SPECIES AND COMMUNITY DIVERSITY OF VASCULAR FLORA ALONG ENVIRONMENTAL GRADIENT IN NARAN VALLEY: A MULTIVARIATE APPROACH THROUGH INDICATOR SPECIES ANALYSIS

SHUJAUL MULK KHAN^{1*}, DAVID HARPER¹, SUE PAGE² AND HABIB AHMAD³

¹Department of Biology, University of Leicester, UK, ²Department of Geography, University of Leicester, UK ²Department of Botany, Hazara University Mansehra, Pakistan, ^{*}E-mail of the corresponding author: shuja60@gmail.com

Abstract

Quantitative and qualitative characteristics of floristic diversity at species level along environmental gradients were measured using a randomly stratified design for identifying major plant communities of Narran Valley, Pakistan. Data was collected at 144 sampling stations along 24 altitudinal transects, 12 each at southern and northern aspects. Altitudinal range transects was within the limits of 2450 to 4100 masl. Some 198 species belonging to 68 families were indentified along transects. The Two Way Cluster Analysis (TWCA) and Indicator Species Analysis (ISA) recognized 5 plant communities with significant indicator species. The communities generally showed an elevation-latitudinal gradient complex from inclined, mesic-cool temperate vegetation of Phenerophytes and Chamaephytes, to more dry cold subalpine and alpine herbaceous vegetation of Cryptophytes and Therophytes. ISA analysis revealed that the mountain aspect, altitude from the sea level and soil depth were the strongest environmental variables ($p \le 0.05$) for determining the community structure. Species diversity was optimum at the middle altitudes (2800-3400 masl) as compared to either the lower or higher altitudes. Herbaceous vegetation had positive correlation with altitude as a function of eco-physiological pressures as generally observed on like other highly elevated peaks Himalayas.

Introduction

Classification of natural ecosystems into potential plant communities and habitat types is important for the longterm management of natural resources. Ecologists always try to understand the variation in species diversity along the environmental gradient like altitudinal gradient in mountainous ecosystems (Daubenmire, 1968; Vetaas & Grytnes, 2002). The Himalayas are the world's youngest and highest mountains, possessing diverse vegetation and hence are important locations for research into ecology and biodiversity conservation (Pei, 2001). Discovering and understanding the association of biotic and abiotic components of an ecosystem is a critical branch of ecological research (Tavili & Jafari, 2009). In mountainous regions, altitude shows the greatest effect in limiting plant species and community types (Chawla *et al.*, 2008).

The use of computer-based statistical and multivariate analytical programs helps ecologists to discover structure in the data set and help them to analyse the effects of environmental factors on whole groups of species (Bergmeier, 2002; Anderson et al., 2006). Statistical programs reduce the complexity of data by classifying vegetation and relating the results to abiote (environmental) components (Dufrêne & Legendre, 1997; McCune & Mefford, 1999; Terbraak & Prentice, 1988). Classification also overcomes problems of comprehension by summarizing field data in a low-dimensional space with similar samples and species near together and dissimilar ones far apart (Greig-Smith, 2010). Such approaches have rarely been used in vegetation studies of Pakistan (Malik & Husain, 2006; Saima et al., 2009; Wazir et al., 2008; Malik & Husain, 2008).

The Naran, a mountainous valley is located between $34^{\circ} 54.26$ N to $35^{\circ} 08.76$ N latitude and $73^{\circ}.38.90$ E to $74^{\circ} 01.30$ E longitude with an elevation range of 2450 to 4100 masl., in the North Eastern part of District Mansehra, Pakistan. It is located on the extreme western boundary of the Himalayan range. Geologically the valley is on the extreme margin of the Indian Plate where it is still colliding against the Kohistan arc of Asian

(Eurasian) plate and the location means that climatically, most of it lies out of monsoon range. The rocks of the valley can be subdivided into basement (metagranite and paragneiss) and amphibolites, marble, dolomite, quartzite and deformed granite (Najman et al., 2003; Parrish et al., 2006). The entire area is formed by transverse spurs of rugged mountains on either side of the river Kunhar. The river Kunhar emerges from the lake Lulusar near the Babusar pass at an elevation of 3455m. Its unique physiographic, climatic and geological history makes it also distinct floristically. Moreover Naran valley forms an important part of the Western Himalayan Province (Takhtadzhian & Cronquist, 1986). The climate of Naran valley as a whole is of dry temperate with heavy snowfall in winter and cool dry summers. Most of the year temperature remains below 10°C.

Most of the Himalayan valleys like Narran have not been studied with recently developed analytical tools due to the scarcity of skilled manpower, remote location, hardship in accessibility, rugged physiographic condition and critical geopolitical situation. This study was designed therefore, to quantify the abundance of species, analyze the communities and place them in such an ecological and vegetation framework acceptable in international terms, for understanding the environmental gradient responsible for the distribution of species and communities. The research hypothesis was that variation in the aspect (north- and south-facing) and altitude has a significant impact on species and community diversity of vascular plants in Naran valley, Pakistan.

Materials and Methods

In order to test the hypothesis, a phytosociological approach (Rieley & Page, 1990; Kent & Coker, 1994) was used to measure quantitative and qualitative attributes of vascular plants in quadrats along an altitudinal gradient during the summer 2009. The 60 Km long valley was divided using stratified random sampling into 12 sampling localities, each locality parting about at a distance of 5 Km. Two vertical transects, perpendicular to river Kunhar running up both on the Northern and Southern aspects at each site was taken into consideration. The altitudinal limits covered by these transects were generally from 2450- 4100m.

Along each of the 24 transects, sampling was started from bed of the stream (in most cases the river Kunhar) and carried on till ridge of the mountain. Stations were established at 200m interval (total of 144 stations) along transects. Location map of the study area is presented in Fig. 1. At each station three quadrats each having an area of $50m^2$, $10m^2$ and $1m^2$ were placed randomly for determining the population of trees, shrubs and herbs, respectively (Daubenmire, 1968; Moore & Chapman, 1986). Species composition and abundance in each quadrat were recorded on the data sheets. Absolute and relative density, cover and frequency of each vascular plant species at each station were calculated using the formulae designed by Curtis & McIntosh (1950) using Microsoft Excel on an Asus palm-top computer. The plant specimens were mostly identified with the help of Flora of Pakistan (Nasir & Ali, 1970–1989; Ali & Nasir, 1990–1992; Ali & Qaiser, 1993– 2009) and preserved in the Herbarium of Hazara University Pakistan (HUP). Plant life form assortment was done in accordance with the Raunkiaer's system (Mueller-Dombois & Ellenberg, 1974).

Altitude of the selected localities was measured GPS of Garmin eTrex HC series, vista HCx. Soil pH was measured by BDH universal pH (0-14) paper kit. The soil depth was estimated with an iron rod of 2m length and classes 1-3 (shallow-deep) were assigned. Grazing pressure was estimated by classes 1-5 (low to high) though observing the recent signs and intensity of grazing effect. Aspect of the mountain i.e., South (S) and North (N) were determined with the help of a compass.

