INDUCTION OF SYSTEMIC RESISTANCE IN COTTON BY THE NEEM CAKE AND PSEUDOMONAS AERUGINOSA UNDER SALINITY STRESS AND MACROPHOMINA PHASEOLINA INFECTION

AFSHAN RAHMAN1, VIQAR SULTANA2, JEHAN ARA3 AND SYED EHTESHAMUL-HAQUE1*

1Agricultural Biotechnology & Phytopathology Laboratory, Department of Botany, University of Karachi, Karachi 75270, Pakistan
2Biotechnology & Drug Development Laboratory, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
3Postharvest & Food Biochemistry Laboratory, Department of Food Science & Technology, University of Karachi, Karachi 75270, Pakistan
*Corresponding author’s email: ehtesham12@hotmail.com, sehaq@uok.edu.pk

Abstract

Induction of systemic resistance by neem cake (Azadirachta indica) and endophytic Pseudomonas aeruginosa, a plant growth promoting bacterium, was evaluated in cotton (Gossypium hirsutum L.) under salinity stress and fungal infection. The combination of biocontrol agent and organic matter induced tolerance against fungal infection (Macrophomina phaseolina) and salinity stress (EC= 17.3 dS m⁻¹) by producing salicylic acid 6.9–8.6 mg/mL as compared to 2.8–4.6 mg/mL in control plants in field experiment, while polyphenols was found 3.1–3.7 mg/mL in neem cake + bacteria treated plants as compared 2.7–2.9 mg/mL in control plants. Cotton plants inoculated with M. phaseolina showed maximum infection in control plants (75%), while 37.5% plants were found infected in neem cake + P.aeruginosa treatment in field experiments. A significant (p<0.05) increase in shoot length was observed in combined treatment of neem cake + bacteria compared to control plants (25.7–26.7 cm) kept under biotic or salinity stresses. Similarly, free radical scavenging activity was found highest in plants received P.aeruginosa in neem cake amended soil in both DPPH (2, 2-diphenyl-2-picrylhydrazyl) and ABTS (2, 2’-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) methods. Similar results were also observed in screen house experiment. Application of endophytic P.aeruginosa in neem cake amended soil hold promise for the induction of systemic resistance in cotton.

Key words: Pseudomonas, Neem cake, Induced systemic resistance, Biotic stress, Abiotic stress.

Introduction

The biological control of soil-borne pathogens with organic amendments and microbial antagonists is gaining popularity in crop protection system, due to adverse effects of chemicals (Bharathi et al., 2004, Senthirajra et al., 2010). Several antimicrobial by-products (e.g. organic acids, hydrogen sulfide, phenols, tannins and nitrogenous compounds) are released during decomposition of organic matters or synthesized by microorganisms involved in such degradation (Mian & Rodriguez-Kabana, 1982; Oka, 2010). Phenolics are phytochemicals, synthesized in plants in response to biotic or abiotic stresses (Briskin, 2000, Dai & Mumper, 2010). Neem and its products has widely been reported to control insect pests (Ascher, 1993, Schnutterer, 1995), plant parasitic nematodes (Akhtar & Mahmood 1995), plant fungal diseases (Dubey et al., 2009, Ehteshamul-Haque et al., 1995; 1998) and act as a potential agricultural fertilizer (Gajalakshmi & Abas, 2004). The neem seed cake has also been reported to improve antioxidant status of plants (Ghimeray et al., 2009).

