IMPROVEMENT IN YIELD AND NUTRIENT UPTAKE BY CO-CROPPING OF WHEAT AND CHICKPEA

M. AKHTAR*, M. YAQUB, Z. IQBAL, M.Y. ASHRAF, J. AKHTER AND F. HUSSAIN

Nuclear Institute for Agriculture and Biology, Jhang Road, Faisalabad, Pakistan

Abstract

Soil fertility and organic matter in our soils are on decline. Legume intercropping and manuring are important measures to sustain fertility and enhance productivity of soil. Four wheat cultivars Inqlab-91, WL-886, 1076 & 41 grown in field either as mono crop or intercropped with chickpea (CM 88) were evaluated with respect to yield, nutrient (N & P) uptake, compatibility and profitability. Prior to establishment of experiment, soil was enriched by green manuring of vegetative biomass of legume cereal for the last two years to raise organic matter/nutrients contents sufficiently for growing a crop without mineral fertilizer addition. In monoculture, wheat cultivar Inqlab-91 produced the maximum grain (3294 kg ha\(^{-1}\)) than other wheat lines (WL). In intercropping system, one hectare of land produced a maximum grain yield of WL-1076 (2456 kg) along with additional chickpea grain yield (1302 kg) while an other association produced maximum grain yield of chickpea (1795 kg) along with additional wheat yield (2144 kg by Inqlab-91). Cumulative grain value (Rs. ha\(^{-1}\)) in intercropping culture was two times higher compared to that of wheat mono cropping. Associated crops accumulated significantly higher N in their biomass with a maximum of 87 kg ha\(^{-1}\) (by Inqlab+chickpea), compared to a maximum of 58 kg ha\(^{-1}\) by wheat (Inqlab-91) as mono culture. Phosphorus uptake by associated crops was also higher compared to wheat grown alone. The results clearly suggested superiority of wheat-chickpea co-cropping over wheat monoculture in terms of enhanced nutrient utilization, crop yield and farm income.

Introduction

Although fertilizers are specifically applied to replenish nutrient supply to intensive cropping system but they equally contribute to contaminate natural base resources. Prior to fertilization based agriculture, people were once accustomed to nourish their crops through natural means by incorporating crop residues in soil. Co-cropping of restorative (legume) and exhaustive (cereal) crops paved its way again in modern agriculture as an environment friendly alternative to fertilizers.

Legumes are capable to fix atmospheric N through biological means. (Vankessel et al., 1985). Legumes such as cowpea and groundnut generally accumulate 80-250 kg N ha\(^{-1}\) which may be available to the associated/proceeding crops as live legume excretion and/or mineralization of their plant residues (Mohr et al., 1999; Przednowek, 2003; Liebman & Dyck, 1993; Donald et al., 1963; Norman, 1996; Weber, 1966). Nitrogen fixation by legume is enhanced when associated with cereal as the excessive nitrate in the root zone is utilized by cereal (Fujita et al., 1992). On the other hand legume mono cropping accumulates excessive nitrate in the root zone and ultimately decrease N fixaion (Anil et al., 1998; Willey, 1979). While cereals are reported to deplete most of the macro and micro nutrients resulting in lower or stagnant yield even with increased inorganic fertilizer application.

*Corresponding author E-mail: malickakhtar@yahoo.com
Phone: +92-41-2654221-8 Fax +92-41-2654213
Intercropping of legume with cereal or their green manuring improve soil fertility and grain yield of the cereals (Andrew, 1979; Hinga, 1979; Gill et al., 2009). Intercropping can result in greater than the expected yield because of enhanced use of resources (Hauggaard-Nielsen et al., 2001b). Various studies showed that legume cereal mix cropping system/green manuring increase grain yield, grain N (Karpenstain-Machan & Stuelpnagel, 2000; Li et al., 2001) and N utilization by legumes and cereals (Fujita et al., 1992; Izaurralde et al., 1992; Ofosu-Budu et al., 1995). The yield of wheat was increased by 34, 27 and 19%, grown after co-cropping of maize with cowpeas, soybean and groundnuts, respectively (Nair et al., 1979).