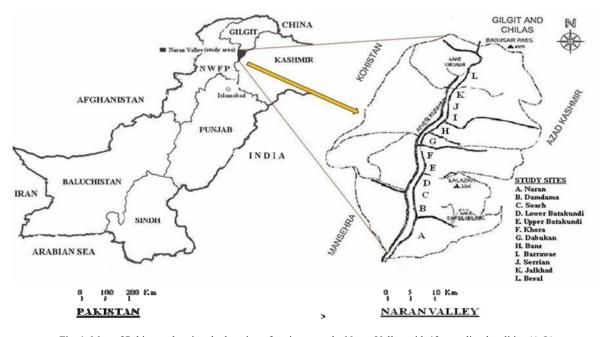


Fig. 1. Map of Pakistan, showing the location of project area the Naran Valley with 12 sampling localities (A-L).

The data collected from 144 sampling stations (1296 quadrats) and 5 environmental variables were analysed through multivariate statistics in PC-ORD version 5 (McCune & Mefford, 1999). Two Way Cluster analysis (TWCA) using Sorensen measures, based on presence/absence data (Greig-Smith, 2010) was carried out to identify pattern and order in the species and station data. Indicator Species Analysis (ISA) was subsequently used to link the floristic with environmental data. It combined information on the concentration of species abundance in a particular group and the faithfulness (fidelity) of occurrence of a species in that group. It constructed indicator values for each species in each group and tested for statistical significance using the Monte Carlo test. Indicator Species Analysis evaluated each species for the strength of its response to the environmental variables. A threshold level of indicator value 20% with 95% significance (p value ≤ 0.05) was chosen as cut off for identifying indicator species (Dufrêne & Legendre, 1997). The indicator species were used for naming the communities.

Results

Sum of 198 plant species (12 trees, 20 shrubs and 166 herbs) belong to 150 genera were recorded at the 144 stations (1296 relevés). The vegetation was dominated hemi-cryptophytes by followed by geophytes and therophytes. The phenerophytes and chamaephytes, less common; dominated the lower valley, lower altitude (2450-3200 masl) and northern slopes. The significant hemi-cryptophytic and geophytic components reflected the generalized features of alpine and subalpine nature of the vegetation of the valley.

Two Way Cluster Analyses broadly divided the plant community in to 5 assemblages which could be clearly seen in two main branches of the dendrogram; (i) the lower altitude (2450-3250 masl) including 3 communities/groups dominated by temperate vegetation and (ii) the higher altitude (3250-4100 masl) including 2 communities dominated by subalpine and alpine species (Fig. 2).

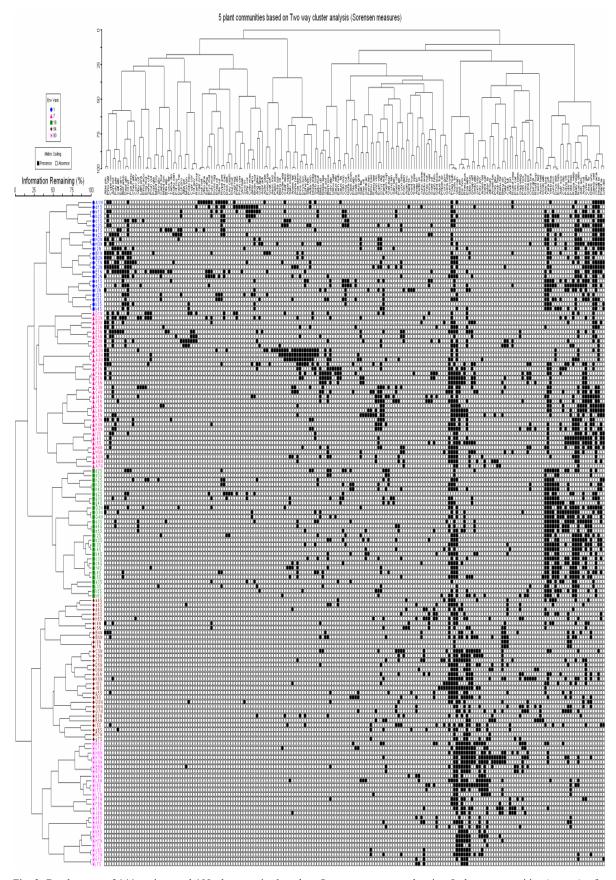


Fig. 2. Dendrogram of 144 stations and 198 plant species based on Sorensen measures showing 5 plant communities (groups), after Two Way Cluster Analysis through PC-ORD.

Indicator Species Analysis (ISA) identified indicator species and the main variables responsible for those communities. It showed that aspect, altitude and soil depth are the stronger ones among variables. It also showed the strength of the environment-species relationship using Monte Carlo procedures (Table 1). The 5 plant communities established in Naran Valley are presented as follows:

i. Pinus wallichiana-Sambucus weightiana community:

This was the valley bottom or lower altitude plant community (indicator species identified by high soil depth classes 1 in Table 1 and Fig. 2). This community was found on either side of the River Kunhar at altitudes from 2450 to 2900 masl. The tree and shrub layer was characterised by Pinus wallichiana and Sambucus wightiana as indicator species. Other dominant species of this layer were Cedrus deodara, Abies pindrow and Artemisia brevifolia. Indicator species of the herb layer were Impatiens bicolor, Plantago lanceolata and Onopordum acanthium. Sub dominant species of herbaceous vegetation were Trifolium repens and Hypericum perforatum. Other common species of the herbaceous community includes Dactylis glomerata, Urtica dioica, Bistorta amplexicaulis, Verbascum thapsus and Viola canescens. The high soil depth was associated with relatively high grazing and anthropogenic pressures.

ii. Abies pindrow-Betula utilis community: This assemblage can be termed the plant assemblage of the middle altitude (2800-3400 masl), northern aspect (Table 1 and Fig. 2). Indicator species of the tree layers were Abies pindrow and Betula utilis while the shrub layer was characterised by Salix flabellaris. Which Achillea millefolium and Fragaria nubicola were the indicators species of the herb layer. Other prominent species were Picea smithiana, Cedrus deodara, Impatiens bicolor, Oxyria digyna, Cynoglossum glochidiatum, Poa alpina, Valeriana pyrolifolia. Shade-loving plants were quite common in this community. The most important environmental variable responsible for the formation of this community was the aspect (NW facing) associated with co-variables like a relatively high soil depth, low grazing pressure.

iii. Juniperus excelsa-Artemisia brevifolia community: This can also be named as the middle altitude (2800-3400 masl), southern aspect assemblage (Table 1 and Fig. 2). Juniperus excelsa, Artemisia brevifolia, Eremurus himalaicus, Dryopteris stewartii and Taraxacum officinale were the indicator species. The tree layer is almost absent as only few prostrate Juniperus excelsa were found on southern faces. A dominant shrub layer, characterized by Artemisia brevifolia, Juniperus communis, Cotoneaster microphyllus and Rosa webbiana was present. Other herbs were Androsace rotundifolia, Malva neglecta, Hypericum perforatum, Onopordum acanthium, Verbascum thapsus, and a woody climber Clematis montana. Trampling effect of the grazing animals was evident every where.

iv. *Rheum australe-Sibbaldia cuneata* **community:** This was the high altitude (3300-4000 masl) timber line plant assemblage. The indicator species were identified by altitude; (Table 1 and Fig. 2) and was comprised of subalpine and alpine vegetation characterized by the

alpine *Rheum australe, Sibbaldia cuneata* and *Iris hookeriana.* The major vegetation pattern was herbaceous with a few shrub species at relatively lower altitudes (3300-3500 masl) such as *Juniperus communis, Juniperus squamata, Rhododendron hypenanthum,* and *Berberis pseudoumbellata.* Other dominant species were *Bergenia strachyei, Poa alpina, Thymus linearis, Bistorta affinis and Aconitum violaceum.* This community developed in between the timberline and alpine pastures at higher altitudes, irrespective of N and S aspects and overlapped community 5 (alpine pastures) at most of the stations.

v. Aster falconeri-Iris hookeriana community: This was the highest altitude (above 3700 masl), or alpine plant community with the indicator species identified by altitude; (Table 1 and Fig. 2) being Aster falconeri, Iris hookeriana and Ranunculus hirtellus. Other diagnostic species were Anemone tetrasepala, Gentiana carinata and Rheum australe. Tree and shrub (Phanerophtes and Chamaephytes) layers were completely absent. At this altitude the species richness was poor. Soil depth at these pastures was remained shallow and with exposed rocks. Grazing was the main pressure on the flora of that community.

