SOIL MICROBES AND SUCCESSFUL INVASIONS OF AN EXOTIC WEED
EUPATORIUM ADENOPHORUM L.

PING ZHOU¹, TIAN-XIANG TANG¹, PING ZHAO¹ AND JUN-WEN CHEN¹²

¹Department of Crop Science, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunning 650201, Yunnan, People’s of Republic China.
²Department of Plant Nutrition, College of Resource and Environment, Yunnan Agricultural University, Kunning 650201, Yunnan, People’s of Republic China.

*Corresponding author’s email: cjw31412@hotmail.com; Tel: +86-871-65228927; Fax: +86-871-65227712

Abstract

The effects of soil microbes collected from the two invasive species Eupatorium adenophorum and E. odoratum and the two native species E. japonicum and E. chinense on the growth and biomass of E. adenophorum was examined to explore a possible link between soil microbes and successful invasions of the weed species E. adenophorum. In most cases, plant height, stem diameter, root number and root length were significantly enhanced when E. adenophorum was grown in sterilized soils compared with those when one was grown in non-sterilized soils collected from the rhizosphere of E. adenophorum, E. japonicum and E. chinense. In contrast, the growth and biomass of E. adenophorum were apparently inhibited when grown in soils collected from the rhizosphere of E. odoratum. Plant height, stem diameter, leaf area per plant and root length of E. adenophorum was greater when it was grown in soils collected from the rhizosphere of E. adenophorum compared with those when it was grown in soils collected from the rhizosphere of E. odoratum, but the enhancement considerably greater when it was grown in soils collected from the rhizosphere of E. japonicum and E. chinense compared with those when it was grown in soils collected from the rhizosphere of E. adenophorum. In addition, the biomass allocation of E. adenophorum was not significantly affected by soil microbes and soil sources. These results suggest that although the competitive advantage of the invasive weed E. adenophorum is not achieved solely by soil microbes, successful invasions of E. adenophorum may result partly from its release from the harmful soil microbes in its native range and the positive feedbacks of soil microbes from itself and the native species in its invading range.

Key words: Eupatorium adenophorum, Weed, Enemy release hypothesis, Soil microbe, Feedback effect.

Introduction

Biological invasions are one of the five major causes of biodiversity loss, alongside habitat destruction, over-exploitation, climate change and pollution. Scientists have raised a wide range of hypothesis to answer the question of why exotic plants can successfully invade new ranges. Of the numerous hypotheses, the enemy release hypothesis (Darwin, 1859; Williams, 1954; Elton 1958; Keane & Crawley 2002) is highly influential and has been widely cited. Since the invasive species are released from their predators and the natives are under pressure from their native predators, the invasive have a comparably competitive advantage (Memmot et al., 2000; Wolfe 2002; Mitchell & Power 2003; Jakobs et al., 2004). Exotic plants are free from aboveground predators, and thus a strategy for biologically controlling invasive plants is to introduce its aboveground predator from its native range to its invasive range. This strategy is widely adopted because people are accustomed to investigating visible, aboveground biology. However, there is a lot of evidence that plant performance is strongly controlled by the below ground biological and non-biological processes in an ecosystem (Brown, 1958; Garrett, 1963; Hudson, 1968; Janos, 1980; Westover & Bever, 2001; Reynolds et al., 2003). For example, it has been confirmed that plant specific soil borne diseases contribute to succession in foredune vegetation (Van der Putten et al., 1993), and the biodiversity of belowground mycorrhizal fungi determine that of aboveground plant species (Van der Heijden et al., 1998). Hence, research focusing solely on aboveground plant-herbivore interactions and not below ground plant-soil microbe interactions cannot fully explain the successful invasion of exotics.