In resistant varieties of plants phenolics are accumulated very rapidly at the site of infection after pathogen’s attack, resulting in the effective isolation of the pathogen (Chérit et al., 1991; 1992). Salicylic acid (SA) is a natural phenolic compound is essential for the development systemic acquired resistance (SAR) in plants (Gaffney et al., 1993, Hussain et al., 2015). SA also play an important role in the response to salinity stress (Miura & Tada, 2014). Plant growth promoting rhizobacteria (PGPR) can induce systemic defense in plant against a variety of bacterial diseases, nematodes, pests and fungal infection (DeMeyer & Hofte, 1997, Hass & Defago, 2005). The bacteria belonging to the fluorescent Pseudomonas have been reported to suppressed several plant diseases (Noreen et al., 2015; Siddiqui & Ehteshamul-Haque, 2001). Among the fluorescent Pseudomonas, P. aeruginosa, isolated from rhizosphere, rhizoplane and also as endophyte were found to reduce several soilborne pathogens on several crops (Alzai et al., 2013; Bokhari et al., 2014; Ehteshamul-Haque et al., 2013; Shaifique et al., 2015a; 2015b). Besides, Direct suppression P. aeruginosa also induced systemic resistance in plants via synthesis of salicylic acid (DeMeyer & Hofte, 1997, DeMayer et al., 1999).

The cotton (Gossypium hirsutum L.) is one of the most important crops of Pakistan is affected by Macrophomina phaseolina, besides, cotton leaf curl virus (Anjum et al., 2014; Parveen, 2011, Watkins, 1981). Macrophomina phaseolina has wide host range and is responsible for causing losses on more than 500 cultivated and wild plant (Ijaz et al., 2012, Khan, 2007). Suppression of parasitic nematodes and soil borne fungi have been reported by organic amendments (Oka, 2010). However, induction of systemic resistance in plants by the neem cakes soil amendment is poorly investigated (Oka, 2010). The present report describes the effects of organic amendment with neem cake alone or with P. aeruginosa on root rotting fungi, plant growth, and stimulation of defense system in cotton.

Materials and Methods

Experimental design: The experiment was conducted in randomized complete block design with four replicates to evaluate the induction of systemic resistance in cotton by the neem cake and P. aeruginosa under M. phaseolina infection and salinity stress. The experiments were conducted under in screen house and also in field plots.

Bacterial culture: An endophytic isolate of P. aeruginosa (ABPL-251), a plant growth promoting bacterium (PGPB), obtained from Karachi University Culture Collection was used in these experiments. The bacterial isolates was originally isolated from root of a healthy okra plant and have shown significant biocontrol activity against soilborne diseases in our previous studies (Afzal et al., 2013; Shafique et al., 2015b).

Fungal inoculum: Macrophomina phaseolina, isolated from diseased roots of cotton and multiplied on potato dextrose agar (PDA) was used in these experiments.

Screen house experiment: Neemex powder (neem cake) purchased from Sigma Energy (pvt) Ltd, Karachi was mixed with sandy loam soil (pH 8.0) at 1% w/w. The soil had a natural infestation of M. phaseolina (2-8 sclerotia g⁻¹ of soil) as determined by wet sieving and dilution plating (Sheikh & Ghaffar, 1975), 3-10% colonization of Rhizoctonia solani on sorghum seeds used as baits (Wilhelm, 1955) and 3000 cfu g⁻¹ of soil of a mixed population of Fusarium oxysporum and F. solani as determined by soil dilution technique (Nash & Snyder, 1962). Earthen pots (15 cm diameter) were filled with 1 kg amended soil and kept at 50% water holding capacity (WHC) by the daily adjustment of water (Keen & Raczkowski, 1921). The pots were watered for 7 days to allow complete decomposition of organic matter. Cotton seeds, purchased from Tassco Seed Corporation (FH-1000) were sown in each pot at 6 seeds per pot and 25 mL aqueous suspension of P. aeruginosa (8×10⁸ cfu/mL) grown in KB broth was drenched onto each pot. After germination four seedlings were kept in each pot and excess were removed. Plants grown in unamended or un-inoculated soil served as control. Five day old culture of M. phaseolina was macerated in one liter distilled water and 25 mL of this suspension (mycelial/sclerotial) containing 1g fungus was inoculated around the roots by careful removing of the top layer of soil and after inoculation the soil was spread over inoculum. Non-infested soil served as control.

Salinity stress: For salinity stress 1% sea salt solution (EC= 17.3 dS, mL⁻¹) was applied daily to plants after planting in earthen pots lined with polythene sheets to avoid salt leaching. Seedlings not received salt but received equal amount of water served as control. The experiment was terminated after 30 days and cotton seedlings were carefully uprooted and roots were washed under tap water. Observation on plant growth, such as plant height and fresh weight of shoot, root length, fresh root weight, fungal infection and plant stress resistant markers like phenolic content and salicylic acid were determined.

