BIOACTIVITY AND PHYCOCHEMICAL STUDIES ON *MICROSPORA FLOCCOSA* (CHLOROPHYCOTA) FROM SINDH

M.N. KHALID^{1*}, MUSTAFA SHAMEEL² AND V.U. AHMAD³

¹Department of Botany, G.C. University Faisalabad, Pakistan ²Department of Botany, University of Karachi, Karachi-75270, Pakistan ³HEJ Research Institute of Chemistry, University of Karachi, Pakistan.

Abstract

Microspora floccosa (Vaucher) Thuret [= *Prolifera floccosa* Vaucher], a filamentous green alga was collected from River Indus at Power House Station, near Hyderabad and extracted with methanol. The extract displayed a strong antimicrobial activity against 14 bacterial and 20 fungal species. Eleven saturated and 11 unsaturated fatty acids were found in the extracts where former were lesser in quantity (47.4 %) than the latter ones (52.6 %). Palmitic acid (C 16:0) was present in the highest amount (12.3 %), while oleic acid (C 18:1) was detected in an appreciable proportion (6.1 %). Two sterols and two terpenes were also obtained from the extract, which were chemically elucidated as cholesterol, 24-isopropyl-5-cholesten-3 β -ol, *trans*-phytol and cyclopterospermol.

Introduction

Some interesting results were obtained in the present lab. by investigating the bioactivity and phycochemistry of marine and estuarine algae of Pakistan (Shameel, 1987, 1990, 1993; Aliya & Shameel, 1993, 1998, 2003; Aftab & Shameel, 2006, 2008, 2010). Therefore, a research program was established to compare these results with the freshwater algae of Sindh (Khalid *et al.*, 2010a-d). The present work is a continuation of these studies, where *Microspora floccosa* (Vaucher) Thuret 1850 [= *Prolifera floccosa* Vaucher 1803], an alga of the family Microsporaceae, order Microsporales, class Ulvophyceae, phylum Chlorophycota (*fide* Shameel, 2008) was investigated for its bioactivity and phycochemistry and compared with its brackish and marine water inhabitants.

Materials and Methods

Microspora floccosa commonly occurs in slowly flowing and stagnant waters. It is found particularly in spring but grows throughout the year attached with grasses. Specimens were collected in September 1993 from slow running water of River Indus at Power House Station, Hyderabad attached with the stones and grasses, where it was growing at the margin of water and on water saturated soil along with Riccia and mosses. The algal extraction and procedures for different tests of bioactivity have already been described recently in detail (Khalid et al., 2010 a). The methods used for the saponification, esterification and identification of fatty acids, as well as extraction, purification an chemical elucidation of other natural products have also been elaborated earlier. The techniques and instumentations such as GLC, GC-MS, H- and ¹³ C-NMR spectroscopy may also be found there.

Results

Biological activities: The crude extract showed a strong antibacterial activity against all 14 tested bacterial organisms (Table 1) and exhibited strong antifungal activity against all 20 tested fungal species including 7 human pathogens, 5 plant pathogens and 8 saprophytes (Table 2). Therefore, methanol extract of *Microspora*

*Corresponding author E-mail: drnkhalid@hotmail.com

floccosa revealed very promising results of antimicrobial activities.

Detection of fatty acids: Four fractions obtained from column chromatography were analysed for fatty acids, where fraction A was eluted from column in *n*-hexane (100), fraction B in *n*-hexane:chloroform (95:05), fraction C in *n*-hexane:chloroform (90:10) and fraction D in *n*-hexane:chloroform (85:15). All of them were methylated by diazomethane and analysed initially by GLC and finally by GC-MS. Identification of the individual fatty acids was carried out by matching their mass spectra with the NBS mass spectral library (Helles & Milne, 1978). As a result of that 22 different fatty acids were detected, including 11 saturated and 11 unsaturated acids (Table 3).

