THE OPTIMAL DOSAGE OF 60Co GAMMA IRRADIATION FOR OBTAINING SALT GLAND MUTANTS OF EXO-RECRETOHALOPHYTE LIMONIUM BICOLOR (BUNGE) O. KUNTZE

FANG YUAN1, MIN CHEN1, JIANCHAO YANG1, JIE SONG1 AND BAOSHAN WANG1*

Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan, Shandong, 250014, P.R. China
*Corresponding author’s e-mail: bswang@163.com

Abstract

Limonium bicolor (Bunge) O. Kuntze is a typical exo-recretohalophyte with multi-cellular salt glands. It is often used to improve saline-alkali soil. Seeds of L. bicolor were treated with different doses of 60Co gamma irradiation to determine the LD50 for 60Co gamma irradiation; the goal was to produce a relatively high number of mutants in salt gland development and salt secretion with a relatively low level of mortality. 60Co gamma irradiation is likely to generate germination, but an increase in gamma dose prevented the development of true leaves and reduced the percentage of seedlings that emerged from soil. The LD50 for 60Co gamma irradiation was 120 Gy. Two mutants (few and many) were obtained under the LD50 using the screening methods — differential interference contrast microscope and leaf disc excretion model. Compared with the wild type, few and many had mutation in salt gland development, and many showed lower salt secretion rate per single salt gland than WT. These mutants would provide insight into the molecular mechanisms of salt gland development and salt secretion and into the development of salt-tolerant crop plants.

Introduction

More than 800 million hectares of land are salt-affected worldwide, and although high levels of salt generally reduce plant growth, tolerance to soil salinity differs greatly among plant species (Munns & Tester, 2008). With the increase of the demand for agricultural products and the spread of salinity, understanding how to develop crops in saline environments is increasingly important (Rozema & Flowers, 2008). Halophytes are adapted to growing in saline environments and have substantial potential as vegetable, forage, and oilseed crops. It is also possible that halophytic properties can be developed in crop plants for “saline agriculture”. Limonium bicolor is a typical exo-recretohalophyte (a halophyte that can exist in the outside) belonged to Limonium, plumbagenaceae and has a typical salt excretory structure called salt gland. L. bicolor can improve and desalt saline-alkali soil; furthermore, it is often seen in floral art as decorative flowers and medicinal materials.

The salt-excretory structures (salt glands and salt bladders) are the only visible morphologic characteristics that distinguish recretohalophytes from non-halophytes. To avoid salt stress, L. bicolor excretes excess salt ions from salt glands on the leaves and stems. In saline environments, salt excretion by salt glands makes it possible to maintain the ion balance required for normal metabolism. The ultrastructure and excretory mechanism of salt glands have been the focus of many studies nowadays (Wiehe & Breckle, 1990; Bosabalidis, 2010; Semenova et al., 2010).

Understanding the mechanisms controlling salt gland development and salt secretion is important for explaining salt tolerance, but the genes involved are still unclear mainly because of the unclear genetic background of L. bicolor. Experiments have indicated that the development of salt-excretory structures was controlled by multiple genes (Yang et al., 2011). Currently, the most widely used tools to study structure and function are over-expression or deletion mutants, which enable researchers to identify essential components affecting specific aspect of plant growth and development, such as salt gland development and salt excretion. Two kinds of mutants would be useful for investigating salt gland structure and function, salt gland density mutants (mutants with few or many salt glands) and salt secretion mutants (mutants in which salt excretion per gland is low or high). These mutants can be obtained by exposing plants to ionizing radiation, such as 60Co gamma ray.

