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Abstract

Fusarium oxysporum f. sp. niveum (FON), a soil-borne pathogen of watermelon (Citrullus lanatus), can cause
substantial production losses worldwide. In this study, plate culture and PCR-denaturing gradient gel
electrophoresis (DGGE) methods were used to evaluate the effects of inoculation of Fusarium oxysporum f.sp.
niveum on rhizosphere microbial communities of different watermelon cultivars to FON. Two methods indicated
that the effects of watermelon rhizosphere microbial community of different resistance cultivars to FON were
much different. Populations of culturable bacteria and actinomycetes in the rhizosphere of susceptible watermelon
cultivar were significantly lower than in the resistant cultivar after inoculation (P<<0.05), but the opposite result
was observed for fungi. Principal component analysis of bacterial and fungal community structure also showed
that the cultivar of FON-inoculated soil treatment were separated from the non-inoculated controls after
inoculation, and there was clear discrimination between the susceptible cultivars and the resistant cultivars.
Sequence analysis of specific bands from DGGE profiles showed that specific rhizosphere bacterial and fungal
groups differed between watermelon cultivars after inoculation . Both methods demonstrated that different
resistant watermelon cultivars occupied different rhizosphere microbial communities, and and disease suppression
might be correlated with high microbial diversity. F. oxysporum f. sp. Niveum alters the structure and functional

diversity of microbial communities associated with watermelon rhizosphere.
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Introduction

Pathogens can have a severe impact on plant health
(Roeland et al., 2012). Fusarium wilt of watermelon
(Citrullus lanatus), caused by Fusarium oxysporum f. sp.
niveum (FON), is a serious soil-borne disease world wide
and a yield-limiting factor in watermelon production
(Zhou et al., 2007). Continued planting would result in
the build-up of soil-borne pathogens and a reduction in
watermelon production. Soil-borne diseases are closely
related to soil properties and microbial communities
(Trivedi et al., 2012). The success of a pathogen is
influenced by the microbial community of the soil in
which the infection takes place. Every natural soil has the
ability to suppress a pathogen to a certain extent. This can
be deduced from the disease severity pathogen
inoculation in pasteurized soils compared with non-
pasteurized soils. This phenomenon is known as general
disease suppression and is attributed to the total microbial
activity (Roeland et al., 2012).

Recent advances in plant-microbe interactions research
revealed that plants are able to shape their rhizosphere
microbiome, that different plant species host specific
microbial communities when grown on the same soil
(Roeland et al., 2012). Current understanding of the complex
plant-microbe inter-actions that take place in the rhizosphere
is still in its infancy (Bisseling et al., 2009). The importance
of the root microbiome in plant health has been proved, that
the plant is able to control the composition of its

microbiome, and the number of rhizosphere microorganisms
was different between resistant and susceptible plant
cultivars (Liu et al., 2006). A significant positive correlation
was also observed between microbial biomass and soil
disease suppression. The population and diversity of soil
microbial communities play a key role in the soil-suppressive
to soil-borne pathogens (Schonfeld et al., 2003; Van Elsas et
al., 2002). Studies have demonstrated that improving soil
microbial biomass can help to enhance disease suppression
of Pythium pea root nematocysts (Leon et al., 2006),
Pythium in irises (Van Os et al., 2001), Rhizoctonia solani in
wheat (Pankhurst et al., 2002) and F. oxysporum in
asparagus (Hamel et al., 2005). Moreover, Arab El et al.
(2001) suggested that changed rhizosphere microbial
community structure, which could promote the colonization
of antagonistic microorganisms, was involved in the disease
suppressiveness of resistant wheat (Triticum aestivum L.).
Significant differences were found in the number of fungi
and actinomycetes in the rhizosphere of Fusarium wilt
resistant and susceptible varieties of cucumber (Miao et al.,
2004). Further studies showed that soil suppressiveness was
induced by only a limited number of watermelon cultivars
that are resistant to the pathogen F. oxysporum f. sp. niveum,
and the capacity of a cultivar to induce soil suppressiveness
was associated with increased populations of nonpathogenic
Fusarium spp. (Larkin et al., 1996; Mark, 2004), the root
colonization by introduced F. 0. niveum, indigenous F.
oxysporum, or other microorganism groups was not
consistently related to suppressiveness, suggesting that
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specific antagonistic strains rather than general populations
of microorganisms may be involved in suppression (Larkin
et al., 1996). Mark (2004) demonstrated the importance of
host genotype in determining the efficacy of resident and
introduced microorganisms for the control of soilborne
diseases, and the genetic variation within the host has the
potential to enhance the interactions with plant-beneficial
microorganisms. However, there is little research about the
rhizosphere soil microecological response to watermelon
Fusarium wilt from different resistance watermelon cultivars
and the relationship between rhizosphere microorganisms
and watermelon wilt disease.