The soil microbe community is an important biological factor in mediating plant growth and competition (Westover & Bever 2001; Reynolds et al., 2003). The effects of soil microbes on the success of the invasive are long underestimated owing to the limitation of research methodology. Soil microbes are an agent in the interaction between the exotics and natives, which are impacted by exotic plant invasion and, in turn, alter the invasion process by feedback effects (Korotev et al., 2002 & 2003; Li et al., 2006; Niu et al., 2007). It has been accepted that the negative feedbacks between plants and soil microbes result from accumulations of fungal pathogens, harmful mycorrhizae and detrimental fungi (Mills & Bever 1998; Westover & Bever 2001; Bever 2002). Correspondingly, the positive feedbacks result from accumulations of microbes facilitating plant growth, such as mycorrhizal fungi and nitrogen-fixing bacteria. However, positive feedback might excessively facilitate plant growth of one species, consequently resulting in a loss of plant community biodiversity. It has been reported that the relative richness of one species is related to the strength and direction of feedbacks, and that rare species show a negative feedback and common species does a positive feedback (Klironomos, 2002). Feedbacks to plants are predominately negative from soil microbes in a natural ecosystem (Janzen, 1970; Connell, 1971). This effectively regulates the size of different plant population and thus advantageously maintains plant community diversity (Florence, 1965; Augspurger & Kelly 1984; van der Putten et al., 1993; Mills & Bever, 1998; Klironomos, 2002; Bever, 2003).
Previous research has paid less attention to whether negative feedbacks still function in the process of exotic plant invasion. However, research has found that there exists an unexpected positive feedback between soil microbes and the exotic plant *Centaurea maculosa* in its invading ranges. In its native European soils, *Centaurea* cultivates soil microbes with increasingly negative effects on its growth, but in the North American soils it invades, *Centaurea* cultivates soil biota with increasingly positive effects on itself (Callaway *et al*., 2004). This suggests that the direction of the feedback effect is altered in the transition from the native ranges to the invading ranges. On the other hand, feedback effects were eliminated in all sterilized soils from its native Europe or invading North America, indicating that soil microbes can indeed regulate plant growth. In a similar study, it was observed that invasion of *Eupatorium adenophorum* might alter the soil microbe community in its invading ranges and that the altered soil microbes inhibit the growth of the native and yet boost the growth of the exotic (Niu *et al*., 2007). Unfortunately, the effects of soil microbes on the invader’s success have been estimated only in a small amount of plant species.

More importantly, the positive feedbacks observed in some invaders do not hold true in all invasive plants (Rout & Callaway, 2012; Birnbaum & Leishman, 2013). For example, the germination rate of seeds was reduced by 12–16%, the survival rate of seedlings by 7–13% and the biomass of root and stem by >80% when *Ammodohila arenaria* was grown in non-sterilized soils compared with that in sterilized soils from its invasive range in North America (Beckstead & Parker, 2003). It has also been observed that survival rates of seedlings and growth rates were enhanced when *Prausa serotina* was grown in sterilized soils compared with that in non-sterilized soils from native ranges, and that growth rate was only elevated by soil microbes from its invasive range and survival rate of seedlings was not impacted (Reinhart *et al*., 2003). In another study, the growth of *Acer platanoides* and *A. negundo* was inhibited by soil microbes from its native range but was promoted by soil microbes from the rhizosphere of native plants in its invasive range and yet was inhibited by soil microbes from its own rhizosphere in its invasive range (Reinhart & Callaway, 2004). Overall, similar studies are limited, and thus the effects of soil microbes on exotic plant invasion are not fully understood.

Eupatorium adenophorum, native to Central and South America, belongs to a family of Compositae and is a noxious and invasive weed in China. It widely forms a mono-plant community in its invasive range of southwest China, leading to a loss of species diversity in the native ecosystem. Previous study has focused on the biological and physiological traits (Liu *et al*., 1989; Zu *et al*., 2005), distribution (Lu & Ma 2004), control methods (Yang & Guo, 2008), ecological plasticity (Zhang *et al*., 2009), competitive capacity (Jiang *et al*., 2008a & b) and allelopathy (Yu *et al*., 2004; Yang, 2006) of *E. adenophorum*. Only one study has observed that *E. adenophorum* benefits from the soil microbes of its own rhizosphere in its invasive ranges (Niu *et al*., 2007). However, the feedback effects of soil microbes from the rhizospheres of native species on *E. adenophorum* are still unknown. In addition, little is known about the benefits of soil microbes from plants of the same genus in the same invasive range on *E. adenophorum*. This would contribute to a full understanding of feedback effects.