Field experiment: The experiment was repeated under field condition in 2×2 meter field plots (sandy loam soil) at Crop Disease Research Institute, Pakistan Agricultural Research Council, Karachi University Campus, Karachi. The soil had natural infestation of root rotting fungi as mentioned above. The neem cake, 70gm was mixed in 2 meter row and watered at one day interval for 7 days to allow decomposition of organic matter. Thirty seeds of cotton were sown in each row. Each treatment was replicated four times and randomized in complete block design. The experimental treatments and plant parameters were same as used in the pot experiment except that the aqueous suspension of P. aeruginosa (8×10⁸ cfu. mL⁻¹) and mycelial suspension of M. phaseolina were used at 250 mL per row. Plants irrigated with equal amount of water or saline water thrice in a week. Observations were recorded after 30 days of growth.

Determination of fungal infection: To assess the efficacy of soil amendment and P. aeruginosa under M. phaseolina infection and salinity stress the roots were washed thoroughly with sterilized water and the causal fungi were isolated, where tap roots were cut into small pieces (1 cm long), surface sterilize with sodium hypochlorite (1%) for 3 minute. The sterilized root pieces were aseptically transferred onto Petri dishes containing potato dextrose agar (PDA) supplemented with penicillin (100,000 units litre⁻¹) and streptomycin (0.2 g litre⁻¹) and incubated at room temperatures (25–30°C) for 5 days. Fungi emerged from root pieces were identified and infection percentage were calculated (Shafique et al., 2015a).

Sample preparation for biochemical analysis: The leaves of cotton were placed in small paper bags and dried in oven at 70°C. The dried leaves were extracted with EtOH (96% v/v) at the concentration of 10 mg mL⁻¹ at room temperature. The samples were centrifuged at 1600×g for 15 minutes and supernatant was separated for biochemical analysis.

Antioxidant activity

DPPH -free radical scavenging activity: The DPPH-radical scavenging activity of sample was determined using DPPH (2, 2-Diphenyl-1-picrylhydrazyl) assay (Tariq et al., 2011). An aliquot of 200μL of extract was mixed with 800μL of 10 mMTris-HCl buffer (PH 7.4). In the mixture 30μM DPPH (dissolved in DMSO) was added and vortex. Control was made by 1mL of aqueous ethanol with 1 mL of DPPH. The absorbance was measured at 517 nm on UV-visible spectrophotometer at 0 minute against aqueous ethanol as blank. The antioxidant activity was calculated by using the formula:

\[
\text{Antioxidant activity} = \frac{\text{Absorbance of control} - \text{Absorbance of sample}}{\text{Absorbance of control}} \times 100
\]

ABTS assay: ABTS (2,2′-azino-bis (3-ethylbenzthiazoline -6-sulphonic acid), radical scavenging activity was measured by the ABTS cation de-colorization assay as described by Re et al. (1999) with some modifications. According to this method 10 mL of 7.0 mM ABTS was reacted with 176μL (140mM) potas-
sium persulphate. The solution was kept overnight in the dark to yield the ABTS® radical cation. After 24 hours incubation ABTS radical cation solution was diluted with 50% ethanol and 100 µL of ABTS reagent mixed with 1 µL of sample aliquot. Butylated hydroxytoluene (BHT) was used as standard at the same concentrations as sample. A micro plate reader (BioRad) was used to read the absorbance at 415 nm at 0 minute. Ethanol was used as a blank. Control consists of 100 µL ABTS reagent and 1 µL ethanol solvent. The inhibition percentage was calculated by the following formula:

\[
\text{Scavenging activity} \left(\%\right) = \frac{1 - \text{absorbance of sample}}{\text{Absorbance of control}} \times 100
\]

Total polyphenol analysis: For estimation of polyphenol, 100 µL aliquots were mixed with 2 mL of (2% w/v) Na₂CO₃ and allowed to stand for 2 minutes at room temperature. After incubation 100 µL of 50% Folin-Ciocalteu Phenol reagent was added and reaction mixture was mixed thoroughly and allowed to incubate for 30 minutes at room temperature in dark. Absorbance of samples was recorded at 720 nm on spectrophotometer (Chandini et al., 2008). Gallic acid was used to prepare standard curve for the calculation of phenolic content in µg mL⁻¹.