In this study, the different responses of rhizosphere
microbial communities of different watermelon cultivars
with differing resistance to FON inoculation were
compared. Viable numbers of soil bacteria, fungi and
actinomycetes were measured by the plate culture method.
Soil bacterial and fungal community structures were
analyzed by the PCR-denaturing gradient gel
electrophoresis (DGGE) method. Our hypothesis was that
there would different response to FON between resistant
and susceptible watermelon varieties in their rhizosphere
microbial communities according to above research. The
objectives of this study were to evaluate the effects of
microorganisms  in  watermelon  soil  rhizosphere
microecological system to wilt resistance, and reveal the
relationship between the rhizosphere microbial community
structure and soil-borne disease initially.

Materials and Methods

Experimental materials: Black soil (Mollisol) was
collected from a 0-20 cm layer at the Northeast
Agricultural University Horticulture Experiment Station
(Harbin, Heilongjiang Province, China, 47° 26'N, 126°
38'E), the previous crop was tomato (continuous cropping
for two years) and never previously planted with
watermelon. The basic properties of the soil were: soil
electrical conductivity, 1.02 mS-cm; pH, 7.28; organic
matter, 5.27%; available nitrogen, 30124 mgkg™;
available phosphorus, 251.73 mg-kg™'; available potassium,
353.05 mg-kg ™.

Watermelon cv. Sweet Girl (resistant cultivar, R) and
Little Angel (susceptible cultivar, S) were used as plant
material. FON physiological race no. 1 was isolated from
diseased watermelon plants (An et al., 2009).

Glasshouse experiment: FON was cultured in potato
dextrose agar medium for 120 h, and then washed with
sterile water and suspended to a concentration of 1x10°
colony forming units (CFU)mL™. The soil was
inoculated with FON suspensions and the resulting colony
count was 4x10° CFU-g ' soil (20) (soild) soil treated
with sterile water was used as the control (soil[J).
Watermelon seeds were germinated in the dark at
28°C for 5 days, and then were transplanted in pots
(12x12 cm) contained 400 g soil inoculated with FON
(soilld) or sterile water (soillJ). There was one
watermelon plant per pot. Each treatment was replicated
three times and each replicate had 24 pots. All plants were
grown in a glasshouse (average day/night temperature,
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26/20°C; photoperiod, 10 h; relative humidity, 75%). The
disease incidence was recorded and watermelon
rhizosphere soil samples 300g(<2 mm) were collected
randomly from nine plants of each replicate once every
seven days until 21 days of growth, only the diseased
plants were selected in the FON-inoculation treatments
(soill)). Part of these fresh soils was used for the viable
count of soil microorganisms, and the other part was
stored at -70°C for DNA extraction.

Viable counts of soil microorganisms: The following
media were used to culture soil microbes: beef extract
peptone agar medium (for bacteria isolation), Martin
medium (for fungi isolation), Gause's No 1 synthetic
medium (for actinomycetes isolation) (Zhou, 2006) and
Myclobutanil agar (MBA) medium for Fusarium isolation
(Vujanovic, 2002). Bacteria, actinomycetes, Fusarium
and other fungi isolates, were cultured under aseptic
conditions using the spread-plating method. A volume of
200 pL of 10°, 10~ and 10°-fold soil dilutions were
plated for each sample with three replicates. Plates were
inverted and incubated at 28°C for 2-7 days, after which
the number of microorganisms per gram of dry soil was
calculated. The fungal genera were identified by
morphological observation (Wei, 1979).