The two invasive weed *E. adenophorum* and *E. odoratum* and the two native weed *E. japonicum* and *E. chinense* were selected to investigate effects of soil microbes from the rhizosphere of identical genus plants on *E. adenophorum*. *E. odoratum* is also native to Central and South America and has also successfully invaded southwest China. In a field condition, *E. odoratum* is not competitively replaced by *E. adenophorum* and vice versa; however, the two native species are competitively replaced by *E. adenophorum*. The objective of the present study was to explore the effects of soil microbes from the rhizosphere of two invasive and two native plants on the growth and biomass of the invasive *E. adenophorum*. The hypothesis was that *E. adenophorum* might benefit from the soil microbes from its own rhizosphere and from the soil from the rhizosphere of the natives, but suffer from the soil microbes from the rhizosphere of the invasive *E. odoratum*.

Material and Methods

Site description: The study was conducted at the teaching and experimental farm of Yunnan Agricultural University in Kunming, Yunnan, China. The average annual temperature is 15°C and annual precipitation is 1000 mm. The dry season is from November to April and the well-defined wet season is from May to October in which 80% of the annual rainfall occurs.

Soil collection: In sites heavily invaded with *E. adenophorum* and *E. odoratum*, a mono-plant community of *E. adenophorum* and *E. odoratum* was observed and no native plants existed within it. The native plants *E. japonicum* and *E. chinense* seldom form a mono-plant community, and thus sites where *E. japonicum* and *E. chinense* are dominant were selected for soil collection. Soils were collected from the rhizosphere of *E. adenophorum*, *E. odoratum*, *E. japonicum* and *E. chinense*. All field soil was prepared by dieing the roots and crumbling the soil until it passed through a 1 cm sieve. In order to avoid microbial cross-contamination, separate sampling tools were used for each rhizosphere soil, and the chosen distance between the four sites was relatively far.

Soil sterilization: Soils were collected and immediately subjected to slow air drying to mimic the drying conditions that would occur during natural drought. After drying, the soil was sieved and separated into two parts. One half of the soils were sterilized by triple autoclaving. All tools, pots and surfaces in contact with non-sterile soil were sterilized to avoid cross-contamination by one of five methods (Reinhart & Callaway, 2004): autoclaving...
for 60–180 min, flame sterilization, surfaces sprayed or material soaked in ≥10% bleach solution (itself 5.25% aqueous NaOCl), surfaces sprayed with 70% ETOH solution, or material heated at ≥110°C for 16 h in a dry oven. Moreover, a separate suit of tools was used for each plant source soil.

Pot experiment: A pot experiment was conducted to examine the effects of soil microbes on growth and biomass of *E. adenophorum*. Sixty 20 cm deep and 20 cm internal diameter pots were used for each plant rhizosphere soil, making a total of 240 pots. One half of the pots were filled with sterilized soils. The sterilized and non-sterilized soils both were mixed with sterilized river sand (5:1 w/w) to fill pots. To eliminate potentially allelopathic chemicals, activated carbon was added to the mixtures of soil and sand (2%, w/w). Activated carbon has a high affinity for organic compounds and a weak affinity for inorganic electrolytes such as those found in nutrient solution (Mangle et al., 2008), and has been shown to reduce the negative effects of root exudates from other species (Mahall & Callaway, 1992; Callaway & Aschehoug, 2000).

The pots were placed in a growth house where total photon exposure per day was equivalent to 85% of that in the full sunlight. The growth house was created using agricultural film on a steel frame and provides shelter from rain but is ventilated. The pots received identical natural temperature and humidity. Seeds of *E. adenophorum* were collected from numerous mother plants and numerous seeds were sowed in a pot. After germination, seedlings (3–5 cm in height) were thinned to one plant per pot. Seedlings were well watered every 2 days with sterilized tap water (100-150 mL) and fertilized once every 15 days with 400 ml of 0.25 strength Hoagland’s solution for 265 days.

Plant morphology: Plant height and stem diameter were measured, and leaf number was counted before harvest. Root number was counted and the length of total root was measured after harvest. Leaf area per plant was measured *in vitro* with a leaf area meter (Li-COR).

Plant biomass: After measurement of plant morphology, plants were divided into roots, stems and leaves. Fresh samples were oven dried at 70°C to constant weight and then weighed. Root, stem and leaf mass ratio was defined by the ratio of root, stem, and leaf biomass, respectively to total biomass. Leaf area ratio was defined by the ratio of leaf area per plant to total biomass.