The rhizodeposition of living plant or chemical changes produced on decomposition of legume residues mobilize soil bound nutrients that may be utilized by the legume itself and/or by the cereal crops growing in association or in rotation. Qureshi (1990) found that incorporating maize crop residue increased the content of available K, Ca, Mg, P, organic matter and total N in the soil. Some recent studies (Fujita et al., 1992; Midmore, 1993; Ikerra et al., 1999) showed an increase in soil fertility with the adoption of mix cropping system.

Crop diversification/green manuring is believed to be better practice for manipulating natural resources in an effective manner and decreasing the dependence on chemical inputs thus paving the way for sustaining agricultural productivity. The apparent increase in resource use efficiency of intercrops suggests that these systems could be useful for adoption into low input or organic farming systems where options for chemical crop inputs are limited or nonexistent. Despite the potential benefits of intercropping, farmers are reluctant to use this practice just for the sake of fertility purpose rather to get some economic gains. Grain legumes (pulses) such as chickpea (Cicer arietinum L.) contain quality protein and are suited both for animal feed as well as for human diet (Gupta, 1988). The objectives of the foregoing studies were: i) to evaluate the compatibility of wheat cultivars growing in association with chickpea, ii) to determine the economic benefit of wheat grown either as mono crop or intercropped with chickpea, and iii) to compare N & P utilization by intercropped system and sole wheat.

Materials and Methods

Sample collection and physico chemical analysis of soil: A representative soil sample (0-30 cm depth) was collected from the experimental field. The sample was air-dried and ground to pass through a 2-mm sieve and was analyzed for pH and EC (Rhoades, 1982), CaCO3 (Puri, 1931), texture (Bouyoucos, 1927), organic matter content (Walkley & Black, 1934), N (Keeney & Nelson, 1982) and Olsen P (Jackson, 1962). The soil was normal (EC=0.85 dS m⁻¹), alkaline (pH=7.9), calcareous (CaCO₃ equivalent = 2.3%), loam in texture, and contained organic matter content (1.5%), total mineral-N (8.73 mg kg⁻¹ soil), Olsen P (14.65 mg kg⁻¹) and AB-DTPA Zn (1.30 mg kg⁻¹).

Filed experiment: Four wheat cultivars i.e., Inqlab-91, WL-886, WL-1076 and WL-41 were grown as mono crop and co-cropped with chickpea cultivar CM 88. The experiment was carried out at experimental farm of Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad. The soil was initially enriched by incorporating the biomass of knee high sesbania + maize and mungbean + maize during the last two years. Chemical fertilizers were not applied throughout the experiment and the crops were allowed to get nutrition from the green manured soil. Mono crop wheat was sown conventionally with tractor mounted drill while in co-cropped culture, furrows (width = 75 cm; height = 25 cm) were prepared with the tractor. Chickpea was sown on ridges and wheat in furrows manually by a single row drill. Plant population per row of co-cropped wheat was kept same as that of mono culture wheat.
Weeding was done twice to remove unwanted weeds. Two meter long rows each of chickpea and wheat from different four places were harvested at crop maturity. Grain and straw yield was recorded and the data were converted into yield per hectare.

Plant analysis: Plant samples were dried in oven at 65°C for 3 days. Plant analysis was performed to determine total uptake of P (Jackson, 1962) and N (Keeney & Nelson, 1982) by the crops.

Statistical analysis: Data were analyzed using MSTAT-C software employing DMR test at 5% probability.

