FERTILITY VARIATION IN TWO POPULATIONS OF TAURUS CEDAR (CEDRUS LIBANI RICH.)

HALİL BARIŞ ÖZEL* and NEBİ BİLİR²

1Department of Silviculture, Faculty of Forestry, University of Bartın, 74100/Bartın, Turkey
2Department of Silviculture, Faculty of Forestry, Eastern Campus, University of Sıleyman Demirel University, 32100/Isparta, Turkey

*Corresponding author’s email: halilbarisozel@yahoo.com

Abstract

Fertility variation, measured as “half-sib family coefficient”, based on number of one, two and three years cones were investigated in plantation population (PP), and a natural population (NP) of Taurus Cedar (Cedrus libani Rich.) sampled from southern part of Turkey. Fertility variation was higher in PP than NP for one, two and three years. It was the highest in PP for one year cones (2.34), while it was lowest in NP for three years cones (1.73) as shown in Table 2. The effective number of parents were 21.8 (38.4% of census number) for one year cones, 25.7 (47.9% of census number) for two years cones and 29.8 (52.6% of census number) for three cones in PP. On the other hand the effective number of parents were 28.3 (45.4% of census number) for one year cones, 32.8 (51.6% of census number) for two years cones and 36.4 (58.9% of census number) for three years cones in NP. Diameter at breast height and tree crown area had positive and significant (p<0.05) effective on cone production, while effects of tree height and tree age were not significant (NS) on that (Table 3). There were also positive and significant (p<0.05) correlation between years in cone production.

Key words: Taurus cedar, Cone production, Fertility, Population, Seed, Parent.

Introduction

Cedrus libani Rich. (Cedar of Taurus cedar) is a significant and salient tree species in historical, cultural, aesthetic, scientific, and economic terms. Its present distribution is restricted mainly to the Taurus Mountains in southern Turkey, where the most productive populations are found, especially in the Elmali region near Antalya. Historical records indicate that extensive and magnificent forests of Taurus cedar also grew in Syria and Lebanon, where only small populations remain today (Boydak, 2003; Khuri et al., 2000; Kurt et al., 2008). Heavy human impact in the past likely caused genetic erosion, decrease in genetic variability, and eventually degradation of the gene pool of the species (Rogers & Kaya, 2006; Fady et al., 2008; Kurt et al., 2008). The elevational distribution of the species ranges between 800 and 2100m in the Taurus Mountains. Marginal small populations can also be found at lower (500m) (e.g., Babadag-Fethiye) and higher (2400 m) (e.g., Bolkar Mountains) elevations in certain localities (Kantarci, 1990; Boydak, 1996; Kurt et al., 2008). In its distribution area, individuals and populations of C. libani exhibit distinct phenotypic characteristics (Boydak, 1996; Kurt et al., 2008). It is known that estimation of genetic parameters have important role in quality and quantity of forest products such as short rotation age, fast growing. Fertility variation and its related to effective number of parent are one of the basic genetic parameters used widely in plant genetics. Fertility variation, cheap and short-term studies is widely used in forestry and other biological sciences, for conservation, selection and management of seed sources (Dutkuner et al., 2014), estimated by cone, flower, pollen, fruit and seed yield (Kang and Lindgren, 1999; Keskin, 1999; Bilir, 2011). The objectives of this study is to evaluate fertility variation and effective number of parent in a plantation population and in a natural population of the species and to compare, and to provide genetic information to guide “National Taurus Cedar Breeding and Seed Production Programme for Turkey”.

Materials and Methods

The numbers of one (Con1), two (Con2) and three (Con3) years cones (Fig. 1) were assessed from 50 trees chosen phenotypically in plantation population (PP) and a natural population (NP) at spring of 2015.

Height (H), tree age (A), tree crown area (CA) and diameter at breast height (DBH) were also measured at the sampled trees. The PP at Mut-Söğütözü district is located at latitude 36º 46´ 30” N, longitude 33º57´38” E, and mean elevation 1650m, while NP is located at latitude 37º 30´ 32” N, longitude 34º57´38” E, and mean elevation 1320m in Pozanti district. Averages of tree age were 55 in PP and 78 in NP.

