SELECTIVE IN VITRO GROWTH INHIBITORY EFFECT OF WITHANIA SOMNIFERA ON HUMAN PATHOGENIC BACTERIA AND BIFIDOBAKTERIA

K. HALAMOVA1, L. KOKOSKA1*, Z. POLESNY1, K. MACAKOVA2, J. FLESAR3 AND V. RADA3

1Department of Crop Sciences and Agroforestry, Institute of Tropics and Subtropics, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague 6-Suchdol, Czech Republic
2Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
3Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Prague 6-Suchdol, Czech Republic
*Corresponding author e-mail: kokoska@its.czu.cz

Abstract

Antimicrobial activity of crude acetone extract from the aerial part of Withania somnifera was tested in vitro against six pathogenic bacteria viz., Bacillus cereus, B. subtilis, Staphylococcus epidermis, S. aureus, Streptococcus pneumoniae and S. pyogenes and five bifidobacteria viz., Bifidobacterium animalis, B. breve, B. catenulatum, B. infantis and B. longum evaluating its potential harmful effect on beneficial gastrointestinal microbiota using disk diffusion method. The results showed that pathogenic bacteria were significantly more susceptible to the extract of W. somnifera than bifidobacteria (average of diameters of inhibition zones 20.45 mm and 13.10 mm, respectively) at the concentration of 2 mg/disc. Among all bacteria tested, S. pneumoniae was the most sensitive, while B. animalis was the most resistant species. These results suggest W. somnifera as an effective antibacterial agent against human pathogenic bacteria with lowered harmful effect on bifidobacteria.

Introduction

Due to the increasing drug resistance, emergence of uncommon infections and appearance of undesirable effects of antibiotics during the last years, the antimicrobial properties of plant-derived products have been reported more frequently with attempt to discover new chemical classes of safer antimicrobial agents (Rabanal et al., 2002, Walter et al., 2011). In this context, higher plants are nowadays known to effectively inhibit wide range of microbial pathogens, especially Gram-positive bacteria (Rios & Recio, 2005, Shinwari et al., 2009). Nevertheless, some of the aspects of antibacterial action of plant extracts and compounds, e.g. harmful adverse effect on beneficial human microbiota, are still poorly known.

Withania somnifera (L.) Dunal (Solanaceae), also known as Ashwagandha, Indian ginseng or Winter Cherry (Andallu & Radhika, 2000, Yousaf et al., 2008) is an evergreen shrub, widely grown in India as one of the most important herbs in Ayurvedic medicine. Roots and leaves of this species have traditionally been used, among its many other applications, as an anti-inflammatory remedy against a number of health disorders such as ulcers, rashes, painful swellings, septic wounds, gonorrhoea, syphilis, conjunctivitis, stomach-ache, respiratory problems, colds or tuberculosis (Kurup, 1958; Uma Devi et al., 1996; Gupta & Rana, 2007; Yousaf et al., 2008). The modern pharmacological studies subsequently confirmed marked antimicrobial action of the plant in several previously published papers (Kurup, 1956; Bhatnagar et al., 1961; Budhiraja & Sudhir, 1987; Owais et al., 2005). The various kinds of extracts e.g., aqueous, ethanol, methanol, petrol, and chloroform of the leaves and roots possessed in vitro growth-inhibitory activity effect against various pathogenic microorganisms, whereas leaf extracts showed much stronger activity than the roots (Kurup, 1958; Jaffer et al., 1988) being reported to effectively inhibit the growth of Bacillus subtilis, Diplococcus pneumoniae, Escherichia coli, Micrococcus pyogenes, Salmonella typhi, S. typhimurium, Shigella dysenteriae, Staphylococcus aureus, and Streptococcus pyogenes (Kurup, 1958, 1956; Bhatnagar et al., 1961; Ikram & Haq, 1980; Jaffer et al., 1988; Owais et al., 2005). Moreover, the in vivo studies suggest that leaf aqueous extracts was efficient in the treatment of experimental systemic salmonellosis in mice (Owais et al., 2005). Withanolides, a class of constituents belonging to the group of steroidal lactones, have been reported as main antimicrobial compounds of the leaf extract (Sethi et al., 1974; Atta-ur-Rahman et al., 1993; Singh & Kumar, 1998; Mishra et al., 2000; Ganzera et al., 2003; Jayaprakasam et al., 2003) with significant inhibitory effect against various pathogenic bacteria such as S. aureus, B. subtilis, E. coli, Pseudomonas aeruginosa, and S. typhimurium (Kurup, 1956; Sethi et al., 1974; Owais et al., 2005).