Gamma ray is widely used in ionizing radiation that causes variation of chromosome structure proportional to the dose of the ion beam radiation. The most common variations in chromosomal structural are shifts, inversions, and deletions (Sario et al., 2001). Ionizing radiation is more effective than mutagenesis in crop breeding than EMS, as has been demonstrated for corn, soybeans, and cotton (Khan & Tyagi, 2009). Gamma irradiation is now used for breeding in many fields, including the breeding of high yield Saccharomyces cerevisiae (Lee et al., 2012), the production of high purity medical chitosan (Shen et al., 2011), and high quality blackberry varieties (Basaran & Kepenek, 2011). In the past 30 years, breeding based on gamma irradiation-induced mutation has generated 1,700 crop varieties with increased yield, improved quality, and increased resistance to stress (Brunner, 1995; Zhu et al., 2010).

In toxicity studies, LD50 (the dose of irradiation to cause the death of 50% of the exposed seedlings) is significant data to further mutagenesis. In the current study, we determined the LD50 for gamma radiation of L. bicolor seed and under which mutants in salt gland are expected to the maximum number with a minimum of mortality. We individually screened salt gland density mutants of L. bicolor by differential interference contrast microscope from tens of thousands of seedlings exposed by 60Co gamma ray compared with wild type (Liu & Meinke, 1998; Ding et al., 2010). Leaf discs excretion model was applied to further obtain salt secretion mutants of L. bicolor (Faraday et al., 1986; Dschida et al., 1992). The goal of
current report is to initially obtain mutants in salt gland development and salt secretion of exo-recretorophytes *L. bicolor* using LD$_{10}$ of gamma radiation. The LD$_{10}$ of gamma radiation in the current report provided an efficient method to generate mutants in *L. bicolor* for the study of molecular mechanisms of salt gland development and salt secretion. Salt-tolerant crops would be developed in order to utilize salt-affected land worldwide.

Materials and Methods

Experimental material and 60Co gamma ray irradiation treatment: In October 2010, seeds of *L. bicolor* were collected from a saline inland environment (N37°20'; E118°36') in the Yellow River Delta, Shandong, China. Dry seeds were stored in a refrigerator at $<$4°C for 6 months before being used. Before 60Co gamma irradiation treatments, seeds to be planted to non sterilized soil were not sterilized but seeds to be germinated on plates were surface sterilized in 0.1% HgCl$_2$ for 10 minutes and then thoroughly washed with sterile-distilled water. 60Co gamma irradiation doses were set as 0, 100, 200, 300, 400 and 500 Gy referring to Borzouei et al. (2010) with some modifications.

Effect on seed germination and seedling growth:
Germination percentage was determined according to Song et al. (2008) with some modifications. All seeds were sown in Petri dishes (9 cm diameter) on two layers of filter paper moistened with double-distilled water. All Petri dishes were placed in a paper box with constant darkness in a growth chamber to maintain a relative humidity of 60-80% (day/night) and a temperature of 28 ± 3°C (day/night). Germination was recorded daily until no additional germination was detected. Seeds were considered to have germinated when the emerging radicle was at least 1 mm long. Each treatment was replicated four times with 100 seeds per replicate. The root length under different 60Co gamma ray irradiation treatment was measured with 30 replicates each.

For the determination of the seedling growth, seeds were sown 2 mm deep in plastic pots (116 cm long × 39 cm wide × 12 cm high respectively) filled with a mixture of muck, vermiculite, and perlite (4:2:1 V/V, 8 cm high) when the germination experiments were started. Each treatment was represented by four replicate pots with 100 seeds per pot. Seeds under all treatments were sown in the same plastic pot to maintain consistent culture conditions. The plants were grown in a growth chamber under natural light (200 µmol·m$^{-2}$·s$^{-1}$). The temperature and relative humidity in the growth room were the same as described in germination part. The number of seedlings in each pot was recorded daily. The percentage of seedling emergence was determined by the formula $a/b 	imes 100\%$, where a was the number of seedlings and b was the total number of seeds sown in each treatment.

Determination of LD$_{10}$ of 60Co gamma ray irradiation:
The LD$_{10}$ for 60Co gamma ray irradiation was based on seedling emergence. The plot of log-transformed emerged percentage vs. irradiation dose was fitted to the linear regression equation $\log Y = a_0 + b_1 X$, and the regression was used to determine the LD$_{10}$.