DNA extraction and PCR-DGGE: The Tianjingsha
serial soil microbial DNA extraction kit (Tianze Gene
Engineering Company, Sichuan, China) was used to
extract and purify soil total DNA. For bacterial
community, partial 16S rRNA gene was amplified with
the primer set of GC-338f and 518r (Muyzer et al., 1993).
For fungal community, the internal transcribed spacer
(ITS) region of rDNA was amplified with the primer set
of ITSIF and GC-ITS2 (Gardes et al., 1993).

DGGE was performed using an 8% (w/v) acrylamide
gel with 30-60% and 30-55% denaturant gradient for
bacteria and fungi, respectively, and was run in a 1xTris-
acetate-EDTA (TAE) buffer for 12 h at 60°C and 80 V
with a DCode universal mutation detection system (Bio-
Rad). After electrophoresis, the gel was silver stained
(Bassam et al., 1991) and photographed.

Bands showing variations in watermelon cultivars on
the DGGE gel were excised and purified with a
polyacrylamide gel extraction kit (Bori Gene Engineering
Company, Nanjing, China). Then, 8 ul of purified product
was used as a template for PCR amplification using the
bacterial primers 338f and 518r, or the fungal primers
ITSIF and ITS2. After purification, the amplified product
was ligated to the PucM-T vector and transformed into
TG1 competent cells. Positive clones were then selected
and commercially sequenced.

Statistical analyses: DGGE fingerprint analysis was
carried out using Quantityone 4.3.0 software (Bio-Rad) to
digitize DGGE patterns. The position and intensity of
each band were determined automatically. The density
value of each band was divided by the average band
density of the lane in order to minimize the influence of
loaded DNA concentrations among samples (Garland &
Mills, 1991). Principal component analysis (PCA) of the
DGGE data was also conducted using SPSS 16.0.
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Population data were log-transformed prior to
analysis (Loper et al., 1984). The diversity of microbial
community was assessed by the Shannon index calculated
for each soil sample. Band positions were treated as
species and the relative intensities were used to calculate
the Shannon index (H), determined as H = —Zpi-Inpi,
where pi represents the abundance of the ith species
(band) within the sample (1). Significant differences
(p<0.05) between individual treatments were determined
using Tukey’s test with the SAS v.8.1 software.

The BLAST program (http://www.ncbi.nlm.nih.gov/)
of the National Center for Biotechnology Information
(NCBI) was used for sequence homology analysis. The
nucleotide sequences were submitted to the GenBank
database (Tables 2 and 3).

Results

Fusarium wilt Incidence: As shown in Table 1,
susceptible cultivars Little Angel showed 2.48% wilt at 7
days post inoculation, while resistant cultivars Sweet Girl
no obvious wilt. At 14 and 21 days post inoculation, the
incidence rate of Fusarium wilt resistant cultivars Sweet
Girl were 2.48% and 16.67%, respectively, while
susceptible cultivars Little Angel had 50% and 69.44%
wilt, respectively. The incidence rate of Fusarium wilt
was significantly higher in susceptible cultivars Little
Angel than resistant cultivars Sweet Girl. All watermelon
plants in control had not show symptoms of Fusarium
wilt from 7 to 21 days post inoculation.

Culturable microbial populations: Differences were
observed in the number of rhizosphere bacteria, fungi
and actinomyces between the FON-inoculated
susceptible watermelon cultivar and the resistant
watermelon cultivar during different growth days (Fig.
1). Populations of culturable fungi and actinomycetes
in the rhizosphere of different resistant watermelon
cultivar were significantly difference at 7 days after
inoculation (10 June), except the controls.

Microbial diversity in rhizosphere soil is shown in
Fig. 1. The densitiy of bacteria in rhizosphere soil was
markedly higher in resistant cultivars Sweet Girl (R) than
susceptible cultivars Little Angel (S) at 14 and 21 days
after inoculation (17 June, 24 June) (p<0.05), no
significant difference in bacteria density was detected in
rhizosphere soil of watermelon between resistant and
susceptible cultivars at 7 days post FON-inoculation. In
non-inoculated soil, the same trend was observed for
bacteria density. The actinomycetes density in
rhizosphere soil was significantly higher in resistant
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cultivars Sweet Girl than susceptible cultivars Little
Angel at 7, 14 and 21 days after inoculation. In non-
inoculated soil, differences existed between resistant and
susceptible cultivars at 14 and 21 days, and actinomycetes
density in rhizosphere soil was significantly higher in
resistant cultivars, compared with susceptible cultivars.
By contrast, fungal density in rhizosphere soil was lower
in resistant cultivars than susceptible cultivars at 7 days to
21 days after inoculation. In non-inoculated soil, fungal
density in rhizosphere soil was significantly lower in
resistant cultivars than susceptible cultivars at 14 and 21
days, no difference in fungal density was detected in
rhizosphere soils of both watermelon cultivars at 7 days.