Discussion

Drawing a sharp line in any mountain ecosystem is not easy, as rapid micro climatic and edaphic variations overlap each other due to the number of driving agencies and historical perspectives but the multivariate analyses established 5 distinct plant communities of vascular flora. Being in the Western Himalayan Province, the vegetation was mainly Sino-Japanese and was classified as different on the basis of altitude, aspect and soil depth, as has been described in other locations of this province (Takhtadzhian & Cronquist, 1986; Ali & Qaiser 1986; Champion *et el.*, 1965).

At the opening of the valley at the lowers altitudes, the vegetation has some characteristic species of moist temperate vegetation of the adjacent Kaghan valley to the south east e.g., Pinus wallichiana, Aesculus indica, Prunus cerasoides, Indigofera heterantha, Viburnum grandiflorum, Viburnum cotinifolium, Paeonia emodi, Bistorta amplexicaulis and Trifolium repens as reported from moist temperate Himalaya by Saima et al., (2009). Community 1 reflects the latitudinal gradient of vegetation i.e., moist temperate to dry temperate along the valley as this community found at lower altitudes. The Abies pindrow-Betula utilis Community and Juniperus excelsa-Artemisia brevifolia communities were mixtures of temperate and subalpine plant species under the influence of aspect and exhibit rich diversity. Community 4 and 5 are formed by subalpine and alpine species under the effect of high altitude characterized by alpine species like Rheum australe, Sibbaldia cuneata, Iris hookeriana, Aster falconeri and Ranunculus hirtellus. This type of latitudinal and altitudinal gradient complex has been found in other studies around the globe where topographic variables also influence vegetation (Chawla et al, 2008; Bergmeier, 2002; Sanhueza et al, 2009). High snowfall, short summer, low temperature, intense solar radiation and cold winds, result in xeric conditions for plant growth and hence β -diversity of species gradually decreasing both along the altitudinal and latitudinal gradients. This phenomenon of floristic occurrence has also been observed in neighour valleys (Wazir et al. 2008, Kharkwal et al., 2005; Peer et al., 2001; Sheikh et al., 2002; Ahmad et al., 2009).

		Pinus S.	Pinus wallichiana S. weightiana community	hiana – iana iity	Y	Abies pindrow- Betula utilis community	<i>utilis</i> utilis utity	Ju	niperus exce A. brevifolia community	Juniperus excels A. brevifolia community		Rheu Sibba con	Rheum australe- Sibbaldia cuneata community	rale- neata ty	Aste hooke	Aster falconeri-Iris hookeriana community	<i>eri-Iris</i> mmuni
S. No. Bot	Botanical name	Group	was do : of Soi	Group was defined by values of Soil depth	Groul	p was d i of Asj	Group was defined by values of Aspect; Max	Gro by v	up we	Group were defined by values of Aspect;		Group was defined by values of Altitude at	vas def of Altit	ined by ude at	Group value	Group was defined by values of Altitude at	fined b itude at
		classes; high	Max g	classes; Max grp = 3 = highest soil depth	grp	= 1 = Nor aspect	grp = 1 = Northern aspect	N S	lax gr uther	Max grp = 0 = Southern aspect		masl; Max grp = 30-41 3600-3900 masl i.e., higher altitudes	t; Max grp = 30- 00-3900 masl i. higher altitudes	: 30-41 = sl i.e., ides	masi; M abov hig	masi; Max grp = 40-41 above 4000 masl i.e., highest altitudes	= 40-41 nasl i.e. tudes
		Max	Obs	* d	Max	Obs		Max	Obs		-	Max	Obs	p*	Max	Obs	*a
1 ² 4hi	Abios nindrow Rovle	grp	<u>*</u> *	0.001	drg -	2	Value	- -	<u> </u>	1 0 000	-	3%	126	value 0.2102	grp ×	126	0.2102
2. Acer	Acer constitute Wall ex Brandis	о (f	34	0.193		74	0.246	-	4			24	17	0.131	27 77	17	0.131
3. Aesc	Aesculus indica (Wall. Ex Camb) Hook.	, m	. 61	1.000			1.000	-	. –	1.0		26	25	0.0524	26	25	0.0524
64	Betula utilis D. Don	2	10	0.201	1	24	0.000	1	2^{4}	1 0.0	0.000	32	12.6	0.2629	32	12.6	0.2629
5. Cedr	Cedrus deodara (Roxb. Ex Lamb.) G. Don	ŝ	12	0.031	-	9	0.284	-	9	0.284		24	15	0.218	24	15	0.218
6. Crat	Crataegus oxycantha L.	ŝ	4	1.000	-	-	1.000	1	-	1.0	000	24	50	0.0256	24	50	0.0256
	Juglans regia L.	3	4	0.214	-	0	1.000	1	0	1.0	000	24	25.6	0.094	24	25.6	0.094
8. Pice	Picea smithiana (Wall.) Boiss.	ŝ	6	0.156	-	15	0.001	1	15		01	28	25.4	0.0314	28	25.4	0.0314
	¹ Pinus wallichiana Jackson	3	32	0.000	-	22	0.001	-	52		01	25	18.1	0.0638	25	18.1	0.0638
	Poplus glauca H. Haines	e	ς	0.617	-	ć	0.494	1	ς			26	19.4	0.096	26	19.4	0.096
	Prunus cerasioides D. Don	ŝ	6	1.000	0	0	0.463	0	0	Ū		25	16.7	0.3151	25	16.7	0.3151
	Ulmus wallichiana Planch.	ŝ	0	1.000	-	-	1.000	1	-	1.0		29	6.7	0.7664	29	6.7	0.7664
	"Artemisia brevifolia Wall. ex DC	Э	26	0.052	0	50	0.000	0	3 0			33	13.8	0.229	33	13.8	0.229
	Artemisia vulgaris L.	m	8	0.115	0	10	0.013	0	10			25	16.4	0.1818	25	16.4	0.1818
	Berberis pseudoumbellata Parker	0	10	0.346	-	12	0.318	1	12			32	8.9	0.5021	32	8.9	0.5021
	Cotoneaster cashmiriensis G.Klotz	ŝ	9	0.146	0	9	0.040	0	9				43.5	0.0024	25	43.5	0.0024
	Cotoneaster microphyllus Wall. ex Lindl	ę	12	0.063	0	19	0.000	0	19				15.9	0.1786	27	15.9	0.1786
	Ephedra gerardiana Wall. Ex Stapf	ĉ	10	0.114	-	9	0.544	1	9	0		26	32.3	0.0114	26	32.3	0.0114
	<i>Indigofera heterantha</i> Wall. Ex Brand	ŝ	0	1.000	-	-	1.000	-	-		000	24	50	0.0256	24	50	0.0256
	Juniperus communis L.	7	32	0.009	0	22	0.719	0	52		19	34	9.7	0.4577	34	9.7	0.4577
	Juniperus excelsa M. Bieb	m	15	0.124	0	35	0.000	0	35		8	27	5.8	0.8542	27	5.8	0.8542
	Juniperus squamata BuchHam. ex D. Don	5	20	0.005	0	9	0.703	0	9			37	4.5	0.9346	37	4.5	0.9346
	Rhododendron hypenanthum Balf.f	7	8	0.081	-	8	0.026	1	8			36	7.1	0.5899	36	7.1	0.5899
	Ribies alpestre Decne	ŝ	4	0.268	0	0	0.620	0	7	-	20	24	15.5	0.196	24	15.5	0.196
	Rosa webbiana Wallich ex Royle	ŝ	19	0.126	0	17	0.495	0	11	7 0.4		31	10.2	0.4175	31	10.2	0.4175
	Rubus sanctus Schreber	ŝ	ς	0.611	0	-	0.747	0	-	0.747		26	19.4	0.087	26	19.4	0.087
	² Salix flabellaris Andersson in Kung	3	٢	0.508	-	20	0.000	1	50			30	5.8	0.7906	30	5.8	0.7906
-	Sambucus wightiana Wall. ex Wight & Arn	3	59	0.000	-	21	0.282	-	21		82		22.9	0.03	25	22.9	0.03
29. Sorb.	Sorbaria tomentosa (Lindl.) Rehder	ę	12	0.058	0	4	0.962	0	4	0	62	24	49.5	0.0036	24	49.5	0.0036
30. Tama	Tamarix dioica Roxb. ex Roch	ŝ	9	0.160	0	0	1.000	0	7	_	000	24	23.6	0.1308	24	23.6	0.1308
31. Vibu	Viburnum cotinifolium D. Don	e	4	0.437		ŝ	0.781	-	ŝ	0.781	81	32	127	0.2601	22	L C L	0.7601
									ì			1		1/07/0	10	17.1	1207.0