Analysis of salicylic acid: Estimation of salicylic acid (SA) was done by spectrophotometric method described by Warrier et al. (2013). SA measurements were carried out by using 100 µL of the cooled aliquots of leaves mixed with 0.1% freshly prepared ferric chloride. The volume of the reaction mixture was made up to 3.0 ml with ferric chloride and absorbance was recorded at 520 nm on spectrophotometer (Chandini et al., 2008). Gallic acid was used to prepare standard curve for the calculation of phenolic content in µg mL⁻¹.

Statistical analysis: Data were analyzed using two way ANOVA for plant growth, resistance markers and antioxidant activity, whereas, for fungal infection three way ANOVA was used. Means were separated using least significant difference (LSD) according to Gomez & Gomez (1984).

Results

Screen house experiment

Salinity stress: Neem cake amendment of soil reduced the adverse effect of salinity on plant growth and produced significantly (p<0.05) taller plants (23.7 cm) as compared 18.1 cm in salinity control plants, while 3.8 g/plant fresh weight of shoots were found in neem cake + P. aeruginosa treatment under salinity stress compared to 1.4 g/plant in salinity control plants (Table 1). In non-stressed condition, P. aeruginosa in neem cake amended soil significantly reduced M. phaseolina (6.2%) as compared to 56.2% in control plants. Whereas under salinity stress only 25% control plants were found infected with M. phaseolina (Table 2). Neem cake and P. aeruginosa alone or mixed significantly suppressed F. solani in non-stressed plants. Antioxidant activity at 0 minutes was found highest in neem cake + P. aeruginosa treatment (36.7%), which was slightly reduced due to salinity (25.2%), but was found significantly higher as compared to plant received only salinity (8.6%) (Table 3). Similarly neem cake and P. aeruginosa also induced higher amount of polyphenols (4.0-5.5 mg/mL) and salicylic acid (8.8-9.9 mg/mL) in plants as compared to plants grown in un-amended soil whether received salinity or not (polyphenol 2.2-2.8 mg/mL and salicylic acid 3.7-5.6 mg/mL) (Table 3). However, in ABTS method antioxidant activity was found increased due to salinity than control plants (Table 3).

Table 1. Effect of neem cake and Pseudomonas aeruginosa on the growth of cotton under salinity and biotic stresses (Macrophomina phaseolina) in screen house experiment.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Shoot length (cm)</th>
<th>Shoot weight (g)</th>
<th>Root length (cm)</th>
<th>Root weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No stress</td>
<td>Salinity stress</td>
<td>Biotic stress</td>
<td>No stress</td>
</tr>
<tr>
<td>Control</td>
<td>19</td>
<td>18.1</td>
<td>18.2</td>
<td>1.65</td>
</tr>
<tr>
<td>Neem cake</td>
<td>27.7</td>
<td>23.7</td>
<td>20.4</td>
<td>4.94</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>25.8</td>
<td>21</td>
<td>22.2</td>
<td>4.0</td>
</tr>
<tr>
<td>Neem cake + P. aeruginosa</td>
<td>28.9</td>
<td>22.6</td>
<td>26.6</td>
<td>5.44</td>
</tr>
<tr>
<td>LSD₀.₀₅</td>
<td>Treatments = 2.2¹</td>
<td>Stress = 1.10²</td>
<td>Treatments = 1.39³</td>
<td>Stress = 0.69⁴</td>
</tr>
</tbody>
</table>

1 Mean values in column for each parameter showing differences greater than LSD values are significantly different at p<0.05
2 Mean values in row for each parameter showing differences greater than LSD values are significantly different at p<0.05