Rhizopus, Aspergillus, Trichoderma, Penicillium and
Fusarium were the dominant groups identified in the
watermelon rhizosphere (Fig. 2). Except for Trichoderma,
The populations of Rhizopus, Aspergillus, Penicillium and
Fusarium were significantly lower in the resistant cultivar
than in the susceptible cultivar at 21 days after inoculation
(24 June) (p<0.05) for all treatments. The populations of
Aspergillus, Penicillium and Fusarium were significantly
lower in the resistance cultivar than in the susceptible
cultivar at 14 days after inoculation (17 June) (p<0.05),
but little difference were discovered for the controls for
Rhizopus and Trichoderma.

Rhizosphere bacterial community structure: Rhizosphere
bacterial community structures was examined by PCR-
DGGE. PCR-DGGE analyses showed that the compositions
of rhizosphere soil bacterial communities was different
between resistant and susceptible cultivars (Fig. 4). In
particular, some strong and characteristic bands were
observed in DGGE patterns in resistant cultivars after
inoculation, which were absent in susceptible cultivars (Fig.
4b, 4c). DNA sequence data were compared to sequences in
the GenBank database and homology of 90-100% was
observed (Table 2). BLAST results showed that these
bacteria were similar to species of Actinobacteria,
Firmicutes, Proteobacteria, Sphingobacteria and uncultured
bacterium (Table 2).

Band A-6, A-7, A-8, A-9, A-13, A-14, A-15 appeared
only in the resistant cultivar of FON-inoculated soil
treatment , band A-100 Actinobacteriall only in the resistant
cultivar of control, and band A-9, A-13, A-15 were
Actinobacteria, A-6, A-7 were Streptococcus, A-8 was alpha
proteobacterium, A-14 was Sphingobacteria at 21 days after
inoculation. Band A-11 (Streptomyces) appeared in all non-
inoculated controls except the FON-inoculated treatments.
Actinobacteria and Firmicutes were the unique phylum in the
resistant watermelon cultivar rhizosphere soil.

Table 1. Incidence of Fusarium wilt of FON inoculated and non-inoculated watermelon cultivars with differing resistance
from 7 to 21 days after inoculation Shannon index calculated from the DGGE composition of soil microbial community of
watermelon cultivars with differing resistance.

Fusarium wilt incidence

Treatment Watermelon cultivar
10 June (7 days) | 17 June (14 days) | 24 June (21days)
t girl istant culti 248 +£4.81 16.67 +4.81
FON-inoculation (soil (1) S\.:vee girl (resistan 'cu 1var? 0 8 81b 6.67 81b
Little angel (susceptible cultivar) 248+481a 50.00 +0.00 a 69.44+4.81a
. . . Sweet girl (resistant cultivar) 0 0 0
Non- lat 111
on-inoculation (soil IT) Little angel (susceptible cultivar) 0 0 0

Mean values within the same column followed by different letters are significantly different (p<0.05). Each value is the mean_SE of three replicates
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Fig. 1. Populations of culturable bacteria (a), fungi (b) and