	Acantholimon lycopodioides Boiss.	-	0	0.650	0	0	0.365	0	0	0.365	30	14.6	.6 0.1564	564	30	14.6	0.1564
34.	² Achillea millefolium L.	С	27	0.002	-	25	0.001	-	25	0.001	26	8	-	0.5693	26	×	0.5693
35.	Aconitum heterophyllum Wall.	2	7	0.108	-	2	0.125	-	2	0.125	40	9.3		171	40	9.3	0.3971
	Aconitum violaceum Jacquen ex. Stapf	2	9	0.380	-	12	0.011	-	12	0.011	34	9.	_	0.4517	34	9.7	0.4517
	Actaea spicata L.	С	m	0.513	-	m	0.499	-	c	0.499	26	23.	-	0.0592	26	23.2	0.0592
	Adiantum venustum D. Don	С	17	0.011	-	10	0.089	-	10	0.089	24	24.4		0.0496	24	24.4	0.0496
	Alliaria petiolata (M. Bieb.) Cavara & Grande	С	б	0.506	-	ŝ	0.493	-	ω	0.493	31	4.(-	0.9448	31	4.6	0.9448
	Allium humile Kunth.	1	4	0.816	-	×	0.105	-	×	0.105	38	15.	-	0.2062	38	15.4	0.2062
	Alopecurus arundinaceus Poir.	1	ŝ	0.799	-	4	0.699	-	4	0.699	28	7.(-	0.5681	28	7.6	0.5681
	Anaphalis triplinervis (Sims) C. B. Clarke	6	13	0.017	0	×	0.086	0	×	0.086	40	14.	-	0.2635	40	14.1	0.26
	Androsace hazarica R.R. Stewart ex Y. Nasir	2	4	0.358	-	2	0.059	-	2	0.059	41	22.	-	0.1194	41	22.1	0.1194
	Androsace primuloides Duby	1	Ξ	0.033	-	ŝ	0.859	-	ŝ	0.859	41	19.	-	0.1506	41	19.7	0.1506
	Androsace rotundifolia Watt	С	20	0.086	0	16	0.611	0	16	0.611	28	8	-	0.5859	28	8.2	0.5859
	Anemone falconeri Thoms.	б	2	0.678	-	2	0.542	-	٢	0.542	41	12.	2 0.2833	833	41	12.2	0.2833
	Anemone obtusiloba D.Don	7	9	0.490	0	2	0.945	0	5	0.945	40	ς.		906	40	3.1	0.99
	Anemone rupicola Cambess	0	9	0.452	-	S	0.673	-	ŝ	0.673	32	5.		0.8554	32	5.1	0.85
	Anemone tetrasepala Royle	1	14	0.034	-	×	0.380	-	×	0.380	41	14.		858	41	14.1	0.18
50.	Angelica glauca Edgew.	3	10	0.063	-	ŝ	0.513	-	5	0.513	29	7.7		0.6317	29	7.7	0.6317
51.	Apluda mutica (L.) Hack	ę	18	0.007	0	9	0.558	0	9	0.558	28	16.		0.174	28	16.1	0.174
	Aqueligea fragrans Benth.	С	-	1.000	-	-	1.000	-	-	1.000	39	5.	-	0.8312	39	5.1	0.8312
53.	Arnebia benthamii Wallich ex G. Don	2	14	0.018	-	12	0.003	-	12	0.003	41	15.		01	41	15.9	0.2
	Asparagus racemosus Willd.	С	6	0.040	-	8	0.029	-	8	0.029	26	.6		0.3601	26	9.2	0.3601
	Asperula oppositifolia Reg. & Schmalh.	С	9	0.264	0	4	0.487	0	4	0.487	27	1.		0.6331	27	7.4	0.63
56.	Asplenium adiantum-nigrum	ю	б	0.573	-	б	0.489	-	С	0.489	30	Ξ		199	30	11.5	0.41
57.	⁵ Aster falconeri (C. B. Clarke) Hutch	1	20	0.005	0	6	0.225	0	6	0.225	41	43.		056	41	43.2	0.0056
	Astragalus anisocanthus Boiss.	ę	16	0.028	0	2	0.848	0	7	0.848	24	12.		0.2775	24	12.2	0.27
59.	Astragalus scorpiurus Bunge	3	Ξ	0.207	-	6	0.499	-	6	0.499	26	8		0.223	26	13	0.2
60.	Bergenia ciliata (Haw.) Sternb.	3	4	0.209	-	4	0.237	-	4	0.237	28	12.		841	28	12.4	0.2841
61.	⁴ Bergenia strachyei (Hook. f. & Thoms) Engl	1	32	0.001	1	31	0.000	-	31	0.000	38	14		0.1614	41	14.7	0.16
	Bistorta affinis (D.Don) Green	7	21	0.052	-	14	0.790	-	14	0.790	36	16.		0.155	36	16.2	0.1
63.	Bistorta amplexicaulis (D. Don)	e	18	0.008	-	2	0.990	-	2	0.990	26	9.4	-	0.4779	26	9.4	0.4779
64.	Bromus hordeaceus L.	ŝ	16	0.024	0	10	0.122	0	10	0.122	26	9.6	-	0.4453	26	9.6	0.4453
65.	Caltha alba Jack. Ex Comb	ŝ	16	0.023	-	12	0.043	-	12	0.043	25	14.2	_	284	25	14.2	0.2284
<u>66.</u>	Capsella bursa-pastoris (L.) Medic.	c,	10	0.053	0	4	0.562	0	4	0.562	24	20.4	_	0.1232	24	20.4	0.1232
	Cassiope fastigiata (Wallich) D. Don	7	4	0.414	-	m	0.493	-	ς	0.493	36	12	-	0.3937	36	12.1	0.3937
	Cerastium fontanum Baumg.	б	Ξ	0.575	0	11	0.773	0	Ξ	0.773	27	11.7		0.3079	27	11.7	0.3079
	Chenopodium album L.	c,	10	0.057	-	ŝ	0.476	-	S	0.476	25	10		0.3865	25	10.4	0.3865
70.	Clematis montana BuchHam. ex DC.	3	4	0.581	0	12	0.002	0	12	0.002	28	19.2	_	0.1112	28	19.2	0.1112
71.	Colchicum luteum Baker	7	2	0.358	-	9	0.710	-	9	0.710	31	4.4	_	0.9182	31	4.4	0.9182
	Convolulus arvensis L.	С	0	0.826	0	0	0.751	0	0	0.751	25	12	-	0.3107	25	12	0.3107
73.	Corydalis diphylla Wall.	0	2	0.738	0	2	0.461	0	7	0.461	32	Ξ	4 0.33	0.3359	32	11.4	0.3359
	Corvdalis govaniana Wall.	6	Ξ	0.037	0	9	0.269	0	9	0.269	30	.6	2 0.4655	655	30	9.2	0.4655

