (31.59N, 73.30E),
Sahianwala site B (31.63N, 73.24E), Sahianwala site C
(31.67N, 73.21E), Khabbeki Lake (i), Uchali Lake
(32.55N, 72.03E)] were selected from five ecological
ecozones (salt marshes, waterlogged salinity, seasonal
inundation, dry-land salinity, and saline desert) of Punjab
during 2017-18. These sites were selected based on their
ecological and edaphic characteristics, especially soil
composition, salinity level, habitat, and vegetation type.
Ten plants (replicates) were collected from each selected
salt-affected ecozones. The plants were immediately
placed in zipper bags and stored in the icebox for
laboratory analysis.

Soil analysis: Soil samples (in three replicates) adhering to
the rooting zone of each plant from all habitats up to 30 cm
depth were taken to analyze the physicochemical
characteristics. The well-mixed soil samples were extracted
with vacuum and used to determine the pH and ECe using
a pH/EC meter (Inolab, WTW series, UK). The protocol of
Moodie et al, (1959) was followed to determine soil
texture. Sodium (Na"), potassium (K, and calcium (Ca™)
contents were measured from a soil saturation paste extract
with a flame photometer (Jenway, PFP-7).

Analyses of biochemical characteristics

Ionic content of root and shoot: Dried shoot and root
material (0.5 g) were digested with sulphuric acid and
hydrogen peroxidase for the quantification of various ions
viz., calcium, sodium, and potassium (Wolf, 1982) using
a flame photometer (Jenway, PFP-7).

ZAHER UDDIN BABAR ET AL.,

Organic osmolytes: Free amino acids were estimated
following Hamilton & Van Slyke (1943). Total soluble
sugars were evaluated by the method of Yemm & Willis
(1954). Total soluble proteins were determined following
Lowry et al., (1951). Glycinebetaine was assessed by the
procedure of Grieve & Grattan (1983), while proline was
determined following Bates ef al., (1973).

Oxidative stress indicators: The procedure of Goliber
(1989) was used for quantification of leaf peroxidase
(POX). Hydrogen peroxide was determined by following
Velikova et al., (2000).

Leaf ascorbic acid: Leaf ascorbic acid was assessed by
method of Mukherjee & Chaudhary (1983).

Anatomical characteristics: Anatomical characteristics
were studied from permanent slides prepared by free hand
sectioning. For the anatomical investigations, a piece (2
cm) was taken from the longest branch and from base of
the thickest root of same plant. The samples were fixed in
FAA solution (v/v formalin 10%, acetic acidic 5%, ethyl
alcohol 50% and refined water 35%) for 48 h. After that,
the samples were shifted to another solution (v/v acetic
acid 25%, and ethanol 75%) for long-term storage. The
samples were dehydrated in graded series of ethanol
following staining with standard double-stained using
safranin and fast green. Photographs were taken with the
help of a camera-equipped light microscope (Nikon 104,
Japan) using an ocular micrometer, which was calibrated
with a stage micrometer. For root anatomy, dermal tissue
(epidermis, root hair), ground tissue (parenchyma,
sclerenchyma) and vascular tissue (xylem, phloem) were
measured. For stem anatomy, stem cross-sectional area,
dermal tissue (epidermis, root hair), ground tissue
(parenchyma, sclerenchyma), and vascular tissue (xylem,
phloem) were measured.

Statistical analysis: The statistical package Minitab was
used for calculation of least significant differences (LSD)
following Steel et al., (1997). Canonical Correspondence
Analysis (CCA) triplot were constructed using Canoco for
windows (v 4.0).