Although the number of studies evaluating antibacterial activity of withanolides (Kurup, 1958; Sethi et al., 1974; Budhiraja & Sudhir, 1987; Shanazbanu Shashidara & Babu, 2006) and W. somnifera leaf extracts (Kurup, 1956; Jaffer et al., 1988; Singh & Kumar, 1998; Owais et al., 2005) have been conducted in the past, according to our best knowledge, no efforts have been made to investigate effect of W. somnifera extracts on growth of positive intestinal microbiota. Thus, we decided to take up detailed investigation of W. somnifera acetone extract, which showed promising antimicrobial action in our previous experiments (Polesny et al., 2008), and evaluate its selective in vitro inhibitory effect on the growth of several strains of Gram-positive bacteria and bifidobacteria.
Materials and Methods

Plant material: The seeds of *W. somnifera* were obtained from the Svinviks Arboretum, Ringve Botanical Garden, Norwegian University of Science and Technology (Trondheim, Norway) and were grown in the experimental field of the Institute of Tropics and Subtropics of the Czech University of Life Sciences Prague (ITS CULS Prague). Leaves of the plant were collected during the months August-October 2001 and authenticated by Dr. Zbynek Polesny from ITS CULS Prague. Voucher specimen has been deposited at ITS CULS Prague under the collection number POL 373.

Preparation of extract: Dried plant material (15.0 g) was finely ground and macerated at room temperature in 450 ml of acetone p.a. (Lach-Ner, CZ) for 5 days. The extract was afterwards filtered and concentrated *in vacuo* at 40°C. The dried residue (yield 5.73% w/w) was resolved in dimethyl sulfoxide (DMSO) (Lach-Ner, CZ) and then diluted in Tris buffered saline (TBS) of pH 7.6 (Sigma-Aldrich, CZ) to create the stock solution of the extract in concentration of 100 mg/ml in 1% DMSO. Finally, the extract was sterilized by filtration through a 0.2 µm membrane filter (Sartorius, DE) and stored at +4°C until tested.

Microorganisms tested: The following American Type Culture Collection (ATCC) bacterial strains were used:
- *Bacillus cereus* ATCC 11778
- *B. subtilis* ATCC 6633
- *Bifidobacterium animalis* ATCC 25527
- *B. catenulatum* ATCC 27539
- *B. breve* ATCC 15700
- *B. infantis* ATCC 17930
- *B. longum* ATCC 15707
- *Escherichia coli* ATCC 25922
- *Pseudomonas aeruginosa* ATCC 27853
- *Staphylococcus aureus* ATCC 25923
- *S. epidermidis* ATCC 12228
- *Streptococcus pneumoniae* ATCC 6305
- *S. pyogenes* ATCC 19615

The pathogenic bacteria were grown on Mueller-Hinton agar, supplemented with 5% of defibrinated horse blood for testing of streptococci. Bifidobacteria were grown on Wilkins-Chalgren anaerobe agar under anaerobic conditions using Anaerobic Jar HP11 (Oxoid, UK). All cultivation media, microbial strains and antibiotic were purchased from Oxoid, UK.

Antimicrobial assay: The antibacterial activity of the crude plant extract was determined using a disk diffusion method (Jorgensen et al., 1999). Each Petri dish containing appropriate nutrient agar was inoculated with 100 µl of broth adjusted to 10^7 CFU/ml of bacterial cell suspension and then the inoculum was spread across the surface of the plate using a sterile glass spreader. The sterile filter paper disc (Oxoid, UK) of 6 mm in diameter was loaded with 2 mg of extract using pipette, dried under laminar air flow conditions and positioned on previously inoculated plates. After 24 hours of incubation under the stated conditions at 37°C, the diameters of the growth inhibition zones were measured and recorded in mm at all plates. The susceptibility of all bacterial strains to reference antibiotic (5 µg/disc of vancomycin) was evaluated, simultaneously. The disks saturated with 1% of DMSO assayed as the negative control, did not affect growth of any bacteria tested.