	Cynoglossum glochidiatum Wall. Ex Benth .	ŝ	31	0.008	-	24	0.245	-	24	0.245	6		0.108	27	16.5	0.108
76.	Cynoglossum himaltoni	ŝ	5	0.536	-	2	0.739	-	5	0.739	5	 °	1938	24	14.4	0.1938
.17.	Cynoglossum lanceolatum L.	÷	0	1.000	0	7	0.470	0	0	0.470	31		-	31	5.9	-
78.	Cyperus niveous	ŝ	14	0.080	-	13	0.155	-	13	0.155		Ŭ	5087	24	9.2	0.508
79.	Cypripedium cordigerum D. Don	ŝ	4	0.385	-	5	0.122	-	\$	0.122		7.8 0.	6163	30	7.8	0.616
80.	Dactylis glomerata L.	3	22	0.004	-	9	0.883	-	9	0.883		Ŭ	1522	27	14.1	0.1522
81.	Dactylorhiza hatagirea (D. Don) Soo	ŝ	9	0.158	0	0	0.815	0	0	0.815		 Ŭ	1084	24	24.8	0.108^{4}
82.	Dioscorea deltoidea Wall.	ŝ	٢	0.085	0	7	1.000	0	0	1.000		Ŭ	2248	24	14.8	0.2248
83.	Draba oreades Schrenk	ŝ	б	0.788	0	9	0.161	0	9	0.161			.946	30	4.2	0.946
84.	Dracocephalum nutans L.	1	ŝ	0.829	0	9	0.151	0	9	0.151		Ŭ	5017	40	7.7	0.501
85.	Dryopteris juxtapostia Christ	ŝ	Г	0.209	-	Π	0.011	-	Ξ	0.011		Ŭ	3943	26	10.1	0.394
86.	³ Dryopteris stewartii FrasJenk.	ŝ	26	0.008	0	40	0.000	0	40	0.000		Ŭ	2961	28	10.8	0.296
87.	Eclipta prostrata L.	ŝ	6	0.044	0	٢	0.053	0	٢	0.053		 Ŭ	1432	24	20.4	0.143
88.	Epilobium angustifolium L.	ŝ	9	0.150	-	5	0.122	-	5	0.122		Ŭ	1558	24	17.5	0.1558
89.	Equisetum arvense L.	ŝ	10	0.051	-	٢	0.108	-	٢	0.108		Ŭ	1908	24	17.3	0.1908
90.	Eragrostis cilianensis (All.) Lut. ex F.T. Hubbard	ŝ	6	0.050	0	7	0.917	0	0	0.917		 Ŭ	0302	24	34.2	0.030
91.	³ <i>Eremurus himalaicus</i> Baker	ŝ	12	0.350	0	35	0.000	0	35	0.000		Ŭ	4671	27	9.2	0.467
92.	Erigeron multiradiatus (Lindl. Ex DC) C.B. Clarke	ŝ	٢	0.098	-	4	0.230	-	4	0.230		Ŭ	4277	26	6	0.427'
93.	Erysimum melicentae Dunn.	ŝ	6	0.037	0	ŝ	0.664	0	ŝ	0.664			.126	24	20.8	0.126
94.	Euphorbia wallichii Hook. f.	0	×	0.181	0	Ξ	0.019	0	Ξ	0.019		Ŭ	5323	36	8.4	0.532
95.	Euphrasia himalayica Wetts.	ŝ	17	0.046	-	10	0.649	-	10	0.649		Ŭ	5799	26	8.3	0.579
96.	² Fragaria nubicola Lindl. ex Lacaita	Э	49	0.000	-	47	0.000	-	47	0.000		Ŭ	4115	25	10.6	0.411
97.	Fritillaria roylei Hook. f.	6	1	1.000	0		1.000	0	-	1.000		Ŭ	1146	26	15.9	0.114(
98.	Gagea elegans Wall. Ex D. Don	2	14	0.029	0	9	0.765	0	9	0.765		Ŭ	2194	37	13.7	0.2192
99.	Galium aparine L.	ŝ	6	0.096	-	5	0.557	-	2	0.557		Ŭ	5091	31	10.9	0.509
100.	Galium asperuloides	ŝ	13	0.032	0	9	0.457	0	9	0.457			.033	27	26.2	0.033
101.	Gentiana carinata Griseb	1	22	0.003	-	10	0.392	-	10	0.392	40	13.8 0.	0.1648	40	13.8	0.1648
102.	<i>Gentiana kuroo</i> Royle	ŝ	0	0.681	-	-	1.000	-	-	1.000		Ŭ	9532	31	4.2	0.953
103.	Gentiana moorcroftiana (Wallich ex G. Don) Airy Shaw	0	14	0.027	0	12	0.023	0	12	0.023		Ŭ	9166	32	4.3	0.916
104.	Gentianodes argentia Omer, Ali & Qaiser	0	ŝ	0.702	0	Ś	0.187	0	ŝ	0.187			.993	38	2.6	0.993
105.	Geranium nepalense Sweet.	0	4	0.419	0	0	0.803	0	0	0.803		Ŭ	9994	39	1.9	0.999
106.	Geranium polyanthes Edgew & Hook. F	7	10	0.230	-	16	0.007	-	16	0.007		Ŭ	3847	28	Ξ	0.384
107.	Geranium wallichianum D. Don ex. Sweet	ŝ	ω	0.979	0	2	0.494	0	2	0.494		Ŭ	4721	26	9.3	0.472
108.	Geum elatum Wall. Ex G. Don	ŝ	ŝ	0.680	0	ŝ	0.815	0	ŝ	0.815		Ŭ	7011	28	6.5	0.701
109.	Gnaphalium affine D. Don	0	Ξ	0.506	-	20	0.022	-	20	0.022		Ŭ	6835	36	7.4	0.683
110.	Gratiola officinalis L.	ŝ	с	0.627	-	ŝ	0.494	-	ŝ	0.494		Ŭ	5101	28	10.9	0.510
111.	Hackelia uncinata (Royle ex Benth) Fischer	ŝ	Ξ	0.842	-	15	0.649	-	15	0.649		Ŭ	1882	36	13.2	0.1882
112.	Heracleum candicans Wall. ex DC.	ŝ	9	0.149	0	9	0.046	0	9	0.046		Ŭ	7187	26	9.9	0.718
113.	Hyoscyanus niger L.	ŝ	0	1.000	-		1.000	-	-	1.000		Ŭ	1938	28	20	0.1938
114.	Hypericum perforatum L.	ŝ	24	0.002	0	18	0.001	0	18	0.001		 Ŭ	0.0218	24	29.8	0.0218
115.	Impatiens edgeworthii Hook.f.	ŝ	12	0.028	-	10	0.035	-	10	0.035			0.233	28	14.3	0.233
116	I received the David	,														

