Google
 

Back to Contents

 

Pak. J. Bot., 48(2): 607-612, 2016.

FREE FULL TEXT PDF

  Back to Contents
   

 

  Updated: 01-04-16

 

 

CHANGES IN NON-ENZYMATIC ANTIOXIDANT CAPACITY AND LIPID PEROXIDATION DURING GERMINATION OF WHITE, YELLOW AND PURPLE MAIZE SEEDS

 

BENLIANG DENG*, YIFEI ZHANG, KEJUN YANG AND ZUOTONG LI

 

Abstract: In this study, the changes in non-enzymatic antioxidant capacity and lipid peroxidation during the germination process of purple, yellow and white maize seeds were compared, under favorable conditions. Results showed that germination can increase non-enzymatic antioxidant capacity (evaluated with ferric reducing power and 2, 2-diphenyl-1-picryl-hydrazyl-hydrate radical scavenging capacity) and lipid peroxidation levels for all these seeds. In addition, non-enzymatic antioxidant capacity observed in the germinating seeds were in the order of purple > yellow > white. However, the highest and lowest levels of lipid peroxidation could be seen during the germination processes of the white and purple seeds, respectively. In addition, the germination rates of the seeds followed the order of white > yellow > purple. Further studies showed that H2O2 treatment can significantly promote seed germination, especially for purple seeds. In addition, DMTU (dimethylthiourea), a specific scavenger for H2O2, could slightly but significantly arrest dormancy release. Data analysis showed that a high negative correlation (R2 = -0.955) existed between non-enzymatic antioxidant capacity and germination rates. However, a high positive correlation (R2 = 0.860) could be detected between lipid peroxidation and germination rates. Finally, lipid peroxidation as a possible novel signaling mechanism for seed germination has been discussed under stress-free conditions.

 

Key words: Antioxidant capacity, Germination rate, Lipid peroxidation, Maize seeds.

 


Heilongjiang Higher Educational Key Laboratory for Cold-regional Crop Cultivation and Germplasm Improvement, Department of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China

*Corresponding author’s email: benliangdeng@163.com; Tel (Fax): +86-0459-6819170


   
   

 

   
Back to Contents  

 

  Back to Contents