Statistical analysis: In a comparison of effects of non-sterilized and sterilized soils, and of effects of *E. adenophorum* and *E. odoratum*, *E. japonicum* and *E. chinense* soils, a t-test was used for examining the effect of soil microbes on growth and biomass of *E. adenophorum*. Before harvest, some individuals died owing to an unknown reason. However, at least 23 individuals remained, so 23 individuals were harvested in all treatments. Means ± SD were given (n = 23), and t and P values were also shown. Statistical significance was defined as p<0.05, unless otherwise noted in the text. All data were analyzed using SPSS for Windows (SPSS, 18.0).

Results

Plant morphology was obviously impacted by soil microbes from different plant sources (Fig. 1). Plant height was significantly elevated when *E. adenophorum* was grown in non-sterilized soils collected from the rhizosphere of itself but apparently inhibited by soil microbes from the rhizosphere of *E. odoratum* (Fig. 1a). Soil microbes from the rhizosphere of *E. japonicum* and *E. chinense* enhanced plant height to a lesser extent. Stem diameter of *E. adenophorum* was significantly increased by soil microbes from the rhizosphere of itself and *E. japonicum* but was significantly decreased by those from the rhizosphere of *E. odoratum* (Fig. 1b) and not significantly enhanced by those from the rhizosphere of *E. chinense*. There was not a significant difference in leaf number between *E. adenophorum* grown in non-sterilized and sterilized soils (Fig. 1c). Soil microbes from the rhizosphere of itself significantly elevated leaf area per plant of *E. adenophorum*, but soil microbes from the rhizosphere of *E. japonicum* and *E. chinense* did not and those from the rhizosphere of *E. odoratum* significantly inhibited it (Fig. 1d). Soil microbes from the rhizosphere of itself, *E. japonicum* and *E. chinense* significantly enhanced root number of *E. adenophorum* but those from the rhizosphere of *E. odoratum* considerably depressed it (Fig. 1e). Root length of *E. adenophorum* was markedly promoted by soil microbes from the rhizosphere of itself, *E. japonicum* and *E. chinense*, but was clearly restrained by those from the rhizosphere of *E. odoratum* (Fig. 1f).

Plant biomass was affected to a greater extent by the source of the soil microbes (Fig. 2). Root biomass of *E. adenophorum* was significantly boosted by soil microbes from the rhizosphere of itself, *E. japonicum* and *E. chinense*; however, it was depressed by those from the rhizosphere of *E. odoratum* (Fig. 2a). Similarly, stem biomass was more accumulated when *E. adenophorum* was grown in non-sterilized than in sterilized soils from the rhizosphere of itself, *E. japonicum* and *E. chinense*, but the opposite hold true with those from the rhizosphere of *E. odoratum* (Fig. 2b). Leaf biomass of *E. adenophorum* was comparatively less facilitated by soil microbes from the rhizosphere of itself, *E. japonicum* and *E. chinense* and also relatively less inhibited by those from the rhizosphere of *E. odoratum* (Fig. 2c). In general, soil microbes from the rhizosphere of itself, *E. japonicum* and *E. chinense* significantly facilitated the accumulation of *E. adenophorum* total biomass, and, however, those from the rhizosphere of *E. odoratum* drastically reduced it (Fig. 2d).

Biomass allocation of *E. adenophorum* was not significantly affected by soil microbes from the rhizosphere of itself, *E. odoratum*, *E. japonicum* and *E. chinense* (Fig. 3a, b & c), suggesting that root, stem and leaf might be equally enhanced or inhibited by soil microbes. The leaf area ratio of *E. adenophorum* was also not impacted by soil microbes (Fig. 3d).
Fig. 1. Plant height (a), stem diameter (b), leaf number (c), leaf area per plant (d), root number (e), and root length (f) of *Eupatorium adenophorum* grown in non-sterilized (black bar) and sterilized (gray bar) soil from the rhizosphere of *E. adenophorum* (EA), *E. odoratum* (EO), *E. japonicum* (EJ), and *E. chinense* (EC). Values are means ± SD (n=23), and t and P values are given.