Results

Soil characteristics: The soil was collected from
different saline habitats to determine pH, ECe, TDS, OM,
APho, Na" K*, Ca®" and Mg*". The CCA triplot for soil
and sites showed the low influence of sodium, calcium,
and magnesium with Sahianwala site B. Similarly, soil
sodium showed weaker influence on Khabbeki, Kallar
Kaharl, and Lillal sites along with low potassium and
calcium as compared to other sites. Kallar Kahar site 3
also showed low influence of sodium and high with
potassium and calcium, as they were plotted away from
the magnesium. These sites contained low sodium,
electrical conductivity, and total dissolved salts. On the
other hand, all other sites i.e., Sahianwala site C, Kirrana,
Katha Saghral, Peer Khara, Uchali, 153 RB, Kirrana 2,
Peer Kharal, Lilla 2, Kirrana 1, Peer Khara 2 and Pull 111
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did not show much variation in soil sodium, potassium,
calcium as well as magnesium. Peer Khara and 153 RB
contained maximum electrical conductivity. Lillal, Peer
Kharaland 2 contained maximum total dissolved salts.
Available phosphorus did not cause any significant
variation among sites. Organic matter was equally
distributed among the sites except in Kallar Kahar 2,
Katha Saghral, and Khabbeki Lake that contained lower
organic matter (Fig. 1).

Shoot ionic contents: Shoot Na' was the highest in plants
collected from Sahianwala C site and lowest in plants
inhabiting Khabbeki Lake. Shoot K" was the maximum in
Khabbeki Lake population and the minimum in plants
belonging to Katha Saghral site. The Mg*" concentration
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was the highest in plants collected from 153 RB and Peer
Khara 2 sites. The lowest concentration was found in
Kirrana hills and Pull 111 populations. Shoot Ca®" value
was the highest in plants inhabiting Peer Khara and the
lowest in those collected from Lilla 2 and Katha Saghral
sites (Table 1).

Photosynthetic pigments: The concentration of Chl a
was the highest in plants inhabiting Lillal and lowest in
plants collected from Khabbeki Lake and Peer Khara 2.
The Chl. b was the highest in plants of Lillal population
and the lowest in plants inhabiting Khabbeki Lake,
Sahianwala C site, and Katha Saghral sites. Carotenoid
contents were the maximum in Lillal population and the
lowest in plants collected from Khabbeki Lake (Table 1).
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Fig. 1. RDA biplots of variation in soil characteristics among sites (a), and, CCAtriplotsof soil characteristics within sites plotted
against on physiological attributes (b), root anatomy (c) and stem anatomy (c) of Tamarix dioica collected from different saline areas.
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Organic osmolytes: Highest amino acids were found
in plants collected from Kirrana hills which differed
significantly from those collected from Lilla 1, Peer
Khara, 153 RB and Khabbeki Lake sites. Soluble
sugars were the maximum in plants inhabiting both
Peer Khara sites, Sahianwala C, Katha Saghral and Pull
111. The lowest soluble sugars were recorded in plants
collected from Lilla and Khabbeki Lake. Soluble
proteins were the maximum in plants inhabiting Pull
111 while the lowest was recorded in populations
collected from153 RB, Kirrana hills, and Sahianwala C
sites. Proline was the maximum in plants collected
from Peer Khara 2 following Pull 111 sites.
Glycinebetaine differed non-significantly in plants
collected from all sites except those plants belonging to
Katha Saghral (Table 1).

Peroxidase, hydrogen peroxide and ascorbic acid:
Peroxidase was the highest in plants collected from
Peer Khara and the lowest in Pull 111, Katha Saghral,
Kirrana, Lilla2, Sahianwala C, 153 RB, and Peer
Khara2 populations. Hydrogen peroxidase was non-
significantly different in plants collected from all sites.
Ascorbic acid was the highest in plants collected from
Kirrana Hills and the lowest in plants inhabiting Peer
Khara site (Table 1).

