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Abstract 
 

To assess the effect of exogenous application of triacontanol (TRIA) as a presowing seed 
treatment on wheat under saline conditions, a greenhouse experiment was performed. Seeds of two 
wheat cultivars, MH-97 (moderately salt sensitive) and S-24 (salt tolerant) were primed with TRIA 
for 12 h. Plants raised from TRIA-treated seeds were grown in full strength Hoagland’s nutrient 
solution for 24 days under non-saline conditions, after which time, they were subjected to 0 
(control) or 150 mM NaCl. After 21 days of salt application, data for different growth, plant 
pigments and gas exchange characteristics were recorded. Salt stress of the root growing medium 
markedly decreased shoot and root fresh biomass, net CO2 assimilation rate (A), stomatal 
conductance, and transpiration rate (E), while no significant effect of salinity was observed on 
chlorophyll pigments (a, b and a/b ratio), quantum yield of PSII, substomatal CO2 concentration 
and water use efficiency (A/E). Exogenous application of TRIA as seed priming did not ameliorate 
the inauspicious effects of salt stress effectively, although it slightly increased photosynthetic rate 
in both wheat cultivars, transpiration rate in MH-97 and water use efficiency in S-24 under saline 
conditions.    
 
Introduction 
 

Triacontanol (TRIA) is a 30-carbon primary alcohol which functions as a plant 
growth promoter (Ries et al., 1977). It plays an active role in the up-regulation of many 
biochemical and physiological processes in plants (Ries & Houtz, 1983; Ivanov & 
Angelov, 1997; Chen et al., 2003). Role of TRIA is well studied not only at whole plants 
level (Eriksen et al., 1981) but also in tissue cultures (Ivanov & Angelov, 1997; Tentos et 
al., 1999; Tantos et al., 2001). Exogenous application of TRIA has been reported to 
enhance some major processes such as growth, chlorophyll contents, chlorophyll 
fluorescence, photosynthesis, free amino acids, reducing sugars, soluble proteins and crop 
yield (Eriksen et al., 1981; Muthuchelian et al., 1995, 1996; Tantos et al., 1999; 
Kumaravelu et al., 2000). For example, exogenous application of TRIA showed positive 
effect on growth, chlorophyll contents, photosystem-II efficiency and gas exchange 
characteristics in rice seedlings (Kumaravelu et al., 2000; Muthuchelian et al., 1995), 
maize (Ries, 1991), wheat (Ries, 1991), etc. Increase in growth could be mainly due to an 
abrupt TRIA-induced increase in photosynthesis as TRIA has been reported to be 
involved in the up-regulation of many genes involved in the photosynthetic process 
(Chen et al., 2002, 2003). Triacontanol exogenous application has also been reported to 
be very effective in reducing the adverse effects of salinity on plants (Krishnan & 
Kumari, 2008). For example, it increased growth, biomass, chlorophyll and carotenoid 
contents in salt and water stressed Erythrina variegata Lam. seedlings (Muthuchelian et 
al., 1995, 1996).  
*Corresponding author’s email: shahbazmuaf@yahoo.com 
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Seed is a vital part of a plant because of its role in the initiation of next generation. 
Dry seeds remain dormant because of possessing very low moisture contents (5-15%). 
Seeds need favorable environmental conditions to germinate, but under stressful 
environments their germination is significantly suppressed. However, a multitude of 
means are being used world-over for achieving better germination and healthy seedling 
vigor under stressful conditions (Ashraf & Foolad, 2005; Ashraf et al., 2008). Of them, 
soaking with different types of inorganic and organic solutes as well as plant growth 
substances is very effective to tailor plants for growing on stressful lands. For example, 
treating seed with a variety of plant growth regulators (PGRs) can improve yield under 
stress conditions (Lee et al., 1998). Different types of growth regulators have been used 
as seed priming agents and their positive role observed in different crops e.g., wheat 
seeds treated with brassinolide (Shahbaz et al., 2008; Fariduddin et al., 2008), kinetin, 
cytokinins, polyamines, auxins and gibberellic acid (Iqbal & Ashraf, 2005; Iqbal et al., 
2006; Iqbal & Ashraf, 2007; Iqbal & Ashraf, 2010), blackgram with triadimefon (Jaleel et 
al., 2009), mungbean with brassinolide (Fariduddin et al., 2008), barley with triacontanol 
(Cavusoglu et al., 2007) and radish with gibberelic acid, ethylene, 24-epibrassinolide, 
triacontanol and polyamines (Cavusoglu et al., 2008).  