Fig. 2. Root biomass (a), stem biomass (b), leaf biomass (c), and total biomass (d) of *Eupatorium adenophorum* grown in non-sterilized (black bar) and sterilized (gray bar) soil from the rhizosphere of *E. adenophorum* (EA), *E. odoratum* (EO), *E. japonicum* (EJ), and *E. chinense* (EC). Values are means ± SD (n=23), and t and P values are given.
Plant height was greater when *E. adenophorum* was grown in its own soils than in *E. odoratum* soils; however, there was not a significant difference in plant height between *E. adenophorum* grown in its own soil and *E. japonicum* and *E. chinense* rhizosphere soils (Fig. 4a). Stem diameter was significantly wider when *E. adenophorum* was grown in its own soils than in *E. odoratum* soils but even wider when grown in *E. japonicum* and *E. chinense* soils (Fig. 4b). There was not a difference in leaf number between *E. adenophorum* grown in its own soil than in *E. odoratum* soils, but leaf number was much higher when grown in *E. japonicum* and *E. chinense* soils (Fig. 4c). In comparison with *E. adenophorum* grown in its own soil, *E. adenophorum* grown in *E. odoratum* soils had a lesser value of leaf area per plant but a greater value when grown in *E. japonicum* and *E. chinense* soils (Fig. 4d). Root number of *E. adenophorum* was greater in *E. japonicum* and *E. chinense* soils than in its own soil (Fig. 4e and f).

There was a significant difference in plant biomass between *E. adenophorum* grown in its own soil and grown in *E. odoratum*, *E. japonicum* and *E. chinense* soils (Fig. 5). In comparison with root, stem, leaf, and total biomass of *E. adenophorum* grown in its own soil, those grown in *E. odoratum* soil had significantly reduced values, and those grown in *E. japonicum* and *E. chinense* soils had largely elevated values. There was not a statistical difference in root and leaf mass ratio and leaf area ratio between *E. adenophorum* grown in its own soil and in *E. odoratum*, *E. japonicum* and *E. chinense* soil (Fig. 6a, c, and d). Meanwhile, stem mass ratio was hardly affected by the different soils (Fig. 6b).

Discussion

The enemy release hypothesis proposes that the invaders have a comparatively competitive advantage over the natives because of their releases from their herbivores of their origin ranges (Keane & Crawley, 2002). One of the possible mechanisms is that invader’s resources are more invested in growth than defenses owing to this partial release from environmental pressure (Blossey & Nötzold, 1995; Herms & Mattson, 2002), so some exotic plants grow taller and larger in their invading ranges than in their native ranges (Blossey & Nötzold, 1995; Siemann & Rogers, 2001; Joshi & Vrieling, 2005; Rogers & Siemann, 2005; Zou et al., 2007; Feng et al., 2009). It should be noted that the releases from soil microbes harmful to plants maybe also give the invader a competitive advantage in its invasive range. There has been evidence that soil microbes contribute to successful invasion of exotic plants (e.g. Callaway et al., 2004, 2008, & 2011). In the present study, it was found that *E. adenophorum* grew significantly taller and larger in the non-sterilized than sterilized soils from the rhizosphere of itself (Figs. 1 & 2). This indicates that although feedback effects of soil microbes was not examined in its native range and the magnitude of the release from harmful soil microbes is also unknown, the invasive plant *E. adenophorum* obviously benefits from its own rhizosphere soil microbes in its invasive range. Soil microbes beneficial to plant growth necessarily accelerate successful invasion of *E. adenophorum* in the invading ranges.
Ping Zhou et al., 758

Plant height (cm):
- 30
- 40
- 50
- 60
- 70
- 80

Stem diameter (cm):
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7

Leaf number (n):
- 10
- 20
- 30
- 40
- 50
- 60

Soil source

Root number (n):
- 8
- 10
- 12
- 14
- 16
- 18
- 20
- 22
- 24

Leaf area per plant (cm²):
- 30
- 60
- 90
- 120
- 150

Soil source

Root biomass (g):
- 1
- 2
- 3
- 4
- 5

Stem biomass (g):
- 1
- 2
- 3
- 4

Leaf biomass (g):
- 0.4
- 0.6
- 0.8
- 1.0

Total biomass (g):
- 2
- 4
- 6

Soil source

Fig. 4. Plant height (a), stem diameter (b), leaf number (c), leaf area per plant (d), root number (e), and root length (f) of Eupatorium adenophorum grown in soil from the rhizosphere of E. adenophorum (EA, black bar), E. odoratum (EO, gray bar), E. japonicum (EJ, open bar), and E. chinense (EC, fine bar). Comparisons between effect of EA soil and effect of EO, EJ, and EC soil on plant morphology were analyzed by t-test. Values are means ± SD (n=23), and t and P values are given.