actinomycetes (c) in watermelon rhizosphere estimated by plate
culture method.. R, FON-inoculated soil [ resistant cultivar
treatment; S, FON-inoculated soill susceptible cultivar treatment;
RC, non-inoculated soilll resistant cultivar treatment; SC, non-
inoculated soill susceptible cultivar. Samples for each cultivar
were collected at 7, 14, and 21 days after inoculation on 10 June,
17 June, and 24 June, respectively. Each value was the mean + SE
of nine replicates. Values with different letters in the group were
significantly different between treatments at the 0.05 level.
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The Shannon index (H) of the bacterial
community structure in the rhizosphere of the
susceptible cultivar (S)were significantly lower than in
the resistant cultivar (R) (p<0.05) from 7 days (10
June) after inoculation, and similarly, non-inoculation
evidently decreased the Shannon index (H) of the
bacterial community structure (p<0.05) on 24 June
(Fig. 3). Principal component analysis (PCA) of soil
bacterial community clearly separated resistant
cultivars and susceptible cultivars after inoculation
(Fig. 5). Figure 5 showed that resistant cultivars far
from susceptible cultivars at three sampling time
points after inoculation. In non-inoculating treatment,
PCA analysis of soil bacterial community separated
resistant cultivars and susceptible cultivars on 24 June.

Rhizosphere fungal community structure: DGGE
profiles revealed that soil fungal community was
affected by different cultivars and inoculating FON
(Fig. 6). Differences in fungal community structures
were observed between the different treatments. With
the exception of the common bands, thirty eight
characteristic bands (indicated by arrow in (Fig. 6-
a,b,c) were cloned and sequenced (Table 3). Most of
the Fungal bands from the DGGE profiles were
affiliated to Ascomycota and fungi, Bands F-12 and F-
26 were affiliated to Basidiomycota, F-10 to
uncultured fungi. Sequencing results showed that band
F-40 was the pathogenic fungi of watermelon
Fusarium wilt (FON).

Band F-10, F-18 showed only in the resistant
cultivar of FON-inoculated treatment and band F-16,
F-20 showed in the susceptible cultivar of FON -
inoculated treatment at 14 days (17 June) post
inoculation, but F-19 existed in the susceptible
cultivar of control.F-20 was observed in all susceptible
cultivar treatments. Band F-30 were in the resistant
cultivar of FON-inoculated treatment and band F-27 in
the susceptible cultivar of FON -inoculated treatment
at 21 days after inoculation, band F-24, F-33, F-41
were observed in the resistant cultivar of control, band
F-25, F-30, F-32, F-35 were detected in the susceptible
cultivar of control, and band F-26, F-34, F-38 were
showed in all controls. Band F-36 appeared in the
resistant cultivar of FON -inoculated treatment and the
susceptible cultivar of non-inoculated control at 21
days (24 June) after inoculation, F-37 existed in all
treatments except the susceptible cultivar of
inoculation treatment. The Shannon index (H) of the
fungal community structure in the rhizosphere of the
susceptible cultivar (S) were significantly lower than
in the resistant cultivar (R) (p<<0.05) from 7 to 21 days
after inoculation, and the controls tend to the same
conclusion (p<0.05) (Fig. 3) after 17 June. PCA
analysis clearly separated the fungal community
between resistant cultivars and susceptible cultivars at
three sampling points after inoculation. (Fig. 7-A, B,
C)., the controls showed same trend after 17 June (
Fig. 7-B, C).
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Discussion

DGGE analysis, PCA analysis and a culturable
microbial population were used to assess the microbial
community characteristics in the rhizosphere of the
watermelon cultivars. Although our experiment included
only two watermelon cultivars grown in two different
soils and this is a limitation to confirm the effect of plant
genotype on soil microbial community, all the methods
suggested that the effects of watermelon rhizosphere
microbial community of different resistance cultivars to
Fusarium Oxysporum f. sp. niveum were different.

The plant genotype can affect the accumulation of
microorganisms that help the plant to defend itself against
pathogen attack (Roeland et al., 2012). The study