Extraction of sterols: Two sterols were identified from the fractions eluted from the silica gel column, where empound 1 was eluted in pure form in solvent system of nhexane:chloroform (70:30). Its purity was checked on TLC card in solvent system n-hexane:chloroform (60:40) and then by spraying with $Ce(SO_4)_2$. On heating it produced a single dark red spot. After using different spectroscopic methods it was identified as cholesterol (Fig. 1[1]. The compound 2 was eluted in mixture form in nhexane:chloroform (60:40) from column and purified on preparative thick layer silica gel glass plates in solvent system *n*-hexane:chloroform (1:1). Its purity was checked on TLC card (same system as above) and after spraying with Ce(SO₄)₂ a reddish purple spot was observed. After using various spectroscopic techniques it was identified as 24-isopropyl-5-cholesten-3β-ol (Fig. 1[2]. Some physical properties of the identified sterols are given in the Table 4. Isolation of a diterpene: A diterpene was purified and eluted from column in n-hexane:chloroform (70:30). It was further purified on preparative silica gel glass plates in solvent system of n-hexane: CHCl₃ (60:40). Its purity was then checked on TLC card in the solvent system nhexane:chloroform (40:60) and a purplish spot was found after spraying with $Ce(SO_4)_2$. After using various types of spectroscopic techniques it was identified as 3,7,11,15tetramethyl-hexadec-2-en-1-ol, commonly called transphytol (Fig. 1 [3]. Some of its physical properties are given in the Table 4.

Bacterial culture	Zone of inhibition	Reference	Zone of inhibition
	(mm)	drugs	(mm)
Bacillus cereus	22	Amoxicillin (H ₂ O) ₃	19
		Ampicilln (H ₂ O) ₃	19
Corynebacterium diphtheriae	18	Amoxicillin (H ₂ O) ₃	-
		Ampicillin (H ₂ O) ₃	16
Escherichia coli	13	Ainoxicillin (H ₂ O) ₃	12
		Ampicillin $(H_2O)_3$	14
Klebsiella pneumoniae	7	Amoxicillin (H ₂ O) ₃	-
-		Ampicillin (H ₂ O) ₃	9
Listeria monocytogenes	9	Amoxicillin (H ₂ O) ₃	12
		Ampicillin $(H_2O)_3$	12
Proteus mirabilis	19	Amoxicillin (H ₂ O) ₃	20
		Ampicillin $(H_2O)_3$	20
Proteus valgaris	10	Amoxicillin $(H_2O)_3$	10
0		Ampicillin $(H_2O)_3$	10
Pseudomonas aeruginosa	14	Amoxicillin $(H_2O)_3$	-
0		Ampicillin $(H_2O)_3$	12
Salmonella typhi	23	Amoxicillin $(H_2O)_3$	20
		Ampicillin $(H_2O)_3$	21
Shigella boydii	24	Amoxicillin $(H_2O)_3$	21
~		Ampicillin $(H_2O)_3$	21
Staphylococcus aureus	23	Amoxicillin $(H_2O)_3$	22
		Ampicillin $(H_2O)_3$	22
Streptococcus faecalis	19	Amoxicillin $(H_2O)_3$	17
sti epite e consigue cuits	17	Ampicillin $(H_2O)_3$	20
Streptococcus pyogenes	9	Amoxicillin $(H_2O)_3$	11
Sil epiceocous pyogenes	,	Ampicillin $(H_2O)_3$	11
Vibrio choleriae	13	Amoxicillin $(H_2O)_3$	11
, iono enviende	1.5	Ampicillin $(H_2O)_3$	11

Table 1. Antibacterial activity shown by the methanol extract of *Microspora floccosa*.

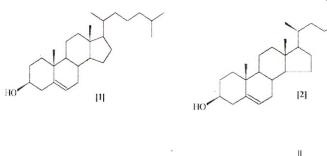
- = Not tested

Table 2. Antifungal activity exhibited by the methanol extract of Microspora floccosa.