Root anatomical characteristics: Root epidermal
thickness was the maximum in plants collected from
153 RB and the minimum in those belonging to Peer
Khara 1 and Lilla 1. The endodermal cell area was the
maximum in plants collected from Lillal and the
lowest in those inhabiting Kirrana Hills, Peer Kharal
and Pull 111 sites. Vascular bundle thickness was the
maximum in Lillal and the lowest in Sahianwala C,
Katha Saghral and Peer Khara 2 populations. Pith was
the thickest in plants collected from Khabbeki Lake
and the thinnest in those belonging to Peer Kharal.
Pith cell area was the highest in plants inhabiting
Khabbeki Lake and the lowest in those collected from
Peer Kharal, Katha Saghral, 153 RB and Sahianwala C
sites. Root radius was the highest in plants belonging
to 153 RB and the lowest in those collected from
Lillal, Peer Kharal and 2 sites. Root metaxylem was
thick in plants collected from Khabeki Lake and the
thinnest in those collected from Sahianwala C, Peer
Kharal, and Katha Saghral. Metaxylem cell area was
the maximum in plants inhabiting Kirrana hills and the
lowest in those belonging to Sahianwala B, Katha
Saghral and Khabbeki Lake sites. Phloem was the
thickest in plants collected from Pull 111 and
Sahianwala C site and the thinnest in 153 RB plants.
Phloem cell area was the maximum in plants inhabiting
Sahianwala C and Pull 111 and the lowest in 153 RB
plants. Cortex was the thickest in plants collected from
Katha Saghral and, intermediately thick in plants
inhabiting Khabbeki, Pull 111 and Sahianwala C sites.
Cortical cell area was the highest in plants collected
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from Katha Saghral while plants from all other sites
contained lower cell area. Epidermal cell area was the
maximum in plants belonging to 153 RB and the lowest
in populations collected from Lillal, and, Peer Kharal
and 2 sites. Sclerenchyma thickness was the maximum
in plants inhabiting Lilla 2 and the lowest in Khabbeki
population. Endodermal thickness was the highest in
plants collected from Pull 111 and lower in plants
belonging to Sahianwala C, Katha Saghral,
PeerKhara2, Lillal and 2, Khabbeki and 153 RB sites
(Table 2; Fig. 2).

Stem anatomical characteristics: Stem cellular
region thickness was the maximum in plants collected
from Katha Saghral and the lowest in those belonging
to Pull 111 and Kirrana hills. Vascular bundle
thickness was the highest in plants inhabiting Lilla 2
and the lowest in those collected from Sahianwala C
sites. Vascular bundle cell area was the maximum in
plants inhabiting Lilla2, and the lowest in belonging to
Sahianwala C. Vascular bundle number was the
maximum in Lillal and Peer Kharal populations and
the lowest in those belonging to Katha Saghral,
Sahianwala C and Khabbeki Lake sites. Metaxylem
thickness was the maximum in plants inhabiting
Khabbeki Lake and the lowest in plants growing at all
other sites. Metaxylem cell area was the highest in
plants collected from Khabbeki Lake and the lowest in
those belonging to Pull 111, Katha Saghral and
Sahianwala C sites. Phloem thickness was the highest
in plants inhabiting Khabbeki Lake and the lowest in
those belonging Peer Khara 1 and 2, and, 153 RB
sites. Phloem cell area was the maximum in plants
collected from Lilla 2 and Katha Saghral sites and the
lowest in those collected from Peer Kharal and 2, and,
153 RB sites. Cortical thickness was the highest in
plants inhabiting Kirrana Hills and Khabbeki Lake
sites and the lowest in those collected from Katha
Saghral and Pull 111 sites. The cortical cell area was
the most in plants belonging to Kirrana Hills,
Khabbeki Lake and 153 RB sites and lowest in those
collected from all other sites. Epidermal thickness was
the highest in Khabbeki Lake population and the
lowest in plants from all other sites. The epidermal
cell area was the maximum in plants inhabiting
Khabbeki Lake. Sclerenchyma thickness was the
highest in Kirrana Hills population and the lowest in
plants collected from Lilla 2, Peer Khara 1 and 2, Pull
111, and Katha Saghral sites (Table 2; Fig. 3).