Results

Effects of 60Co gamma ray irradiation on *L. bicolor* germination and seedling growth: 60Co gamma ray irradiation was introduced into our experiment aiming to obtain salt gland mutants to the maximum extent. In order to examine whether 60Co gamma ray irradiation affected germination of *L. bicolor*, effect of six gamma ray doses treatments (0, 100, 200, 300, 400 and 500 Gy) on the germination was measured.

Germination was delayed for irradiated seeds, was not greatly affected by the radiation dose, and reached a maximum of about 90% on day 4 for both control and irradiated seeds (Fig. 1B). Doses higher than 200 Gy repressed seedling growth and especially root length (Fig. 1A, C).
Because the percentage of seedlings that germinated was not greatly affected by 60Co gamma ray irradiation, germination was not suitable for determining the LD$_{50}$ of the irradiation. Therefore, we examined the effect of irradiation on seedling emergence and growth in soil. As the irradiation dose increased, seedling emerged percentage decreased (Fig. 2A). For the control, the number of seedlings that emerged and survived increased until day 15 (when true leaves appeared) and then remained stable (Fig. 2B). For irradiated treatments, the number of seedlings survival first increased and then decreased as some of the emerged seedlings died after day 15. Survival of seedlings in the 100 Gy treatment stabilized after day 24, but most seedlings in treatments with higher doses failed to generate true leaves and the cotyledons reddened, which caused a continuing decline in survival. Results indicated that 60Co gamma ray irradiation treatment significantly reduced seedling emerged percentage compared with the control and the seedlings of _L. bicolor_ were sensitive to gamma ray irradiation in all doses tested.

Because emerged seedlings on day 30 decreased gradually with the increase in 60Co gamma radiation dose, these data were used to calculate the LD$_{50}$. Based on linear regression of the logarithm of emerged seedling (day 30) vs. gamma radiation dose, the LD$_{50}$ for 60Co gamma ray irradiation was 120 Gy (Fig. 3).

Two mutants of _L. bicolor_ were obtained under the LD$_{50}$ of 60Co gamma ray irradiation: The density of salt gland was calculated at ×100 magnification under DIC microscope. Fig. 4A (WT: right) showed the salt gland at ×600 magnification was composed of sixteen cells, four pairs of secretory cells, accessory cells, inner cup cells and outer cup cells. We initially obtained two mutants in salt gland density under the LD$_{50}$ of 60Co gamma Irradiation, mutants with few and many salt glands (abbreviated as _few_ and _many_ below). The salt gland density of _few_ was significantly less than WT, and _many_ had much more salt gland than WT (Fig. 4B). However, the salt secretion per leaf area (Fig. 4C) and salt secretion rate per single salt gland (Fig. 4D) of _few_ showed no significant difference with WT. _few_ may have mutant in the genes involved in the development of salt gland. It is amazing that the salt secretion rate per single salt gland (Fig. 4D) of _many_ was significantly lower than WT. _many_ may have mutant in genes involved in both salt gland development and salt secretion. _few_ mutant can be used to study the mechanism to control the development of salt gland, and _many_ is significantly important to reveal the pathway involved in salt secretion.
Discussion

This article is a new report of mutants in salt gland development (few) and salt secretion (many) of exo-recretohalophyte L. bicolor under the LD_{50} of ^{60}Co gamma irradiation. The structure of salt gland by DIC microscopy is consistent with that by scanning electron microscopy (Ding et al., 2010), and obvious sixteen-cell structure was observed. DIC microscope and leaf discs excretion model are first applied to count the salt gland density and directly measure secreted salt ions. The optimal dosage of ^{60}Co gamma ray radiation is also determined for the first time.