Statistical analysis: Each value represents mean ± standard deviation obtained from 3 replicates. Statistical significance of differences was calculated using Student’s *t*-test and *p*<0.05 was considered as significant.

Results and Discussion

W. somnifera leaf acetone extract possessed a selective effect within Gram-positive bacteria (Table 1), whereas growth of potential pathogens (average of inhibition zones 20.45 ± 1.34 mm) was significantly (*p*<0.05) more affected than the growth of bifidobacteria (average of inhibition zones 13.10 ± 1.22 mm). Considering the pathogenic species, the most sensitive and resistant bacteria were *S. pneumoniae* and *S. aureus* with inhibition zones of 25.00 ± 3.61 mm and 14.33 ± 0.58 mm, respectively. Among other bacterial strains, *S. pyogenes* and *S. epidermidis* were also markedly inhibited with inhibition zones exceeding 21 mm in diameter. With exception of *B. infantis*, all bifidobacterial strains exhibited relatively high level of resistance to the *W. somnifera* extract, whereas *B. animalis* showed the most pronounced resistance with the growth-inhibition zone diameter of 9.50 ± 0.71 mm. Other bifidobacteria, viz., *B. breve*, *B. catenulatum*, and *B. longum*, were only slightly more affected with diameters of inhibition zones ranging from 13.5 to 14.00 mm. In the positive control test, all bacterial strains were susceptible to vancomycin at a concentration of 5 µg per disk. The pathogenic bacteria tend to be more tolerant to reference antibiotic with average of inhibition zones 17.45 ± 0.79 mm, whereas the effect on bifidobacterial growth was even significantly higher (*p*<0.05) with average of inhibition zones 21.20 ± 4.12 mm.

Table 1. Antibacterial activity of *W. somnifera* acetone extract on pathogenic bacteria and bifidobacteria.

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Inhibition zone (mm)</th>
<th>Vancomycin<sup>†</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extract<sup>‡</sup></td>
<td></td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>14.33 ± 0.58</td>
<td>12.00 ± 1.00</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>19.67 ± 0.58</td>
<td>12.33 ± 0.58</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>21.33 ± 0.58</td>
<td>14.67 ± 0.58</td>
</tr>
<tr>
<td>S. epidermidis</td>
<td>25.00 ± 3.61</td>
<td>23.00 ± 2.00</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>21.67 ± 1.15</td>
<td>23.00 ± 0.00</td>
</tr>
<tr>
<td>S. pyogenes</td>
<td>20.67 ± 1.53</td>
<td>19.67 ± 0.58</td>
</tr>
<tr>
<td>Average</td>
<td>20.45 ± 1.34</td>
<td>17.45 ± 0.79</td>
</tr>
<tr>
<td>Bifidobacterium animalis</td>
<td>9.50 ± 0.71</td>
<td>21.00 ± 4.24</td>
</tr>
<tr>
<td>B. breve</td>
<td>14.00 ± 1.15</td>
<td>21.00 ± 5.03</td>
</tr>
<tr>
<td>B. catenulatum</td>
<td>13.50 ± 2.12</td>
<td>23.00 ± 4.24</td>
</tr>
<tr>
<td>B. infantis</td>
<td>17.00 ± 0.00</td>
<td>21.00 ± 2.83</td>
</tr>
<tr>
<td>B. longum</td>
<td>13.50 ± 2.12</td>
<td>20.00 ± 4.24</td>
</tr>
<tr>
<td>Average</td>
<td>13.10 ± 1.22</td>
<td>21.20 ± 4.12</td>
</tr>
</tbody>
</table>