Results and Discussion

The data of grain and straw yield of four wheat cultivars (Inqlab-91, WL-886, WL-1076 & WL-41) grown either as mono crop or intercropped with chickpea are given in Table 1. In mono cropping culture, wheat cultivar Inqlab-91 produced significantly higher grain (3335 kg ha⁻¹) and straw yield (6255 kg ha⁻¹) among all the tested wheat genotypes. In intercropping system, grain yield of wheat was decreased compared to their respective sole stand. Minimum decrease in the yield was recorded in WL1076 that produced 2456 kg ha⁻¹ in co-cropping compared to 2565 kg ha⁻¹ in sole stand. When wheat cultivars were intercropped with chickpea, the yield of wheat and chickpea varied in each combination. In WL1076-chickpea association, grain yeald of wheat was higher (2456 kg ha⁻¹) as compared to the yield of wheat in other associations (range: 1595-2144 kg ha⁻¹). While chickpea produced the highest grain yield (1795 kg ha⁻¹) in Inqlab91-chickpea association as compared to its yield in other associations (range: 1302-1509 kg ha⁻¹). The trend of straw yield also remained similar to that of grain yield of the crops. Although wheat generally gave highest yield when grown alone (compared to the co-cropped wheat) as all the area was occupied by wheat in pure crop stand while the wheat yield in co-cropped culture was obviously low as the same piece of land was partially occupied by the component crops i.e., wheat and chickpea. Therefore in co-cropping system, the cummulative/total yield of both the component crops (wheat & chickpea) is required to be considered. Andrews (1979) found the higher commulative grain yield of the mixed cropping system as compared to sole crop culture. Bhim et al. (2005) also reported that pea-wheat mix cropping system increased total dry matter yield, total grain yield and their N accumulation compared to sole stand crop.

The data showed that intercropped culture accumulated significantly higher N per hectare compared to sole wheat. The maximum N was accumulated by Inqlab-91 + chickpea (CP: 55.75 + Wheat: 31.75 = 87.50 kg ha⁻¹) while as a sole crop, Inqlab-91 accumulated a maximum of 58.03 kg N ha⁻¹ (Fig. 1). Cummulaive grain uptake of P ha⁻¹ was also increased in wheat chickpea association when compared with wheat cultivars grown alone (Fig. 2). The maximum phosphorus was accumulated by WL1076 + chickpea (12.5 kg ha⁻¹) compared to only 7.95 kg ha⁻¹ by the same wheat cultivar as mono crop. It has been reported an increase in grain yield, N uptake by plant (Eaglesham et al., 1981; Subedi, 1997; Karpenstain-Machan & Stuelpnagel, 2000; Li et al., 2001) and biological N fixation by legumes (Danso et al., 1987; Izaurralde et al., 1992; Ofosu-Budu et al., 1995) in cereal-legume intercropping system. Many studies revealed that nitrogenous compounds released mainly from the legume roots or on decomposition of the dead roots and nodule tissues could increase N supply to the associated cereals (Ta & Faris, 1987; Ta et al., 1989; Dubach & Russelle, 1994; Gill et al., 2006). Zhang et al., (2001) also reported an increase in N and P uptake by co-cropped wheat – soyabean compared to wheat alone.
Fig. 1. Nitrogen uptake by sole wheat and wheat-chickpea association.

Fig. 2. Phosphorus uptake by sole wheat and wheat-chickpea association.

W1, W2, W3, W4, MW1 are Inqlab-91, WL886, WL1076, WL41, W1-chickpea mix respectively.
Table 1. Dry matter yield of wheat and chickpea intercropped in a green manured field.

<table>
<thead>
<tr>
<th>Species</th>
<th>Cropping system</th>
<th>Dry matter yield (kg ha-1)</th>
<th>HI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dry matter yield</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grain</td>
<td>Chickpea</td>
</tr>
<tr>
<td>Inqlab91</td>
<td>Mono</td>
<td>3335a</td>
<td>NA</td>
</tr>
<tr>
<td>WL886</td>
<td>Mono</td>
<td>2729b</td>
<td>NA</td>
</tr>
<tr>
<td>WL1076</td>
<td>Mono</td>
<td>2565b</td>
<td>NA</td>
</tr>
<tr>
<td>WL41</td>
<td>Mono</td>
<td>2499b</td>
<td>NA</td>
</tr>
<tr>
<td>Inqlab91</td>
<td>Mix</td>
<td>2144bc</td>
<td>1795cd</td>
</tr>
<tr>
<td>WL886</td>
<td>Mix</td>
<td>1595cd</td>
<td>1509d</td>
</tr>
<tr>
<td>WL1076</td>
<td>Mix</td>
<td>2456bc</td>
<td>1302d</td>
</tr>
<tr>
<td>WL41</td>
<td>Mix</td>
<td>1784cd</td>
<td>1419d</td>
</tr>
</tbody>
</table>