Irradiation cuts a portion of the chromosome or the entire chromosome resulting in chromosome translocation or deletion; ^{60}Co gamma ray irradiation is generally used for producing useful mutations (Saito et al., 2001), which was applied in the mutagenesis of L. bicolor because salt gland is controlled by multiple genes and the mutants in single genes may not affect salt gland development or salt secretion. In this paper, gamma ray irradiation did not adversely affect germination on plates (same to Ikram et al., 2010) or in soil (data not shown) but reduced seedling emergence in soil and the survival of seedlings after emergence. Death of emerged seedlings was associated with the failure to produce true leaves. These results indicated that ^{60}Co gamma ray irradiation had little effect on the key genes involved in L. bicolor germination but reduced seedling survival by preventing the formation of true leaves. Linear regression indicated that treatment of L. bicolor seeds with 120 Gy of ^{60}Co gamma irradiation caused 50% mortality. The LD_{50} of gamma irradiation differs among different plant species (Borouzei et al., 2010; Basaran & Kepenek, 2011).

The results presented above should be useful for generating mutants in L. bicolor relevant to salt-stress tolerance. To our knowledge, this is the first report of the LD_{50} for ^{60}Co gamma irradiation (120 Gy) for the exo-recretohalophyte L. bicolor. We expect to obtain mutants that have an abnormally large or small density of salt gland (e.g. few) and an abnormally large or small quantity of salt secretion (e.g. many). Using LD_{50} of ^{60}Co gamma irradiation, we initially obtained two mutants in salt gland for the first time, and more mutants in salt gland development and salt secretion would be further screened by the methods of DIC and leaf discs excretion model.

Mutants in salt glands of L. bicolor will be compared with the wild type to identify differentially expressed genes involved in salt gland development and salt secretion. Forward genetic methods can be combined with reverse genetic means to investigate the molecular mechanism of salt gland development and salt secretion. Crops transformed with these genes are expected to produce salt glands on their leaf or stem surfaces and may thus be able to grow normally in saline soil. Given that there are 800 million hectares of salt-affected land worldwide, the development of salt-tolerant crops will significantly contribute to the world’s food supply.

Conclusions

In conclusion, LD_{50} (120 Gy) is first applied in L. bicolor to generate mutants, and differential interference contrast microscope and leaf discs excretion model are reported in screening salt gland mutants for the first time. Two mutants in salt glands (few and many) were obtained under the LD_{50} using the screening methods. Compared with the wild type, few and many had mutation in salt gland development, and the latter showed lower salt secretion rate per single salt gland than WT. More mutants in salt gland development and salt secretion would be screened by these means. These mutants would provide insight into the molecular mechanisms of salt gland development and salt secretion and into the development of salt-tolerant crop plants. Salt-affected land will be improved using salt-tolerant crops transformed with these genes involved in salt gland development and salt secretion.
Fig. 4. The DIC images (A), the density of salt gland (B), the salt secretion per leaf area (C) and salt secretion rate per single salt gland (D) of two different salt gland density mutants (few and many) compared with WT. In A, WT shows the density of salt gland of wild type of L. bicolor at ×100 magnification (left, bar=100 µm) and the salt gland at ×600 magnification (right, bar=10 µm). Obvious sixteen cells of salt gland can be observed, four pairs of secretory cells, accessory cells, inner cup cells and outer cup cells. Few and many show the density of salt gland of mutants (bar=100 µm). Values in B are means ± SD of ten fields at ×100 magnification selected randomly. The data in C and D are the means ± SD of five leaf discs. Bars with asterisk (*) mean significantly different at P=0.05 according to Duncan’s multiple range test.

Acknowledgements

This work has been supported by the NSFC (National Natural Science Research Foundation of China, project No. 30870138 and No. 31070158) and key projects in the national science & technology pillar program during the eleventh five-year plan period (2009BADA7B05).

References

Faraday, C.D., P.M. Quinton and W.W. Thomson. 1986. Ion fluxes across the transfusion zone of secreting Limonium salt glands determined from secretion rates, transfusion