Fungal culture	Colony Sample	Diam. (mm) control	Inhibition %	MIC µg/mL miconazole	Ketoconazole
Human pathogens:					
Allescheria boydii	13	82	90.24	0.05	0.1-4
Candida albicans	13	95	90.52	0.1-2.0	0.1-8.0
Epidermophyton floccosum	15	108	89.81	0.5-1.0	0.1-8.0
Microsporum canis	12	53	75.47	0.5-10	0.05-12.8
Trichophyton longifusus	12	35	45.71	2.54	5.20
Trichophyton mentagrophytes	14	102	42.15	2.59	5-19
Trichophyton semi	12	95	92.63	2.59	5.19
Plant pathogens:					
Fusarium oxysporm	18	89	88.76	-	-
Macrophomina phaseolina	13	98	85.71	-	-
Pythium aphanidermatum	17	58	72.41	-	-
Pythium oedochilum	12	47	38.29	-	-
Rhizoctonia solani	15	66	72.72	-	-
Saprophytes:					
Aspergillus flevus	18	98	76.53	-	-
Drechslera rostrata	12	60	70.00	0.3	0.3
Gliocladium virens	18	102	88.23	-	-
Nigrospora oryzae	13	65	81.53	0.3	0.3
Paecilomyces lilacinus	17	86	80.23	-	-
Stachybotrys atra	14	84	67.85	0.3	0.3
Trichoderma hamatum	15	60	73.33	-	-
Trichoderma harzianum	10	104	82.69	-	-

MIC = Minimum inhibitory concentration of standard drugs, - = Not tested

Sugtomotio nomo	Common	Molecular	Mol.	Rel.
Systematic name	name	formula	Wt.	% age
Saturated acids:				47.39
Dimethyl propane-dioic	Dimethyl malonic	$C_4H_7O_4$	118	1.68
<i>n</i> -Heptanoic	Heptylic	$C_7H_{15}O_2$	130	2.72
<i>n</i> -Tetradecanoic	Myristic	$C_{14}H_{28}O_2$	228	0.81
n-Hexadecanoic	Palmitic	$C_{16}H_{32}O_2$	256	12.26
n-Heptadecanoic	Margaric	$C_{17}H_{34}O_2$	270	6.30
<i>n</i> -Octadecanoic	Stearic	$C_{18}H_{36}O_2$	284	2.76
<i>n</i> -Ecosanoic	Arachidic	$C_{20}H_{40}O_2$	312	6.18
n-Heneicosanoic	Heneicosoic	$C_{21}H_{42}O_2$	326	1.56
<i>n</i> -Docosanoic	Behenic	$C_{22}H_{44}O_2$	340	4.78
<i>n</i> -Tricosanoic	Tricosoic	$C_{23}H_{46}O_2$	352	2.72
<i>n</i> -Heptacosanoic	Heptacosoic	$C_{27}H_{54}O_2$	410	5.62
Unsaturated acids:				52.56
10-Undecenoic	Undecylenic	$C_{11}H_{20}O_2$	184	6.76
9-Dodecenoic	Lauroleic	$C_{12}H_{22}O_2$	198	6.34
Tridecadienoic		$C_{13}H_{22}O_2$	210	0.90
Tridecenoic	Decylacrylic	$C_{13}H_{24}O_2$	212	12.10
9-Tetradecenoic	Myristoleic	$C_{14}H_{26}O_2$	226	2.65
Pentadecenoic	Pentadecylenic	$C_{15}H_{28}O_2$	240	0.95
9-Hexadecenoic	Palmitoleic	$C_{16}H_{30}O_2$	254	2.86
Heptadecenoic	Heptadecylenic	$C_{17}H_{32}O_2$	268	1.27
9-Octadecenoic	Oleic	$C_{18}H_{34}O_2$	282	6.08
Nonadecenoic	Nonadecylenic	$C_{19}H_{36}O_2$	296	7.12
Tricosenoic	_	$C_{23}H_{44}O_2$	352	5.53