Fig. 5. Root biomass (a), stem biomass (b), leaf biomass (c), and total biomass (d) of Eupatorium adenophorum grown in soil from the rhizosphere of E. adenophorum (EA, black bar), E. odoratum (EO, gray bar), E. japonicum (EJ, open bar), and E. chinense (EC, fine bar). Comparisons between effect of EA soil and effect of EO, EJ, and EC soil on plant biomass were analyzed by t-test. Values are means ± SD (n=23), and t and P values are given.
SOIL MICROBES AND SUCCESSFUL INVASIONS OF AN EXOTIC WEED

Fig. 6. Root biomass ratio (a), stem biomass ratio (b), leaf biomass ratio (c), and leaf area ratio (d) of *Eupatorium adenophorum* grown in soil from the rhizosphere of *E. adenophorum* (EA, black bar), *E. odoratum* (EO, gray bar), *E. japonicum* (EJ, open bar), and *E. chinense* (EC, fine bar). Comparisons between effect of EA soil and effect of EO, EJ, and EC soil on biomass allocation were analyzed by t-test. Values are means ± SD (n=23), and t and P values are given.

E. odoratum, as the congener of *E. adenophorum*, is also native to Central and South America and a noxiously invasive weed in Southwest China. It has been believed that among exotic plants, those lacking native congeners should have a greater advantage owing to the absence of very similar competitors (Darwin, 1859; Rejmánek & Richardson, 1996; Rejmánek, 1999; Daehler, 2001). This suggests that closely related species are likely to be attacked by common consumers (Connor et al., 1980; Agrawal et al., 2005). In this case, it should be accepted that *E. odoratum* has very similar soil microbes in the invasive ranges, and releases from the same harmful soil microbes from its native range as do *E. adenophorum*. Thus, it was originally anticipated that *E. adenophorum* would benefit from soil microbes from the rhizosphere of *E. odoratum*. Unexpectedly, soil microbes from the rhizosphere of *E. odoratum* were unfavorable for the growth of *E. adenophorum* (Figs. 1 & 2). *E. adenophorum* cannot form a mono-plant community in its native range, indicating that its expansion is hindered by other species native to its range, possibly including *E. odoratum*. In addition, the two closely related weeds can co-occur but are not competitively replaced by each other in their invasive range (personal observation), suggesting that the expansion of *E. adenophorum* is still controlled by *E. odoratum* even in their invasive range. Overall, the fact that the plant *E. adenophorum* flourishes particularly well in southwest China may be related to positive feedbacks of soil microbes from the rhizosphere of itself.

Since soil microbes from the rhizosphere of *E. odoratum* have negative feedback effects on *E. adenophorum*, and *E. adenophorum* benefits from its own soil microbes, it can be expected that *E. adenophorum* will grow shorter and smaller in *E. odoratum* soils than in its own soil (Figs. 4 & 5). This further suggests that the expansion of the invader *E. adenophorum* can be restrained by *E. odoratum*. Results from this study might also partly explain why *E. adenophorum* hardly replaces *E. odoratum* in their invasive ranges. The two species with the same origin both successfully invade an identical range, but one species suffers from soil microbes from the rhizosphere of other species in the invading range. Unfortunately, similar experiments were not conducted in the original ranges of the two congeners, thus it is unknown if the growth of *E. adenophorum* would be reduced in *E. odoratum* soils in its native range. However, the extrapolation from the fact that the two congeners never form a mono-plant community in their native ranges, mean that the two species are likely controlled by similar natural enemies, including harmful soil microbes. This would indicate that, in the invading ranges, *E. odoratum* might not be released from harmful soil microbes that are also harmful to *E. adenophorum*, and the invasive mechanism of *E. odoratum* appears to be different from that of *E. adenophorum*. The results demonstrated here indirectly suggest that the escape from harmful soil microbes may contribute to successful invasions of *E. adenophorum*.