Canonical correspondence analysis (CCA): The CCA
triplot for physiological attributes of Tamarix dioica is
given in Figure 1. Available phosphorus, organic
matter, and saturation percent were weekly influenced
at 153 RB site. Free amino acids and soluble sugars
were weekly influenced by sodium, potassium,
calcium, and magnesium of soil at Katha Saghral.
Ascorbic acid, hydrogen peroxidase, soluble proteins,
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calcium, magnesium, carotenoids, peroxidase, sodium,
potassium, chlorophyll @ and chlorophyll b were
weekly influenced by soil characters of Katha Saghral,
Peer Khara, and Sahianwala C sites (Fig. 1b). The root
cortical cell area strongly influenced plant height of
Khabike Lake population. Root phloem cell area was
influenced in plants belonging to Sahianwala C site.
Root endodermal cell area was weekly influenced by
soil saturation percentage of Lillah 1. Root radius and
root vascular bundle thickness were weekly influenced
by organic matter at Lillah 2 site. Root metaxylem cell
area was linked to soil physico-chemical properties of
Peer Khara 1 and 2 sites. Soil sodium, potassium,
calcium, electrical conductivity, and total dissolved
solids  strongly  influenced  morpho-anatomical

attributes of Kirrana Hills and 153 RB populations.
Root sclerenchyma thickness, root epidermal thickness,
root endodermal thickness, pith thickness, root phloem

Uchali Lake (j)

Fig. 2. Root anatomy of Tamarix dioica collected from different saline areas
Sites: Kirrana (a), Lilla 1 (b), Katha Saghral (c), Kallar kahar 1 (d), Lilla 2 (e), 153
Rakh branch (f), Sahianwala site B (g), Sahianwala site C (h), Khabbeki Lake (i),
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thickness, root metaxylem thickness, and root cortical
thickness were weekly influenced in plants inhabiting
Pull 111 site (Fig. lc). A higher influence of stem
epidermal cell area on plant height at Khabke Lake was
observed. Metaxylem cell area showed a week
influence of Khabke Lake, and Peer Khara sites 1 and 2
populations. Phloem cell area was weekly influenced
by soil magnesium and saturation percent of
Sahianwala C and Katha Saghral. Cortical thickness
was weekly linked with soil magnesium and saturation
percent of Katha Saghral. Vascular bundle number,
cortical thickness, sclerenchyma thickness, vascular
bundle thickness and cell area, phloem thickness,
metaxylem thickness, and epidermal thickness were
influenced by soil sodium, potassium, calcium,
electrical conductivity, total dissolved solids, and
organic matter of Kirrana Hills, Likkah 1 and 2, Peer
Khara 2, 153 RB and Pull 111 sites (Fig. 1).

Anatomical attributes: E-Epidermis, R-Xylem rays, M-Metaxylem vessels, C-
Cortex, S-Sclerenchyma bundles
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Discussion

The ecotypes of Tamarix dioica collected from
hypersaline areas behaved differently to salinity levels of
their native habitats. In populations from highly saline
areas, potassium and calcium accumulated to a much
higher degree which help cope with the salinity
successfully by neutralizing the toxic effects of sodium
concentration (Gonzalez ef al., 2000; Netondo et al., 2004).
Chlorophyll a, chlorophyll » was higher in plants belonging
to hypersaline environments, while in other plants,
chlorophyll contents decreased (Xia et al, 2017).
Magnesium was also high, which helps maintain metabolic
processes and repair the membrane damage during salinity
stress (Abugoch et al., 2009; Xia et al., 2021). Enzymatic
antioxidants like peroxidase and non-enzymatic anti-
oxidants like ascorbic acid in higher concentrations
sequester reactive oxygen species (Arora et al., 2012).
Glycinebetaine and proline were high, indicating their
crucial role as osmoprotectant under salinity stress. Soluble
sugars and soluble proteins accumulated in high quantities
in populations growing in heavily salt-affected soils
(Mahmood & Athar, 2003). The elevated levels of glycine
betaine under salinity stress are regarded as a defensive