Table 2. Effect of neem cake and Pseudomonas aeruginosa on the infection of Macrophomina phaseolina and Fusarium solani in cotton under salinity and biotic stresses (Macrophomina phaseolina) in screen house experiment.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>M. phaseolina</th>
<th>F. solani</th>
</tr>
</thead>
<tbody>
<tr>
<td>No stress</td>
<td>Salinity stress</td>
<td>Biotic stress</td>
</tr>
<tr>
<td>Control</td>
<td>56.25</td>
<td>25</td>
</tr>
<tr>
<td>Neem cake</td>
<td>18.7</td>
<td>18.7</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>12.5</td>
<td>187</td>
</tr>
<tr>
<td>Neem cake + P. aeruginosa</td>
<td>6.25</td>
<td>12.5</td>
</tr>
<tr>
<td>LSD₀.₀₅</td>
<td>Treatments = 17.4¹</td>
<td>Stress = 8.7²</td>
</tr>
</tbody>
</table>

1 Mean values in column for each fungal pathogen showing differences greater than LSD values are significantly different at p<0.05
2 Mean values in row for each stress showing differences greater than LSD values are significantly different at p<0.05
3 Mean values in row for each fungal pathogen under different stress showing differences greater than LSD values are significantly different at p<0.05
Biotic stress: Application of *P. aeruginosa* in neem cake amended soil produced tallest plant (26.6 cm) with highest fresh shoot weight (5.0 g) and root length (22.4 cm) as compared to respective control plants, which showed a plant height (18.2 cm), fresh shoot weight (1.6 g) and root length (14.6 cm) (Table 1). Plant grown in neem cake amended soil with *P. aeruginosa* showed significantly (p<0.05) less infection (12.5%) of *M. phaseolina* as compared to plants inoculated with *M. phaseolina* (68.7%) and grown in un-amended soil (Table 2). Highest antioxidant activity by DPPH method at 0 minutes was found in plants grown in neem cake amended soil and inoculated with *P. aeruginosa* (31.7%), as compared to control plants (9.3%). The same pattern was found when antioxidant activity was examined by ABTS method (Table 3). The concentration of polyphenols was noted significantly (p<0.05) higher in neem cake and *P. aeruginosa* treatment (Table 3). *Pseudomonas aeruginosa* and neem cake alone or combined induced synthesis of higher amount of salicylic acid (7.7–8.9 mg/mL) as compared to 4.7 mg/mL in control plants (Table 3).

Field plot experiment

Salinity stress: In field experiment, neem cake with *P. aeruginosa* showed a positive impact on plant growth in both normal and salinity stressed plants, with improvement in plant height (31.7–34.0 cm) and fresh weight of shoot (5.0-10.6 g) as compared to 25.5-26.7 cm of plant height and 3.9-4.7 g fresh weight in control plants (Table 4). Protective effect of neemcake + *P. aeruginosa* (25%) against *M. phaseolina* was also found in plants stressed with salinity as compared 68.7% control plants were found infected (Table 5). Neem cake + *P. aeruginosa* improved antioxidant activity of cotton plants, both normal and salinity stressed plants as compared to control and plants given only salinity stress (Table 6). Plant resistance markers like phenolic contents (3.1–4.0 mg/mL) and salicylic acid (8.6-9.1 mg/mL) were also induced in higher amount than control plants, 2.4-2.9 and 3.8–4.6 mg/mL respectively (Table 6).