Fertility variation: Fertility was defined as the relative proportion of fertile individuals (i.e., contribution) to the entire population (Bila, 2000; Kang, 2001; Kang et al., 2003; Dutkuner et al., 2014). The fertility variation (ψi) was estimated based on cone production as (Zobel & Talbert, 1984; Almqvist et al., 2001; Dutkuner et al., 2014):

$$\psi_i = \frac{N}{N_i}$$

where N is the census number, c_i is the fertility for cone production of the individual i.

Effective number of parent: The effective numbers of parent ($N_{e_{total}}$) was estimated based on census number (N) and fertility variation of cone production (ψ_i) for total gametic gene pool as (Varghese et al., 2006):

$$N_{e_{total}} = \frac{N}{\psi_i}$$

The cone production was also correlated by tree height, tree age, tree crown area and diameter at breast height by Pearson’s correlation.
Results and Discussions

Cone production: Mean of cone production varied between years of cones within population and among populations (Table 1). For instance there were two times differences in PP (36 & 63) and about four times differences in NP (10 & 42) between averages of cone years. The differences could be also seen among within population (Fig. 2). These results showed importance of individual selection instead of mass selection. The differences could be also balanced mix seeds, genetic or traditional forest tending such as removing of unproductive trees.

Fertility variation and effective number of parent: Fertility variation, effective number of parent and relative effective number of parent were given for the populations in Table 2. According to the values in Table 2, fertility variation was found higher in PP than NP for one, two and three years.

Relations among characters: Diameter at breast height and tree crown area had positive and significant (p<0.05) effective on cone production, while effects of tree height and tree age were not significant (NS) on that (Table 3).

Table 1. Mean, coefficient of variation (CV), and range in cone production in the populations.

<table>
<thead>
<tr>
<th></th>
<th>PP</th>
<th></th>
<th>NP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Con₁</td>
<td>Con₂</td>
<td>Con₃</td>
<td>Con₁</td>
</tr>
<tr>
<td>Mean</td>
<td>36</td>
<td>48</td>
<td>63</td>
<td>10</td>
</tr>
<tr>
<td>CV</td>
<td>0.31</td>
<td>0.23</td>
<td>0.18</td>
<td>0.57</td>
</tr>
<tr>
<td>Range</td>
<td>4-118</td>
<td>3-265</td>
<td>2-123</td>
<td>4-141</td>
</tr>
</tbody>
</table>

Table 2. Fertility variation for one (Ψ_{con1}), two (Ψ_{con2}) and three (Ψ_{con3}) years cones, and effective number of parent for one (N_{p(CON1)}), two (N_{p(CON2)}) and three (N_{p(CON3)}) years cones, and relative effective number of parent for one (N_{r(CON1)}), two (N_{r(CON2)}) and three (N_{r(CON3)}) years cones in populations.

<table>
<thead>
<tr>
<th></th>
<th>Con₁</th>
<th>Con₂</th>
<th>Con₃</th>
<th>Con₁</th>
<th>Con₂</th>
<th>Con₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>2.34</td>
<td>2.12</td>
<td>1.96</td>
<td>21.8</td>
<td>25.7</td>
<td>29.8</td>
</tr>
<tr>
<td>NP</td>
<td>1.93</td>
<td>1.82</td>
<td>1.73</td>
<td>28.3</td>
<td>32.8</td>
<td>36.4</td>
</tr>
</tbody>
</table>

*; (N_{np}) = N/(N_{pc})

Table 3. Relations between cone production and growth characteristics.