117.	Inula grandiflora Willd.	ŝ	4	1.000	-	۲	1.000		•	1-000	5	:		1700.0	5		170000
118.	Inula multiradiata	ĉ	0	1.000	0	0	0.466	0	0	0.466	29	9	Ū	0.7754	29	6.7	0.7754
.19	⁵ Iris hookeriana Foster	1	38	0.001	0	16	0.853	0	16	0.853	41	5		0.0702	41	20	0.0702
120.	Juncus membranaceus Royle ex D. Don	7	5	0.313	0	Г	0.234	0		0.234	36	13.		0.3535	36	13.7	0.3535
121.	Lathyrus pratensis L.	ę	4	0.201	-	0	0.487	-	0	0.487	27	8		0.6169	27	8.3	0.6169
122.	Leucas cephalotes (Roth) Spreng.	С	4	0.207	0	0	0.733	0	0	0.733	26	18.		0.1272	26	18.4	0.1272
123.	Malva neglecta Wallr.	б	26	0.042	0	25	0.181	0	25	0.181	24	22		268	24	22.8	0.0268
124.	Mentha longifolia (L.) Hudson	ŝ	4	0.196	-	4	0.246	1	4	0.246	30	×.		0.6395	30	8.1	0.6395
125.	Mentha royleana Benth.	б	6	1.000		-	1.000	1	-	1.000	26	5		564	26	25	0.0
126.	Minuartia kashmirica (Edgew) Mattf	7	ŝ	0.853	-	m	0.917	1	ŝ	0.917	36	8		081	36	8.5	0.5(
127.	Morina longifolia Wall. ex. Dc.	ę	61	0.773	-	4	0.301	-	4	0.301	29	ë.		614	29	3.4	0.9
128.	Nepeta laevigata (D. Done) HandMazz.	ŝ	\$	0.571	-	Г	0.163	1	L	0.163	34	ŝ		0.871	34	5	0.871
129.	Onopordum acanthium L.	3	34	0.001	0	18	0.606	0	18	0.606	24	1		0.1664	24	14	0.1664
30.	Onosma bracteatum Wall.	ŝ	8	0.199	-	8	0.199	1	×	0.199	30	5.	-	708	30	5.4	0.7
131.	Origanum vulgare L.	ŝ	14	0.030	0	17	0.000	0	17	0.000	27	27.		0.0218	27	27.2	0.0218
132.	Orobanche alba Stephen ex Wallid	б	-	1.000	0	-	0.747	0	1	0.747	36	8.		0.6151	36	8.6	0.6151
33.	Oxyria digyna L.	ŝ	22	0.019	-	21	0.010	-	21	0.010	33	6		993	33	6	0.49
134.	Oxytropis cachemiriana Camb.	ŝ	19	0.006	0	Г	0.384	0	Г	0.384	24	18.		0.0994	24	18.5	0.0
135.	Paeonia emodi Wall. ex Royle	ŝ	ы	1.000	-	-	1.000	-	-	1.000	26	5		524	26	25	0.0
136.	Parnassia nubicola Wall.	2	5	0.169	-	с	0.931	-	ŝ	0.931	30	8		709	30	8.2	0.4709
37.	Pedicularis pectinata Wall. ex. Benth	7	ŝ	0.514	0	0	0.806	0	0	0.806	38	6.0		295	38	9.9	0.7
38.	Pennisetum lanatum Klotzsch	б	с	0.563	0	0	0.757	0	0	0.757	31	4		816	31	4.9	0.85
139.	Phleum alpinum L.	3	4	0.478	0	4	0.313	0	4	0.313	28	.9		191	28	6.5	0.6191
140.	Phlomis bracteosa Royle ex Benth.	5	S	0.092	0	4	0.103	0	4	0.103	37	4		0.9016	37	4.7	0.9(
141.	Pimpinella acuminate (Edgew.) C.B. Clarke	Ś	4	0.215	-	0	0.495	1	0	0.495	29	8		585	29	8.9	0.55
42.	Pimpinella diversifolia (Wall.) DC	ŝ	5	0.088	0	с	0.446	0	c	0.446	25	34.		106	25	34.1	0.01
143.	Plantago himalaica Pilger	1	5	0.112		ŝ	0.700	-	ŝ	0.700	34	ŝ		722	34	3.9	0.97
144.	¹ Plantago lanceolata L.	3	30	0.002	0	18	0.309	0	18	0.309	24	20.		0.0496	24	20.9	0.0496
145.	Plantago major L.	Э.	16	0.098	0	10	0.986	0	10	0.986	36	14		062	36	14.1	0.2(
146.	⁴ Poa alpina L.	7	24	0.146	-	28	0.174	-	28	0.174	38	15.		0.079	38	15.5	0.079
47.	Poa annua L.	ŝ	5	0.100	-	ŝ	0.446	-	ŝ	0.446	27	39.		074	27	39.1	0.0
48.	Poa stewartiana Bor.	3	20	0.010	-	14	0.090	1	14	0.090	27	13.		547	27	13.5	0.25
149.	Podophyllum hexandrum Royle	ŝ	4	0.602		S	0.356	-	ŝ	0.356	31	5.		638	31	5.8	0.76
150.	Polygonum aviculare L.	ŝ	10	0.364		10	0.459	1	10	0.459	26	13.		178	26	13.9	0.2178
151.	Polygonum alpinum (All.) Schur	7	18	0.036	0	13	0.229	0	13	0.229	38	13.		042	38	13.8	0.2042
52.	Polygonum molle (D.Don) Hara	С	5	0.458		11	0.069	1	Ξ	0.069	28	12		267	28	12.2	0.3267
153.	Polygonum plebeium R. Br.	ŝ	14	0.033	-	6	0.190	-	6	0.190	26	Ξ		391	26	11.7	0.3391
154.	Polygonatum verticillatum (L.) Allioni	3	Π	0.336	0	Π	0.663	0	Ξ	0.663	34	4		0.9872	34	4	0.9872
155.	Potentilla anserina L.	5	10	0.779	0	13	0.709	0	13	0.709	36	4		0.9536	36	4.9	0.9536
156.	Potentilla atrosanguinea Lodd.	7	8	0.269	-	8	0.246	Г	8	0.246	34	16.	Ŭ	0.1292	34	16.8	0.1292
157.	Potentilla nepalensis Hook. f.	1	13	0.280	0	15	0.248	0	15	0.248	36	15.	Ū	236	36	15.6	0.1236
158.	Primula calderana Balf. F & cooper	1	9	0.149	-	4	0.306	-	4	0.306	38	21.	Ū	234	38	21.5	0.1234