Biotic stress: Under *M. phaseolina* stress, highest plant height was found in neem cake + *P. aeruginosa* (30.5 cm) or *P. aeruginosa* (30.0 cm) treatments as compared to 25.7 cm in control plants, while 14 cm root length was found in *P. aeruginosa* + neem cake treatment as compared to 9.0 cm in respective control plants (Table 4). Plant grown in neem cake amended soil showed significantly (p<0.05) less infection of *M. phaseolina* (43.7%) as compared to plants inoculated with *M. phaseolina* (75%) and grown in un-amended soil (Table 5). The efficacy of neem cake increased when *M. phaseolina* infested plants received *P. aeruginosa* (Table 5). Neem cake and *P. aeruginosa* also significantly (p<0.05) suppressed *M. phaseolina*, *R. solani* and *F. solani* both in naturally infested and *M. phaseolina* inoculated soil (Table 5). Plants grown in neem caked amended soil and received *P. aeruginosa* showed highest antioxidant activity as compared to *M. phaseolina* inoculated and control plants in both test methods i.e., DPPH and ABTS, with enhanced production of phenolic contents (3.7 mg/mL) and salicylic acid (6.9 mg/mL) as compared to respective control plants i.e. 2.7 and 2.8 mg/mL respectively (Table 6).

Discussion

Among the various stress of plants, salinity and fungal infection are two most important factors limiting crop production worldwide. The global annual losses in agricultural production from salt affected lands are more than US$ 12 billion (Flowers et al., 2010). Plant resistance against abiotic and biotic stresses is a physiological state that improved defensive capability of plant. Phenolic content and salicylic acid served as a defense molecules under various stress. In this study, phenolic content (4.0 mg mL⁻¹gallic acid equivalents) and salicylic acid (9.1 mg mL⁻¹) were found significantly higher in plants treated with *P. aeruginosa* and grown in neem cake amended soil as compared to 2.41 mg mL⁻¹ of polyphenols and 3.86 mg mL⁻¹ of salicylic acid in control plants. The accumulation of both molecules actually decides the level of tolerance of a plant against stresses (Khan et al., 2015). Phenolic compounds are well known secondary plant metabolites and total phenolic content of plant is associated with their antioxidant activities due to their redox properties, which allow them to act as reducing agents, hydrogen donors and singlet oxygen quenchers. Naseer et al. (2014) reported that neem leaves posses higher values of total phenolic content than other medicinal plants. Similarly, salicylic acid (SA) is a natural phenolic compound that influences a variety of biochemical and molecular events related with induction of disease resistance. SA has been reported to play a significant role in expression of local resistance controlled by major genes and systemic induced resistance extended after an early pathogen infection (Hammerschmidt & Smith-Becker, 2000). The antioxidant activity in DPPH-free radical scavenging activity was found increased in neemcake + *P. aeruginosa* treatment (34.0%) than control plants (12.5%) in field experiment. Different organic matters have been investigated for their antioxidant activity and neem cake amendment has been found to be more effective with regard to natural antioxidants (Ghimire et al., 2009). Reactive oxygen species (ROS) are potentially capable of altering normal plant cellular metabolism and was found increased in numerous plant species under salinity stress. Plants are protected by number of enzymatic and non-enzymatic antioxidants in relation to the scavenging free radicals (Bagheri et al., 2013). Ghihmer et al. (2011) and Naseer et al. (2014) reported that *Azadirachta indica* (neem) posses a highest scavenging activity as compare to other medicinal plants. The increased concentration of polyphenol with antioxidant activity is also supported by the study of Ghimire et al. (2009) and Kumar et al. (2008). The polyphenol accumulation and enhanced antioxidant ability in salt tolerant plants have been reported (Ksouri et al., 2012a, 2012b; Ozgur et al., 2013). The total polyphenol content was found twice high in halophytes (Ksouri et al., 2012b).
Table 3. Effect of neem cake and *Pseudomonas aeruginosa* on free radical scavenging activity, phenolic content and salicylic acid in cotton under salinity and biotic stresses (*Macrophomina phaseolina*) in screen house experiment.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Antioxidant activity at 0 minutes (% inhibition)</th>
<th>Phenolic contents</th>
<th>Salicylic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DPPH method</td>
<td>ABTS method</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No stress</td>
<td>Salinity stress</td>
<td>Biotic stress</td>
</tr>
<tr>
<td>Standard (BHT)</td>
<td>70.4</td>
<td>70.4</td>
<td>70.4</td>
</tr>
<tr>
<td>Control</td>
<td>12.7</td>
<td>8.6</td>
<td>9.3</td>
</tr>
<tr>
<td>Neem cake</td>
<td>34.3</td>
<td>18.2</td>
<td>28.1</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>31.7</td>
<td>15</td>
<td>20.1</td>
</tr>
<tr>
<td>Neem cake+ P. aeruginosa</td>
<td>36.7</td>
<td>25.2</td>
<td>31.7</td>
</tr>
</tbody>
</table>