Table 3. Fatty acids detected in the methanol extract of Microspora floccose

Mol. Wt. = Molecular weight, Rel. % age = Relative percentage

Str. No.	Common name	Systematic name	Molecular formula	Molecular weight
Sterols:				
1.	Cholesterol	Cholest-5-en-3β-ol	$C_{27}H_{46}O$	386
2.	24-Isopropyl-5- cholesten-3β-ol	Same	$C_{30}H_{52}O$	428
Terpenes:	1 1 2 1			
3.	Trans-phytol	3, 7, 11, 15- Tetramethyl- hexadec- 2-en-l-ol	$C_{20}H_{40}O$	296
4.	Cyclopterospermol	22-Methylene-cyclo-artan-3β-ol	$C_{31}H_{52}O$	440

Table 4. Natural	products obtained	from methano	l extract of <i>l</i>	Microspora	floccose
------------------	-------------------	--------------	-----------------------	------------	----------

Str. No. = Structure number in Fig. 1.

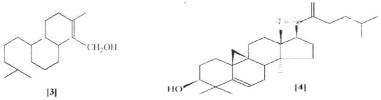


Fig. 1. Natural products extracted from *Microspora floccosa*: [1] = Cholesterol, [2] = 24-Isopropyl-5-cholesten-3 β -ol, [3] = *Trans*-phytol, [4] = Cyclopterospermol.

Separation of a triterpene: A triterpene was purified and eluted from column in *n*-hexane:chloroform (20:80). It was further purified on preparative silica gel glass plates in solvent system *n*-hexane: chloroform (10:90). Its purity was then checked on TLC card in the solvent system of pure CHCl₃ and a purplish spot was observed after spraying with Ce(SO₄)₂. After using various types of spectroscopy it was identified as cyclopterospermol *i.e.*, 22-methylene cycloartan-3β-ol (Fig. 1 [4]. Some of its physico-chemical properties are shown in the Table 4.

Discussion

Crude extract of the filamentous green alga, *Microspora floccosa* exhibited a strong antimicrobial activity against bacterial and fungal species (Tables 1 & 2). Similar results were shown by the brackish water inhabitants of this species (Aftab & Shameel, 2008). This indicates that the antibiotic properties of this alga are its genetic properties and do not simply depend on its environment. The methanol extract of *Microspora* inhibits the release of histamine from mast cells (Price *et al.*, 2002), where it showed anti-inflammatory activity.

The extract of *M. floccosa* contained 22 fatty acids (Table 3), which included 11 unsaturated acids in slightly larger amount (52.56 %) than 11 saturated ones, present in small quantity (47.39 %). This proportion is similar as found in other green algae collected from the freshwater habitats of Sindh (Ghazala *et al.*, 2005) as well as brackish water inhabitant of this species (Aftab & Shameel, 2008). Palmitic (C 16:0) and oleic (C 18:1) acids were present in large and appreciable amounts (12.26 & 6.08 % respectively) in this alga. These two acids were detected in the largest proportion in most of the green seaweeds of Karachi (Qasim, 1986; Shameel, 1990, 1993). Therefore, this alga resembles freshwater green algae in some respects and green seaweeds in the other.

From methanol extract of *M. floccosa* two sterols and two terpenes were extracted, one being cyclic triterpene and the other acyclic diterpene (Table 4). Such compounds may be responsible for its antibiotic activities. Such natural products have been detected in several green seaweeds (Aliya & Shameel, 1993, 1998, 2003) and estuarine algae of Pakistan (Aftab & Shameel, 2006, 2008, 1010). In this way this freshwater alga resembles its marine and estuarine counterparts in the biosynthesis and accumulation of its secondary metabolites.

References

Aftab, J. and M. Shameel. 2006. Phycochemistry and bioactivity of *Microcystis aeruginosa* (Chroocophyceae Shameel) from Miani Hor, Pakistan. *Int. J. Phycol* .*Phycochem.*, 2: 137-148.