159.	Primula denticulata Smith	-	Ξ	0.073	-	16	0.000		16	0.000	34	5.8	Ŭ	223	34	5.8	0.7223
160.	Primula glomerata Pax.	0	9	0.215	-	8	0.029	-	×	0.029	41	22	Ŭ	172	41	22.2	0.1172
161.	Primula rosea Royle	7	Ξ	0.115	-	14	0.019	-	14	0.019	38	15.		35	38	15.1	0.135
162.	Prunella vulgaris L.	с	9	0.183	1	9	0.148	-	9	0.148	25	5.6	Ŭ	652	25	5.6	0.7652
163.	Pseodomertensia parvifolia (Decne)	ю	9	0.141	1	4	0.311	-	4	0.311	26	43	Ŭ	114	26	43	0.0114
164.	Pseodomertensia moltkioides Royle & Kazmi	-	9	0.275	-	ŝ	0.726	-	ŝ	0.726	41	27.	Ŭ	354	41	27.8	0.0354
165.	Pseodomertensia nemerosa (DC.) R. Stewart & Kazmi	-	0	0.962	1	٢	0.056	-	1	0.056	37	8.3	Ŭ	811	37	8.3	0.4811
166.	Pteris vittata L.	с	ŝ	0.780	-	9	0.149	-	9	0.149	36	7.7	Ŭ	213	36	7.7	0.5213
167.	⁵ Ranunculus hirtellus Royle ex D. Don	-	14	0.008	-	٢	0.066	-	2	0.066	41	67.	Ŭ	022	41	67.1	0.0022
168.	Ranunculus laetus Wall. Ex Hook.f. & Thoms	ŝ	ę	0.827	-	5	0.255	-	5	0.255	36	3.8	Ŭ	666	36	3.8	0.9666
169.	Ranunculus muricatus L.	с	5	0.269	1	7	1.000	-	0	1.000	24	31	Ŭ	396	24	31	0.0396
170.	⁴ <i>Rheum australe</i> D.Don	-	32	0.004	-	21	0.231	-	21	0.231	38	20.	Ū	588	41	20.3	0.0588
171.	Rumex dentatus L.	ŝ	32	0.014	-	26	0.340	-	26	0.340	28	10.	Ŭ	855	28	10.1	0.4855
172.	Rumex nepalensis Spreng.	ŝ	2	0.646	-	٢	0.235	-	٢	0.235	24	14.	Ŭ	282	24	14.5	0.2282
173.	Salvia lanata Roxb.	3	5	0.104	-	ŝ	0.716	-	ŝ	0.716	32	3.4	Ŭ	818	32	3.4	0.9818
174.	Salvia moorcroftiana Wall. ex Benth.	с	5	0.518	0	5	0.414	0	5	0.414	38	5.2	Ŭ	676	38	5.2	0.7676
175.	Saussurea albescens Hook. f. & Thoms.	ŝ	9	0.233	-	4	0.518	-	4	0.518	24	15.		95	24	15.6	0.195
176.	Saussurea fastuosa (Decne.) Schultz-Bip	-	4	0.340	-	4	0.249	-	4	0.249	31	2.8	Ŭ	922	31	2.8	0.9922
177.	Saussuregraminifolia Wall. ex DC.	1	c	0.701	0	ŝ	0.786	0	ŝ	0.786	30	5.3	Ŭ	038	30	5.3	0.8038
178.	Scirpus palustris L.	ю	5	0.260	-	10	0.022	-	10	0.022	26	9.3	Ŭ	385	26	9.3	0.4385
179.	Sedum album L.	7	10	0.461	1	12	0.355	-	12	0.355	41	9.2	Ŭ	759	41	9.2	0.4759
180.	Sedum ewersii Ledeb	7	18	0.008	0	8	0.320	0	8	0.320	36	8.4	Ŭ	751	36	8.4	0.5751
181.	Senecio chrysanthemoides DC.	б	9	0.126	-	ŝ	0.420	-	ŝ	0.420	27	Ξ	Ŭ	789	27	11.6	0.3789
182.	⁴ Sibbaldia cuneata O. Kuntze	7	29	0.013	-	25	0.048	-	25	0.048	39	20	Ū	584	41	19.7	0.0584
183.	Silene vulgaris Garck	ŝ	5	0.090	0	ŝ	0.612	0	ŝ	0.612	24	23.	Ŭ	972	24	23.6	0.0972
184.	Stipa himalaica Rozhev.	с	10	0.038	-	ŝ	0.824	-	ŝ	0.824	26	25.	Ŭ	598	26	25.7	0.0598
185.	Strobilanthes glutinosus Nees	ŝ	4	0.211	0	7	0.362	0	0	0.362	30	10.	Ŭ	137	30	10.2	0.4137
186.	Swertia ciliata (D. Don ex G. Don) B. L. Burtt	ŝ	Ξ	0.047	-	4	0.798	-	4	0.798	26	46.	Ŭ	058	26	46.2	0.0058
187.	Swertia speciosa D. Don	ŝ	c	0.632	-	ŝ	0.493	-	ŝ	0.493	31	Ξ	Ŭ	251	31	11.8	0.4251
188.	Sisymbrium irio L.	-	c	0.543	0	7	0.754	0	0	0.754	25	7.2	Ŭ	433	25	7.2	0.6433
189.	³ Taraxacum officinale Weber	ŝ	4	0.001	0	36	0.033	0	36	0.033	27	9.1	Ŭ	165	27	9.1	0.6165
190.	Thymus linearis Benth.	0	32	0.101	-	33	0.992	-	33	0.992	32	12.	Ŭ	444	32	12.7	0.1444
191.	Trifolium repens L.	3	28	0.000	0	8	0.884	0	8	0.884	24	22	Ŭ	512	24	22.3	0.0512
192.	Trillidium govenianum (Wall. ex D. Don) Kunth	ε	-	1.000	1	4	0.246	-	4	0.246	32	7.7	Ŭ	701	32	7.7	0.6701
193.	Tussilago farfara L.	ε	4	0.205	1	0	0.749	-	0	0.749	24	21.	Ŭ	044	24	21.7	0.1044
194.	Urtica dioica L.	ŝ	15	0.061	0	6	0.708	0	6	0.708	24	34.7		0.011	24	34.7	0.011
195.	Valeriana pyrolifolia Decne	-	9	0.631	-	21	0.000	-	21	0.000	41	5.5	Ŭ	296	41	5.5	0.8296
196.	Verbascum thapsus L.	ŝ	23	0.055	0	20	0.466	0	20	0.466	24	17.	Ŭ	766	24	17.8	0.0766
197.	Vicia bakeri Ali	ŝ	c	0.627	-	-	1.000	-	-	1.000	26	17.	Ŭ	072	26	17.9	0.1072
108	Wels assesses Well av Davk	-	ē	0100	,					0010	4	<				1	0000

Species diversity was optimum at the middle altitudes (2800-3400 masl) as compared to the lower where direct anthropogenic activities are continuous and high altitudes (3400-4100) where diversity reaches to its minimum is mainly due to xeric condition but the high grazing pressure also trigger this decrease. Such kind of species distributional phenomenon has also been observed in other mountainous ecosystems (Anderson et al., 2006; Nogués-Bravo et al., 2008). Moreover increase in herbaceous vegetation is positively correlated to the increase in altitude that seems to be a function of eco-physiological pressures associated with these elevations. Finding of this paper clearly indicate that lower valley exhibit moist temperate type of floristic element which gradually change on one hand to dry temperate types in upper valley (along latitudinal gradient) and on the other hand to sub alpine and alpine types along the elevation gradient.