LSD_{0.05} Treatments= 4.3¹ Stress=2.0² Treatments= 2.9¹ Stress=1.39² Treatments= 0.21¹ Stress=0.10² Treatments= 0.08¹ Stress=0.04²

¹Mean values in column for each parameter showing differences greater than LSD values are significantly different at p<0.05
²Mean values in row for each parameter showing differences greater than LSD values are significantly different at p<0.05

Table 4. Effect of neem cake and *Pseudomonas aeruginosa* on the growth of cotton under salinity and biotic stresses (*Macrophomina phaseolina*) in field experiment.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Shoot length (cm)</th>
<th>Shoot weight (g)</th>
<th>Root length (cm)</th>
<th>Root weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No stress</td>
<td>Salinity stress</td>
<td>Biotic stress</td>
<td>No stress</td>
</tr>
<tr>
<td>Control</td>
<td>25.5</td>
<td>26.7</td>
<td>25.7</td>
<td>3.91</td>
</tr>
<tr>
<td>Neem cake</td>
<td>31.4</td>
<td>30.6</td>
<td>28.8</td>
<td>6.64</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>29.7</td>
<td>29</td>
<td>30.0</td>
<td>5.33</td>
</tr>
<tr>
<td>Neem cake+ P. aeruginosa</td>
<td>34.0</td>
<td>31.7</td>
<td>30.5</td>
<td>10.6</td>
</tr>
</tbody>
</table>

LSD_{0.05} Treatments= 1.48¹ Stress=0.74² Treatments= 0.98¹ Stress=0.49² Treatments= 1.94¹ Stress=0.97² Treatments= 0.31¹ Stress=0.51²

¹Mean values in column for each parameter showing differences greater than LSD values are significantly different at p<0.05
²Mean values in row for each parameter showing differences greater than LSD values are significantly different at p<0.05
Table 5. Effect of neem cake and Pseudomonas aeruginosa on the infection of Macrophomina phaseolina, Rhizoctonia solani and Fusarium solani in cotton under salinity and biotic stresses (Macrophomina phaseolina) in field experiment.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>M. phaseolina</th>
<th>R. solani</th>
<th>F. solani</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No stress</td>
<td>Salinity stress</td>
<td>Biotic stress</td>
</tr>
<tr>
<td>Control</td>
<td>62.5</td>
<td>68.7</td>
<td>75</td>
</tr>
<tr>
<td>Neem cake</td>
<td>25</td>
<td>37.5</td>
<td>43.7</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>18.7</td>
<td>31.2</td>
<td>50</td>
</tr>
<tr>
<td>Neem cake + P. aeruginosa</td>
<td>6.2</td>
<td>25</td>
<td>37.5</td>
</tr>
</tbody>
</table>

LSD$_{0.05}$
Treatments: 13.11, Stress: 6.52, Pathogen: 8.03

1Mean values in column for each fungal pathogen showing differences greater than LSD values are significantly different at $p<0.05$

2Mean values in row for each stress showing differences greater than LSD values are significantly different at $p<0.05$

3Mean values in row for each fungal pathogen under different stress showing differences greater than LSD values are significantly different at $p<0.05$