Figures in a column sharing the same letter(s) do not differ significantly at \(p < 0.05 \)
N.A. = Not Applicable

Table 2. Economic analysis of wheat - chickpea intercropping under green manure soil.

<table>
<thead>
<tr>
<th>Species</th>
<th>Intercropped species</th>
<th>Grain value (Rs. ha-1)</th>
<th>Total grain value (Rs. ha-1)</th>
<th>Net grain value (Rs. ha-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Wheat (A)</td>
<td>Chickpea (B)</td>
<td>C= (A+B)</td>
</tr>
<tr>
<td>Inqlab-91</td>
<td>Sole crop</td>
<td>80,032</td>
<td>NA</td>
<td>80,032</td>
</tr>
<tr>
<td>WL886</td>
<td>Sole crop</td>
<td>65,667</td>
<td>NA</td>
<td>65,667</td>
</tr>
<tr>
<td>WL1076</td>
<td>Sole crop</td>
<td>61,555</td>
<td>NA</td>
<td>61,555</td>
</tr>
<tr>
<td>WL41</td>
<td>Sole crop</td>
<td>59,410</td>
<td>NA</td>
<td>59,410</td>
</tr>
<tr>
<td>Inqlab-91</td>
<td>Chickpea</td>
<td>51,990</td>
<td>107,683</td>
<td>159,673</td>
</tr>
<tr>
<td>WL886</td>
<td>Chickpea</td>
<td>38,269</td>
<td>90,019</td>
<td>128,288</td>
</tr>
<tr>
<td>WL1076</td>
<td>Chickpea</td>
<td>59,664</td>
<td>77,995</td>
<td>137,859</td>
</tr>
<tr>
<td>WL41</td>
<td>Chickpea</td>
<td>43,291</td>
<td>86,195</td>
<td>129,486</td>
</tr>
</tbody>
</table>

Cumulative grain value of chickpea + wheat grown in co-cropping system C-6000*

*Additional cost incurred on harvesting wheat and chickpea, separately
NA = Not applicable

The co-cropped culture of wheat and chickpea was found superior to mono culture of wheat in terms of productivity and farm profitability (Table 2). All the tested wheat cultivars grown in association with chickpea produced almost two times more grain value per hectare compared to the same wheat cultivars grown alone. Although, the yield/grain value of wheat cultivars reduced in co-cropped because of land was partially occupied by the associated chickpea, however, the commulative grain value of both the component crops was increased two fold over the value of wheat grown as pure crop stand (Table 2). Andrews (1979) and Bhim et al., (2005) reported an increase in total/cumulative yield of the crops grown in association as compared to the mono-crop culture.

Crop diversification has been found superior to mono-cropping system in higher farm productivity and better use of natural resources. However wise crop management is thus required to get the maximum benefit of the crop association. Legumes growing in association or in rotation with cereal crop were found to improve soil fertility in the long-term (Ta & Faris, 1987; Fujita et al., 1992; Midmore, 1993; Ikerra et al., 1999). Studies of various scientists (Singh et al., 1992; Das, 1998) showed not only higher yield and cost to benefit ratios of chickpea-cereals co-cropping but also an increase in soil fertility (Nawaz et al., 2002; Andrew, 1979; Hinga, 1979) compared to cereal as pure crop stand.
References

(Received for publication 15 April 2008)