revealed that FON-inoculated soil treatments significantly
reduced the rhizosphere culturable bacteria and
actinomycetes population, and increased fungi, but the
same genotype treatments had difference significantly.
These might be owing to that soil-borne fungal pathogens
were lower in resistant cultivars compared to susceptible
cultivars, and the resistant cultivars had relatively high
numbers of actinomycetes, which might induce the
decrease of soil-borne pathogens (Yao et al., 2010). The
interactions between a plant and its root microbiome
might change when the plant is attacked (Trivedi et al.,
2012). Thus, FON invade watermelon rhizosphere just as
Huanglongbing alters the structure and functional
diversity of microbial communities associated with citrus
rhizosphere (Trivedi et al., 2012).
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The resistant difference of variety was reflected
through microbial species, quantity, and diversity
difference. While the rhizosphere microbial community
structure of high disease-resistant varieties were more
rich, species were more homogeneous, and diversity was
higher, that indicated the soil microbial ecological system
was more stable and balanced, which would be conducive
to crop growth and disease resistance (Prosser, 2002;
Wang et al., 2012). In this study, the PCR-DGGE analysis
showed that the rhizosphere bacterial and fungal
community structure differed between FON-inoculated
and non-inoculated cultivars, and there were more
different bands of fungal communities were observed in
the DGGE profile of non-inoculated samples than
inoculated samples. PCA analysis also indicated the shifts
of watermelon rhizosphere bacterial and fungal
communities with growth days, and the community
structures among two watermelon genotypes were
different, supporting that the microbial communities in
individual sample from one watermelon genotype are
identical. In addition, the Shannon index (H) of the
bacterial and fungal community structure in the
rhizosphere of the susceptible cultivar were significantly
decreased than that in the resistant cultivar (p<0.05) after
inoculation. Although the relationship between microbial
diversity and disease suppression is complex, it was
assumed that high overall microbial diversity will lead to
the suppressiveness to soil-borne diseases, because in
some cases, disease suppression is correlated with high
microbial diversity (Postma et al., 2005). Furthermore, it
proved that a negative correlation between the diversity of
the soil microbiota and survival of the invader and the
relationship which could be explained by a decrease in the
competitive ability of the invader in species-rich vs.
species-poor bacterial communities (Jan Dirk van Elsas et
al., 2012). Therefore, the disease suppressiveness might
not only dependent on the rhizosphere microorganism
abundance, but also on the rhizosphere microorganism
community structure.

The abundance and structure of rhizosphere soil
microbial communities differed among plant cultivars and
genotype, and that resistance of plants to soil-borne
diseases related to the presence of antagonistic
microorganisms (Hardoim et al., 2011; Kavino et al.,
2007). Sequence analysis of different bands derived from
fungal DGGE profile showed that Verticillium sp. were
found in the rhizosphere soil of resistant non-inoculated
watermelon cultivar on 24 June. The results of plate
culturing also showed that the number of populations of
Rhizopus, Penicillium 7 Aspergillu, and Fusarium were
significantly lower in the resistant cultivar than in the
susceptible cultivar of all treatments, but the Trichoderma
populations showed the opposite trend. It was ascribable to
that Trichoderma, Chaetomium, Verticillium, mycorrhizal
fungi, Saccharomyces and Paecilomyces lilacinus can
produce antibiotics (Li et al., 2000). Sequence analysis of
some bands below derived from fungal DGGE profile,
belong to F. oxysporum. F-11, F-38 were in all controls and
F-37 was in all treatments except the FON-inoculated
susceptible cultivar on 17 June. Perhaps F. oxysporum was
the primary antagonist responsible for suppression in this
suppressive soil, although other organisms may contribute
to suppressiveness, and several isolates of F. Oxysporum
from this suppressive soil have potential for development
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as biocontrol agents (Larkin et al., 1996). As a result, the
resistance of the resistant watermelon cultivar might
attribute to the presence of antagonistic microorganisms in
its rhizosphere.

Differences were found in the microbial community
composition between rhizosphere microbiology with
FON inoculated and non-inoculated treatments in the
experiment. The rhizosphere soil difference between the
health watermelon and infected watermelon might be
contributing factor in the susceptible watermelon
cultivar sufferring and the resistance in watermelon
could be overcome by high inoculum levels of F.
oxysporum f. sp. Niveum (Martyn et al., 1991). So, F.
oxysporum f. sp. Niveum alters the structure and
functional diversity of microbial communities associated
with watermelon rhizosphere.

In conclusion, the study indicated that the effects of
watermelon rhizosphere microbial community of
different resistance cultivars to FON were different.
Different resistant watermelon cultivars occupied
different rhizosphere microbial communities, and
disease suppression might be correlated with high
microbial diversity. Although specific microbial
populations may be responsible for Fusarium oxysporum
f.sp. niveum suppression in the soil samples examined, it
was possible to correlate the presence of distinct bacteria
or fungal species with the inhibition of Fusarium
oxysporum fssp. niveum growth through soil or
suppression of disease development in watermelon.
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