Triacontanol is a plant growth promoter involved in growth promotion by up-
regulating photosynthetic related gene machinery (Chen et al., 2002, 2003).  Pre-sowing 
seed treatment with TRIA along with some other growth regulators has been reported to 
induce salt tolerance in barley and radish seedlings grown under saline conditions 
(Cavusoglu et al., 2007, 2008). However, information on its role in ameliorating the 
adverse effects of salinity by pre-sowing seed treatment in wheat is not available in the 
literature. Thus, the major objective of present study was to assess whether or not seed 
treatment with TRIA is effective in growth enhancement of wheat under saline conditions 
and whether this growth promotion is related to gas exchange characteristics. 
 
Materials and Methods  
 

Seed of two spring wheat (Triticum aestivum L.) cultivars MH-97 (moderately salt 
sensitive) and S-24 (salt tolerant), was obtained from the Department of Botany, 
University of Agriculture, Faisalabad, Pakistan and Ayub Agricultural Research Institute, 
Faisalabad, Pakistan, respectively. An experiment was conducted to assess the effect of 
exogenous application of TRIA as a seed treatment on wheat under salt stress during 
spring, 2010 in a wire-house of the Botanical Garden, University of Agriculture, 
Faisalabad, Pakistan (altitude 213m, latitude 31°30'N and longitude 73°10'E), with a day 
and night temperature cycle of 20 and 6°C, 10 and 14 light and dark period at 800-1100 
µmol m-2 s-1 PPFD, respectively, and 54 ± 5% relative humidity. Before the start of the 
experiment, the seed of both cultivars was surface sterilized with 5% Sodium 
hypochlorite solution for 5 min, rinsed with sterilized water and air-dried. 

One hundred seeds of each cultivar were soaked in 50 ml of each of three optimized 
levels of triacontanol solutions (0, 10, and 20 µM) for 12 h and re-dried to original weight 
with forced air under shade. Seeds (10 seeds per pot) were allowed to germinate in 
thoroughly washed sand. Twenty four day-old plants were subjected to saline stress for 
further 21 days. There were two salt treatments [(control (non-saline) and 150 mM NaCl)] 
supplied with full strength Hoagland's nutrient solution (2 L per pot). For attaining the 
desired level of salt an aliquot of 50 mM solution was added to each pot every day. Salt 
level (150 mM NaCl) was applied after every week till the end of the experiment. The sand 
moisture content was maintained daily by adding 200 ml distilled H2O to each pot. The 
plants were harvested after 45 days and data for fresh biomass recorded.  
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Chlorophyll contents: Chlorophyll a and b contents were determined according to the 
method of Arnon (1949). Fresh leaves (0.5 g) were extracted in 80% acetone and 
centrifuged at 10,000 × g for 5 min. Supernatant of extract was used to read absorbance at 
645 and 663 nm using a UV-visible spectrophotometer (Hitachi-U2001, Tokyo, Japan). 
 
Chlorophyll fluorescence: Plant efficiency Analyzer (PEA, Handstech Instrument Ltd., 
King's Lynn, UK) was used to measure the polyphasic rise of fluorescence transients 
according to Strasser et al., (1995). The fluorescence transients were inducted by red light 
and catered by an array of six light inducing diods (peaks 650 nm), focused on the sample 
surface to give homogenous light over the exposed area. All the samples were dark 
adapted for 30 min before to fluorescence measurements. 
 