[‡]Mean ± standard deviation obtained from 3 replicates. [§]*W. somnifera* acetone extract (2 mg/disk). [†]Antibiotic positive reference standard (5 µg/disk)
Intestinal tract in a healthy man is a complex ecosystem of various microorganisms, predominantly composed of bifidobacteria and lactic acid bacteria, which play an important role not only in metabolism, but also in host defence against infection, aging, and immunopotentiation (Ahn et al., 1990a; 1990b; 1994). Intake of conventional antibiotics is known to cause disturbance of intestinal microbiota, which leads to various diseases or abnormal physiological states (Ahn et al., 1991; Lee & Kim, 2002). There are literally thousands of published scientific papers from around the globe describing the antimicrobial activities of plant extracts and their chemical constituents (Rios & Recio, 2005), but only few of them deal with selective antibacterial action to intestinal microbiota.

Our findings demonstrate selective antibacterial activity of W. somnifera leaf acetone extract, which correspond with results of previously published papers reporting similar effects of various plant-derived products (extracts or compounds) against intestinal and pathogenic bacteria (Ahn et al., 1990a; 1990b; 1991; 1994; 1998; Puupponen-Pimia et al., 2001; 2005; Lee & Kim, 2002; Kamijo et al., 2008). For instance, Ahn et al., (1990a; 1990b) studied ginseng (Panax ginseng), whose aqueous and methanol extracts showed to promote the growth of 27 bifidobacteria strains such as B. adolescentis, B. longum, B. breve, and B. infantis and selectively inhibit the growth of several clostridia strains and E. coli. Interestingly, ginsenosides, the active constituents of P. ginseng were reported to be similar to withanolides in their structure and activity (Grandhi et al., 1990), which suggest possible involvement of withanolides present in W. somnifera leaf extracts also for its selective antibacterial action. In another study (Ahn et al., 1991), polyphenols from green tea (Thea chinensis) were reported as selective inhibitors of several clostridia strains, while enhancing the growth of bifidobacteria. Kamijo et al., (2008) described that pulverized petals of Rosa rugosa showed selective antibacterial activity inhibiting the growth of Bacteroides bulgatus, E. coli, S. aureus, B. cereus, and Salmonella sp., whereas only slightly affected the growth of B. breve and Lactobacillus salivarius. Similarly, Puupponen-Pimia et al. (2001; 2005) studied several extracts of Nordic berries such as cloudberry (Rubus chamaemorus) or raspberry (R. idaeus), which have been observed to possess inhibitory effect against both Gram-positive and Gram-negative pathogenic bacteria without affecting the growth of Lactobacillus species. As a result, phenolic compounds were suggested as main substances responsible for the antibacterial action in the studies mentioned above (Ahn et al., 1991; Puupponen-Pimia et al., 2001; 2005; Kamijo et al., 2008). Lee & Kim (2002) have previously isolated flavonoids; quercetin and kaempferol glycosides from Ginkgo biloba leaves, which possessed strong antibacterial activity against numerous bacterial strains, while bifidobacteria and lactobacilli were not inhibited. In general, flavonoids have been widely studied for their effective antibacterial activity (Cushnie & Andrew, 2005). Since various flavonoids, including quercetin glycosides were also found in the leaves of W. somnifera (Kandil et al., 1994) we suppose that flavonoid or other phenolic compounds may participate in selective inhibitory action of the extract tested.

In conclusion, we can summarize that the acetone extract of W. somnifera leaves possessed significant selective antibacterial action on potential human pathogenic bacteria and intestinal bifidobacteria. Based on previously described presence of withanolides together with flavonoids in the leaves of W. somnifera we suggest that these compounds might be responsible for selective antibacterial activity of the plant. However, further phytochemically and pharmacologically oriented research is necessary to identify the specific active constituents of W. somnifera leaf acetone extract. Considering the previously reported low toxicity (Kulkarni & Ashish Dhir, 2008) and effective growth-inhibiting effects against pathogenic bacteria and bifidobacteria observed in our study, we suggest W. somnifera as the prospective antibacterial agent with future potential application in food or pharmaceutical industry.

Acknowledgements

This research was supported by project NAZV Q11210993.

References

(Received for publication 2 February 2010)