Table 6. Effect of neem cake and Pseudomonas aeruginosa on free radical scavenging activity, phenolic content and salicylic acid in cotton under salinity and biotic stresses (Macrophomina phaseolina) in field experiment.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Antioxidant activity at 0 minutes (%) inhibition</th>
<th>Phenolic contents</th>
<th>Salicylic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DPPH method</td>
<td>ABTS method</td>
<td>mg mL$^{-1}$ gallic acid</td>
</tr>
<tr>
<td>Standard (BHT)</td>
<td>70.4 70.4 70.4</td>
<td>70.4 70.4 70.4</td>
<td>--</td>
</tr>
<tr>
<td>Control</td>
<td>12.8 12.5 11.8</td>
<td>37.2 26.8 30.1</td>
<td>2.41 2.92 2.7</td>
</tr>
<tr>
<td>Neem cake</td>
<td>32.6 28.1 28.6</td>
<td>46.2 35.5 36.3</td>
<td>3.65 2.8 3.69</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>24.7 16.8 23.1</td>
<td>41.4 33.5 39.7</td>
<td>3.48 3.78 3.04</td>
</tr>
<tr>
<td>Neem cake + P. aeruginosa</td>
<td>39.4 34.0 31.7</td>
<td>53.9 33.2 45.9</td>
<td>4.0 3.12 3.7</td>
</tr>
</tbody>
</table>

LSD$_{0.05}$
Treatments: 2.61, Stress: 1.22, Treatments: 3.01, Stress: 1.42, Treatments: 0.291, Stress: 0.142, Treatments: 0.591, Stress: 0.292

1Mean values in column for each parameter showing differences greater than LSD values are significantly different at $p<0.05$

2Mean values in row for each parameter showing differences greater than LSD values are significantly different at $p<0.05$
In this study application of neem cake as soil amendment alone or with P. aeruginosa significantly reduced infection of M. phaseolina. Ghimery et al. (2009) reported that significant amount of azadirachtin and nimbin are present in all parts of neem tree which provides a defense role against molds, nematodes, leaf-eating insects. Similarly, Abbasi et al. (2005) reported 67%–90% reduction in the number of lesion (Pratylenchus penetrans) and root-knot nematode (Meloidogyne hapla) in tomato roots and suppression of root rotting fungi by the neem cake soil amendment and suggested that killing of microscerotia of Verticillium dahlia may be due to the generation of ammonia during decomposition of neem cake or due to creation of diseases suppressive climate. The neem cake also improved soil nutrition status which increased plant height and weight (Kumar & Khanna, 2006). It was observed that maximum induction of resistance marker compounds like polyphenol and salicylic acid were produced by neem cake. SA affects the phyto-hormone level of plants and could be the one of the mechanisms of plant protection under stress condition (Shakirova et al., 2003).

It was observed that plants grown in neem cake amended soil showed better plant growth and had higher concentrations of plant resistance markers like polyphenol and salicylic acid which were further increased when P. aeruginosa was added in amended soil. There are reports that numerous strain of fluorescent Pseudomonas induced systemic resistance in plants and have a practical application in natural agriculture practices (Vallad & Goodman, 2004). Pseudomonas aeruginosa is a beneficial soil bacteria that promote the plant growth and development through production of a variety of regulatory compounds (IAA, ammonia, exo-polysaccharides and phosphate solubilization) in the rhizosphere directly or indirectly (Ahemad & Kibret, 2014; Siddiqui & Ehtesham-ul-Haque, 2001). Usually, P. aeruginosa facilitate the plant growth and development acting as a biocontrol agents directly by assisting in resource attainment (nitrogen, phosphorus and essential minerals) and alter plant hormone levels, or reduce the potential of different plant pathogens. Many researchers revealed that under normal and stressful conditions plant vigor and productivity enhanced by the application of plant growth promoting bacteria (PGPB) like Pseudomonas (Glick, 2012). Pseudomonas was also found effective biocontrol agents for the many crops grown in coastal saline soils (Paul & Nair, 2008).

Conclusion

It has been concluded that neem cake suppressed soil borne pathogen and improved plant growth via induction of resistance compounds like polyphenol and salicylic acid which improve antioxidant status of plant. The induction of systemic resistance in cotton by the neem cake was further improved by the application of P. aeruginosa, a plant growth promoting bacterium. Whereas, stress caused by M. phaseolina and salinity slightly increased polyphenol and salicylic acid with less effect on antioxidant status.

Acknowledgement

We are thankful to Dr. Khan, Department of Botany, University of Karachi, Karachi, Pakistan for his help on statistical analysis of data.

References

(Received for publication 14 May 2015)