The positive feedbacks of soil microbes from the rhizosphere of itself might not grant the invasive *E. adenophorum* a competitive advantage over the native species, since other plants might also benefit from their own soil microbes but do not form a mono-plant community (Rout & Callaway, 2012). It was found that *E. adenophorum* grew smaller in non-sterilized than in sterilized soils from rhizosphere of the two natives *E.
japonicum and E. chinense (Figs. 1 & 2). This suggests that the two native congeners share the same rhizospheric soil microbes as E. adenophorum does, and these soil microbes facilitate E. adenophorum. E. japonicum and E. chinense never form a denser community in the field, and are commonly replaced by E. adenophorum. Although it is unknown if the two natives benefit from soil microbes from their own rhizosphere, the invasive E. adenophorum, at least in part, obtains a comparably competitive advantage over the two natives by means of positive feedbacks of soil microbes from their rhizospheres. This advantage contributes to the replacement of the two natives by the invasive E. adenophorum. However, this does not mean that E. adenophorum outcompetes only the two natives to accomplish successful invasions.

On one hand, successful invasions of E. adenophorum are derived from positive feedback effects of soil microbes, but on the other it might be more dependent on the promotion effects of soil microbes from the natives. Previous work has found that rhizospheric soils of E. adenophorum facilitate itself, and yet inhibit the co-occurring natives Lolium perenne, E. fortunei and Medicago sativa (Niu et al., 2007). This effect likely contributes to the competitive advantage of the invasive over the natives. In the present experiments, it has been observed in most cases that E. adenophorum grows significantly taller and larger in E. japonicum and E. chinense soils than in its own soils (Figs. 4 & 5). Based upon these results combined with the previous work, it is likely that successful invasions of E. adenophorum result partly from positive feedbacks of soil microbes from the invader itself and the natives, and from negative feedback effects of soil microbes from the invader on the natives. Thus, soil microbes might play an important role in successful invasions of E. adenophorum.

It was expected that the biomass allocation of the plant would be changed so long as E. adenophorum is affected by soil microbes irrespective of positive or negative feedbacks. Furthermore, it was expected that relatively more biomass would be allocated to root parts if E. adenophorum was negatively affected by soil microbes and vice versa. Surprprisingly, biomass allocation of E. adenophorum was not significantly affected by soil microbes and soil sources (Figs. 3 & 6). It appears that soil microbes and soil nutrition have a different effect on the plants. If plant grows in barren soils, plant growth will be negatively affected by low soil nutrition and more biomass will be allocated to root parts for overcoming negative effects. However, a similar pattern was not observed in these experiments, and E. adenophorum did not respond to positive or negative feedbacks of soil microbes by means of biomass allocation. The underlying cause is not fully understood and needs to be studied further.

Conclusion

In general, it is certain that successful invasions of E. adenophorum result, in part, from its release from the harmful soil microbes from its native range, and from the positive feedbacks of soil microbes from itself and the native species in its invading range. Indeed, the competitive advantage of the invader E. adenophorum over the natives is not achieved solely by soil microbes, and numerous mechanisms are involved in the replacement of the natives by the invasive E. adenophorum and in the formation of a mono-plant community. Indeed, information on soil microbes should be adequately examined on the further research.

Acknowledgments

This work was funded by the National Natural Science Foundation of China (grant no.31060094 & 31160139) and the project of young and middle-aged talent of Yunnan province (Grant No. 2014HB011). We thank undergraduate students Xiang-Zeng Xu, Shuang-Bian Kuang, Shi-Shan Liu, Li-Mei Liu, Jin-Mei Wang, Jian-Mei Zhang, and Zhen Li for their assistance with field and pot experiments.

References

Yang, G.Q. 2006. Main allelochemicals isolated and identified from the leachates of Ageratina adenophora Sprengel (Asteraceae) and their action mechanisms on upland rice (Oryza sativa) seedlings. Chinese Academy of Agricultural Sciences Ph.D. Dissertation, Beijing.

(Received for publication 16 March 2015)