<table>
<thead>
<tr>
<th>Population type</th>
<th>Cones of years</th>
<th>H</th>
<th>DBH</th>
<th>CA</th>
<th>A</th>
<th>Con₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>Con₁</td>
<td>0.208<sup>NS</sup></td>
<td>0.945*</td>
<td>0.938*</td>
<td>0.342<sup>NS</sup></td>
<td>0.956*</td>
</tr>
<tr>
<td></td>
<td>Con₂</td>
<td>0.310<sup>NS</sup></td>
<td>0.951*</td>
<td>0.944*</td>
<td>0.336<sup>NS</sup></td>
<td>0.963*</td>
</tr>
<tr>
<td></td>
<td>Con₃</td>
<td>0.290<sup>NS</sup></td>
<td>0.923*</td>
<td>0.957*</td>
<td>0.284<sup>NS</sup></td>
<td>0.961*</td>
</tr>
<tr>
<td>NP</td>
<td>Con₁</td>
<td>0.057<sup>NS</sup></td>
<td>0.932*</td>
<td>0.928*</td>
<td>0.085<sup>NS</sup></td>
<td>0.883*</td>
</tr>
<tr>
<td></td>
<td>Con₂</td>
<td>0.061<sup>NS</sup></td>
<td>0.917*</td>
<td>0.937*</td>
<td>0.134<sup>NS</sup></td>
<td>0.889*</td>
</tr>
<tr>
<td></td>
<td>Con₃</td>
<td>0.049<sup>NS</sup></td>
<td>0.924*</td>
<td>0.953*</td>
<td>0.147<sup>NS</sup></td>
<td>0.915*</td>
</tr>
</tbody>
</table>

^{NS}: Correlation was not significant,[*]: 95% significance level
Discussion

There were two times differences in PP (36 & 63) and about four times differences in NP (10 & 42) between averages of cone years (Table 1 and Fig. 2). Large differences in the production of reproductive characteristics were reported in seed orchards, plantations of many forest tree species (Kang et al., 2004; Dutkuner et al., 2014). It is known that individual differences for amount of reproductive characteristics could be genetic, environmental or years (Zobel & Talbert, 1984; Bilir & Temirağ'a, 2012).

It was the highest in PP for one year cones (2.34), while it was lowest in NP for three years cones (1.73) as shown in Table 2. It was expected close to 1, while it was acceptable based on a considerable survey that Ψ of a magnitude up to 3 could be typical in natural populations (Kang et al., 2003). The effective number of parents were 21.8 (38.4% of census number) for one year cones, 25.7 (47.9% of census number) for two years cones and 29.8 (52.6% of census number) for three cones in PP. On the other hand the effective number of parents were 28.3 (43.4% of census number) for one year cones, 32.8 (51.6% of census number) for two years cones and 36.4
(58.9% of census number) for three years cones in NP. The results showed that importance of local population for seed sources and year of seed yield. However, the similar results were obtained from a original research on Turkish Red Pine (Pinus brutia Ten.) from its PP and NP (Dutkuner et al., 2014). Furthermore, large differences in fertility among trees were reported in natural populations (Kang et al., 2003).

There were also positive and significant ($p<0.05$) correlation between years in cone production (Table 3). The correlations changed for the species, populations and characters. Positive correlation between number of strobili and size of the graft were reported for Pinus contorta (Fries, 1994), while low correlations were reported between strobili production and tree height in Picea abies and Pinus contorta (Almqvist et al., 2001; Hannerz et al., 2001). Furthermore positive correlations between diameter at breast height, tree crown area and cone production were determined of Pinus brutia Ten., in PP and NP (Dutkuner et al., 2014). Additionally it was reported that age, elevation and crown closure were important factors in seed yield in Pinus brutia Ten (Eler, 1990). These results emphasized local forest tending practice such as pruning and thinning to harvest higher cone and seed productions.

Acknowledgement

Authors acknowledge to Forest Tree Species and Its Seed Improving Research Institute Directory of Turkey for seed collection from two different Taurus Cedar populations of southern part of Turkey.

References

Rogers, S.O. and Z. Kaya. 2006. DNA from ancient cedar wood from King Mirdas Tomb, Turkey, and Al-Aksa Mosque, Israel. Silvae Genetica, 55: 54-62.

(Received for publication 15 April 2015)