Fig. 3. Stem anatomy of Tamarix dioica collected from different saline areas
Sites: Kirrana (a), Lilla 1 (b), Katha Saghral (c), Kallar kahar 1 (d), Lilla 2 (e),
153 Rakh branch (f), Sahianwala site B (g), Sahianwala site C (h), Khabbeki
Lake (i), Uchali Lake (j)

Anatomical attributes: R-Xylem rays, M-Metaxylem vessels, C-Cortex, P-Pith
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strategy due to its role in osmoregulation and membrane
stability (Flowers & Colmer, 2008).

Root epidermal thickness increased, and epidermal
cell area decreased intolerant populations of 7. dioica,
indicating it to be a primary mechanism against salinity
because the root epidermis directly faces soil salinity
(Bray & Reid, 2002). Cortical thickness and cortical cell
area increased, enhancing salinity tolerance by storing
extra water and toxic ions (Hameed et al., 2009). In
addition, the sclerenchyma thickness increased, which is a
necessary adaptation under salinity stress to counter the
effects of harsh conditions by providing rigidity in plant
cells (Reinoso et al., 2004). Increased root radius in some
populations enhanced root succulence to absorb and store
extra water (Yuling et al., 2000). Metaxylem thickness,
metaxylem cell area, phloem thickness, and phloem cell
area increased to confer salinity tolerance by better water
transport  water through large metaxylem and
photosynthate translocation through the phloem (Long et
al., 2021). An increase in endodermis thickness and
endodermal cell area was an important factor in coping
with salinity stress as it facilitates radial movement of
water and ions from endodermis (Vasellati et al., 2001).
Pith thickness also increased, but pith cell area decreased
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as it is a critical adaptation in many dicots against salinity
tolerance by storing extra water (Bernstein & Kafkafi,
2002; Mansoor, 2015; Bencherif et al., 2020).

For a plant to be tolerant against harsh saline
environments, every tissue must play its specific role
efficiently. Stem cellular region thickness increased to
tolerate against the saline habitat. Cellular region thickness
increased, accompanied by increased epidermis thickness,
cortical thickness, vascular bundle thickness, phloem
thickness, sclerenchyma thickness, and metaxylem
thickness (Kheloufi & Mansouri, 2019). Vascular bundle
thickness, vascular bundle number, and vascular bundle
area increased to help better conduction of water than less
tolerant populations (Naz et al., 2013). Furthermore, an
increase in the phloem thickness, the phloem cell area is an
essential strategy to cope with the salinity stress and to help
improve photosynthetic translocation. The increase in
metaxylem thickness and cell area play an essential
function against salinity stress as a significant metaxylem
function provides a large amount of water in a saline
habitat. Sclerenchyma thickness is an essential factor to
help save water as well as provide rigidity to the plant
organs (Corréa-Ferreira et al., 2019).

Conclusion

All ecotypes of Tamarix dioica collected from
hypersaline areas behaved differently to salinity levels based
on native habitats. The populations from highly saline
habitats accumulated more magnesium, potassium, and
calcium in shoots resulting in higher chlorophyll a,
chlorophyll » contents. Antioxidants (ascorbic acid and
peroxidase) and osmoprotectants (glycinebetaine, proline,
soluble sugars, and soluble proteins) were higher in tolerant
populations that efficiently sequestered reactive oxygen
species and enhanced osmolyte based protection against
salinity stress. The epidermal thickness increased, and the
epidermal cell area decreased. An increase in endodermis
thickness and endodermal cell area has been identified as an
essential factor in coping with salinity stress's adverse
effects. Cortical thickness and cortical cell area,
sclerenchyma thickness, metaxylem thickness, cell area,
phloem thickness, and cell area also increased, contributing
to salinity tolerance linked to better water transport
photosynthate translocation through the vascular bundle. All
these adaptations enabled the 7. dioica populations to adapt
to saline environments of corresponding habitats differently.
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