Gas exchange characteristics: Gas exchange characteristics were measured by using a 
portable infrared gas analyzer (ACD LCA-4 Analytical Development, Hoddesdon, UK) 
on second intact leaf from top of each plant. These measurements were made from 10:30 
to 12:30 h with the following adjustments/specifications: leaf chamber gas flow rate (U) 
251 µmol s-1; ambient pressure 98.8 kPa; leaf surface area 11.25 cm2; water vapor 
pressure ranged from 6.0 to 8.9 mbar into the leaf chamber, concentration of ambient 
CO2 was 350 µmol mol-1; range of leaf chamber temperature varied from 28.4 to 32.4°C; 
molar flow of air per unit leaf area (Us) 22.06 mol m-2 s-1; RH of the chamber 41.2%; 
PAR (Qleaf) at the leaf surface was up to 942 µmol m-2 s-1. 
 
Statistical analysis of data: The data was analyzed using a COSTAT computer package 
(Cohort Software, Berkeley, CA). To compare the mean values, least significance 
difference test was applied according to Snedecor & Cochran (1980). 
 
Results  
 

Data for shoot and root fresh weights of salt stressed and non-stressed plants of two 
wheat cultivars raised from seed primed with triacontanol (TRIA) presented in Fig. 1 
show that root medium salinity markedly reduced both shoot and root fresh weights of 
both cultivars. Exogenous application of TRIA as a seed treatment did not ameliorate the 
adverse effects of salt on shoot fresh weight, while a slight decrease in root fresh weight 
was noted by exogenous application of TRIA under non-saline conditions, but such a 
negative effect was not observed under saline conditions (Table 1). 

Chlorophyll a, b and a/b ratio did not vary significantly under saline conditions or 
due to pre-soaking seed treatment with TRIA. Although chlorophyll b slightly increased 
and a/b decreased in MH-97 under saline conditions, but this increase or decrease was 
not significant. Similarly, chlorophyll b increased in both cultivars slightly by exogenous 
application of TRIA under saline conditions (Table 1; Fig. 1). 

Seed treatment with triacontanol did not affect Fo (minimum fluorescence) and Fm 
(maximum fluorescence) of both wheat cultivars. Salt stress of the growth medium also 
did not perturb both these attributes. While quantum yield of PSII (Fv/Fm) was slightly 
decreased at 10 µM TRIA under saline conditions, but only in MH-97. Effect of salinity 
or various levels of TRIA did not increase or decrease quantum yield of PSII of MH-97 
particularly under non-stress conditions and that in S-24 under both saline and non-saline 
conditions. 
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Table 1. Growth attributes, chlorophyll contents and gas exchange characteristics of  
salt-stressed and non-stressed wheat (Triticum aestivum L.) plants raised  

from seed treated with Triacontanol (TRIA) for 12 h. 

Source of variation df Shoot fresh 
weight 

Root fresh 
weight Chl. a Chl. b Chl. a/b 

Cultivars (Cvs) 1 1.644ns 0.522*** 0.004ns 0.002ns 0.018ns 
Salinity (S) 1 360.7*** 1.611*** 0.0004ns 0.067ns 0.195ns 
Triacontanol (TRIA) 2 0.487ns 0.072*** 0.001ns 0.002ns 0.002ns 
Cvs x S 1 0.003ns 0.256*** 0.002ns 0.063ns 0.123ns 
Cvs x TRIA 2 1.314ns 0.017ns 0.0006ns 0.027ns 0.075ns 
S x TRIA 2 1.480ns 0.055** 0.002ns 0.042ns 0.074ns 
Cvs x S x TRIA 2 0.339ns 0.018ns 0.0006ns 0.001ns 0.007ns 
Error 24 0.709 0.006 0.001 0.0170636 0.049 
Source of variation df Fo Fm Fv/Fm A E 
Cultivars (Cvs) 1 32.11ns 0.25ns 0.0003ns 0.970ns 0.049ns 
Salinity (S) 1 235.1ns 7482.2ns 0.006ns 9.191** 1.747* 
Triacontanol (TRIA) 2 1477.1ns 58.86ns 0.005ns 0.966ns 0.229ns 
Cvs x S 1 69.44ns 1167.4ns 0.002ns 3.033ns 0.483ns 
Cvs x TRIA 2 1150.5ns 35779.1* 0.003ns 0.077ns 0.056ns 
S x TRIA 2 924.2ns 12539.6ns 0.003ns 0.701ns 0.063ns 
Cvs x S x TRIA 2 47.86ns 22784.ns 0.015* 1.202ns 0.035ns 
Error 24 682.42 8333.4 0.003 0.774 0.352 
Source of variation df gs Ci Ci/Ca A/E  
Cultivars (Cvs) 1 1600*** 1915.5ns 0.015ns 2.609ns  
Salinity (S) 1 8100*** 572.8ns 0.005ns 10.38ns  
Triacontanol (TRIA) 2 325** 302.99ns 0.002ns 0.885ns  
Cvs x S 1 625*** 11.33ns 0.00009ns 0.027ns  
Cvs x TRIA 2 1300*** 398.6ns 0.003ns 2.609ns  
S x TRIA 2 975*** 1291.4ns 0.010ns 0.031ns  
Cvs x S x TRIA 2 175* 82.97ns 0.0007ns 7.205ns  
Error 24 43.75 901.24 0.007 3.397  
*, **, and *** = significant at 0.05, 0.01 and 0.001, respectively. 
ns  = non-significant 
 