Acknowledgements

Hazara University Mansehra, Pakistan and Higher Education Commission of Pakistan are highly acknowledged for extending financial support to the study under the *Post Quake Development Project* of Hazara University.

References

- Ahmad, H., S.M. Khan, S. Ghafoor and N. Ali. 2009. Ethnobotanical study of upper Siran. J. Herbs Spices Med. Plants. 15(1): 86-97.
- Ali, S.I. and M. Qaiser. 1992-2007. Flora of Pakistan, Nos. 194-208. Department of Botany, University of Karachi.
- Ali, S.I. and M. Qaiser. 1986. A Phyto-Geographical analysis of the Phenerogames of Pakistan and Kashmir. *Proceedings of Royal Society Edinburgh*, 89: 89-101.
- Ali, S.I. and Y.J. Nasir. 1990-92. Flora of Pakistan, No. 191-193. Department of Botany, University of Karachi and National Herbarium, PARC, Islamabad.
- Anderson, M.J., K.E. Ellingsen and B.H. McArdle. 2006. Multivariate dispersion as a measure of beta diversity. *Ecol. Lett.*, 9(6): 683-693.
- Bergmeier, E. 2002. The vegetation of the high mountains of crete -A revision and multivariate analysis. *Phytocoenologia*, 32(2): 205-249.
- Champion, H.G., K. Seth and G. M. Khattak. 1965. Forest types of Pakistan. PFI Peshawar.
- Chawla, A., S. Rajkumar, K.N. Singh, B. Lal, R.D. Singh and A.K. Thukral. 2008. Plant species diversity along an altitudinal gradient of Bhabha Valley in western Himalaya. J. Mt. Sci., 5(2): 157-177.
- Curtis, J.T. and R.P. McIntosh. 1950. The Interrelations of certain analytic and synthetic phytosociological characters. *Ecology*, 31(3): 434-455.
- Dai, X., B. Page and K.J. Duffy. 2006. Indicator value analysis as a group prediction technique in community classification. *South African J. Bot.* 72(4): 589-596.
- Daubenmire, R.F. 1968. Plant Communities: A textbook of Plant Synecology. Harper & Row, New York.
- Dufrêne, M. and P. Legendre. 1997. Species assemblages and indicator species: The need for a flexible asymmetrical approach. *Ecol. Monogr.* 67(3): 345-366.
- Greig-Smith, P. 2010. *Quantitative Plant Ecology*. Blackwell Scientific, Oxford. 581.5 GRE [NORMAL] p.
- Kent, M. and P. Coker. 1994. Vegetation Description and Analysis: A Practical Approach. John Wiley, Chichester.
- Kharkwal, G., P. Mehrotra, Y.S. Rawat and Y.P.S. Pangtey. 2005. Phytodiversity and growth form in relation to altitudinal gradient in the Central Himalayan (Kumaun) region of India. *Curr. Sci.*, 89(5): 873-878.

- Malik, R.N. and S.Z. Husain. 2006. Classification and ordination of vegetation communities of the Lohibehr reserve forest and its surrounding areas, Rawalpindi, Pakistan. *Pak. J. Bot.*, 38(3): 543-558.
- Malik, R.N. and S.Z. Husain. 2008. Linking remote sensing and ecological vegetation communities: A multivariate approach. *Pak. J. Bot.*, 40(1): 337-349.
- McCune, B. and M.J. Mefford. 1999. PC-ORD. Multivariate Analysis of Ecological Data. version 4.
- Moore, P.D. and S.B. Chapman. 1986. *Methods in Plant Ecology. Second edition.*
- Mueller-Dombois, D. and H. Ellenberg. 1974. Aims and Methods of Vegetation Ecology. Wiley, New York; London. 547 p.
- Najman, Y., E. Garzanti, M. Pringle, M. Bickle, J. Stix and I. Khan. 2003. Early-Middle miocene paleodrainage and tectonics in the Pakistan Himalaya. *Bull. Geol. Soc. Am.*, 115(10): 1265-1277.
- Nasir, E. and S.I. Ali. 1970-89. Flora of Pakistan. No. 1-190. National Herbarium, PARC, Islamabad and Department of Botany, University of Karachi, Pakistan.
- Nogués-Bravo, D., M.B. Araújo, T. Romdal and C. Rahbek. 2008. Scale effects and human impact on the elevational species richness gradients. *Nature*, 453(7192): 216-219.
- Parrish, R.R., S.J. Gough, M.P. Searle and D.J. Waters. 2006. Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya. *Geology*, 34(11): 989-992.
- Peer, T., A. Millinger, J. P. Gruber and F. Hussain. 2001. Vegetation and altitudinal zonation in relation to the impact of grazing in the steppe lands of the Hindu Kush Range (N-Pakistan). *Phytocoenologia*, 31(4): 477-498.
- Pei, S.J. 2001. Ethnobotanical approaches of traditional medicine studies: Some experiences from Asia. P. 74-79 in *Pharmaceutical Biology; Annual Meeting of the American-Association-for-the-Advancement-of-Science,*
- Rieley, J. and S. Page. 1990. *Ecology of Plant Communities*. Longman Scientific & Technical, Harlow.
- Saima, S., A.A. Dasti, F. Hussain, S.M. Wazir and S.A. Malik. 2009. Floristic compositions along an 18 - km long transect in ayubia National Park district Abbottabad, Pakistan. *Pak. J. Bot.*, 41(5): 2115-2127.
- Sanhueza, D., M. Miranda, M. Gómez and C. Bonacic. 2009. Species richness, diversity and human activities in an elevation gradient, a high-ecosystem, in Lagunas Huascoaltinas, Atacama Region, Chile. *Cienc. Invest. Agrar.*, 36(3): 411-424.
- Sheikh, K., T. Ahmad and M.A. Khan. 2002. Use, exploitation and prospects for conservation: people and plant biodiversity of Naltar Valley, northwestern Karakorums, Pakistan. *Biodivers. Conserv*, 11(4): 715-742.
- Takhtadzhian, A.L. and A. Cronquist. 1986. Floristic Regions of the World. University of California Press, Berkeley, Calif. London.
- Tavili, A. and M. Jafari. 2009. Interrelations between plants and environmental variables. *Int. J. Environ. Res.*, 3(2): 239-246.
- Terbraak, C.J.F. and I.C. Prentice. 1988. A Theory of Gradient Analysis. *Adv. Ecol. Res.*, 18: 271-317.
- Vetaas, O.R. and J. Grytnes. 2002. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. *Global Ecol. Biogeogr.*, 11(4): 291-301.
- Wazir, S.M., A.A. Dasti, S. Saima, J. Shah and F. Hussain. 2008. Multivariate analysis of vegetation of Chapursan valley: An alpine meadow in Pakistan. *Pak. J. Bot.*, 40(2): 615-626.
- Weaver, P.L. 1991. Environmental gradients affect forest composition in the Luquillo Mountains of Puerto-Rico. *Interciencia*, 16(3): 142-151.

(Received for publication 9 June 2010)