- Aftab, J. and M. Shameel. 2008. Phycochemistry and bioactivity of *Microspora floccosa* (Ulvophyceae) from Miani Hor, Pakistan. *Int. J. Phycol.Phycochem.*, 4: 171-178.
- Aftab, J. and M. Shameel. 2010. Phycochemistry and bioactivity of some algae from Miani Hor, Balochistan. VDM Verlag Dr. Müller Aktieng. & Co. Saarbrücken, Germany, 236 pp.
- Aliya, R. and M. Shameel. 1993. Phycochemical examination of three spies of *Codium* (Bryopsidophyceae). *Bot. Mar.*, 36: 371-376.
- Aliya, R. and M. Shameel. 1998. Phycochemical investigation on air-dried material of five species of *Caulerpa* (Bryopsidophyceae). *Bot. Mar.*, 41: 125-132.
- Aliya, R. and M. Shameel. 2003. Marine natural products of *Caulerpa* (Siphonocladophyceae). *Pak. J. Bot.*, 35: 659-669.
- Ghazala, B., M. Shameel, M.I. Choudhary, S. Shahzad and S.M. Leghari. 2005. Studies on phycochemistry and bioactivity of some green algae of Sindh. *Int. J. Phycol. Phycochem.*, 1 : 73-82.
- Helles, S.R. and G.W.A. Milne. 1978. EPA / NIH Mass Spectral Data Base. 4 Vols. NIBS US Govt. Print. Office, Washington, 3975 pp.
- Khalid, M.N., M. Shameel, B. Ghazala and V.U. Ahmad. 2010c. The bioactivity and phycochemistry of two stonewort algae (Charophycota) from Sindh. *Proc. Pak. Acad. Sci.*, 47: 205-214.
- Khalid, M.N., M. Shameel, V.U. Ahmad and S.M. Leghari. 2010d. Studies on the bioactivity and phycochemistry of Oscillatoria princeps (Cyanophycota) from Sindh. Int. J. Phycol. Phycochem., 6: 73-80.
- Khalid, M.N., M. Shameel, V.U. Ahmad, S. Shahzad and S.M. Leghari. 2010a. Studies on the bioactivity and phycochemistry of *Microcystis aeruginosa* (Cyanophycota) from Sindh. *Pak. J. Bot.*, 42: 2635-2646.
- Khalid, M.N., M. Shameel, V.U. Ahmad, S. Shahzad and S.M. Leghari. 2010b. Bioactivity and phycochemistry of *Gloeotrichia raciborskii* (Cyanophycota) from Sindh. Int. J. Phycol. Phycochem., 6: 5-12.
- Price, J.A., C. Sanny and D. Shevlin.2002. Inhibition of mast cells by algae. J. Med. Food., 5: 205-210.
- Qasim, R. 1986. Studies on fatty acid composition of eighteen species of seaweeds from the Karachi Coast. J. Chem. Soc. Pak., 8: 223-230.
- Shameel, M. 1987. Studies on the fatty acids from seaweeds of Karachi. In: Modern Trends of Plant Science Research in Pakistan. (Eds.): I. Ilahi and F. Hussain. Proc. Nat Plant Scient. Peshawa., 3 : 183-186.
- Shameel, M. 1990. Phycochemical studies on fatty acids from certain seaweeds. *Bot. Mar.*, 33: 429-432.
- Shameel, M. 1993. Phycochemical studies on the fatty acid coposition of twelve littoral green seaweeds of Karachi Coast. In: *Proceedings of the National Seminar on Study* and Management in Coastal Zones in Pakistan. (Eds.): N.M. Tirmizi and Q.B. Kazmi, Pak. Nat. Commis. UNESCO, Karachi, p. 17-25.
- Shameel, M. 2008. Change of divisional nomenclature in the Shameelian classification of algae. Int. J. Phycol. Phycochem., 4: 225-232.

Received for publication 10 November 2010)