df = degrees of freedom; Chl. = chlorophyll; Fo = minimum fluorescence with all PSII reaction centers open; 
Fm = maximum fluorescence with all PSII reaction centers open; Fv/Fm = maximal quantum yield of PSII; A 
= net CO2 assimilation rate; E = transpiration rate; gs = stomatal conductance; Ci = sub-stomatal CO2 
concentration; A/E = water use efficiency 

 
Net CO2 assimilation rate (A) and transpiration rate (E) decreased significantly in 

both cultivars under the saline medium. Exogenous application of TRIA as seed 
treatment particularly at 10 µM had a promising effect in ameliorating the adverse effects 
of salt stress on both wheat cultivars.  

Stomatal conductance of both wheat cultivars decreased significantly under saline 
conditions. However, this decrease was low in S-24 as compared to that in MH-97. 
Application of TRIA promoted stomatal conductance only under non-saline conditions, 
while under saline conditions, the response of both cultivars in terms of gs to exogenous 
TRIA was not consistent (Table 1; Fig. 2). 

Sub-stomatal CO2 concentration and Ci/Ca ratio were also similar under both saline and 
non-saline conditions. Performance of both salt tolerant (S-24) and moderately salt sensitive 
(MH-97) cultivars was similar in terms of these two gas exchange parameters. Both attributes 
were not affected by exogenous TRIA. Furthermore, rooting medium salinity and 
exogenously applied TRIA did not alter the water use efficiency of both cultivars.    
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Fig. 1. Growth attributes, chlorophyll contents and photosystem-II effeciency of salt-stressed and non-
stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol for 12 h. 
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Fig. 2. Gas exchange characteristics of of salt-stressed and non-stressed wheat (Triticum 
aestivum L.) plants raised from seed primed with triacontanol for 12 h. 

A = net CO2 assimilation rate; E = transpiration rate; gs = stomatal conductance; Ci = sub-
stomatal CO2 concentration; Ci/Ca = relative sub-stomatal CO2 concentration; WUE = water use 
efficiency 
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Discussion 
 

Triacontanol (TRIA) is a plant growth promoter which increases plant growth by 
activating a variety of growth processes (Chen et al., 2002, 2003). Mostly the role of 
exogenous application of TRIA as foliar spray in promoting growth and yield was 
assessed on different crops such as rice (Muthuchelian et al., 1995; Kumaravelu et al., 
2000), maize (Ries, 1991), wheat (Ries, 1991), etc. In present study, TRIA was applied 
on two wheat cultivars as seed-treatment and its effect on growth and some physiological 
parameters was examined under saline and non-saline conditions. Salt stress markedly 
reduced the fresh biomass of both shoot and root in both cultivars as has earlier been 
reported in different studies (Ashraf et al., 2008; Grewal, 2010). One of the possible 
reasons for reduced biomass could be due to the reduction in net CO2 assimilation rate 
mediated by stomatal closure, thereby limiting CO2 diffusion into the chloroplast 
(Degl’Innocenti et al., 2009).  

Triacontanol has been reported as an effective plant growth regulator by many 
investigators (Tantos et al., 1999, 2001; Reddy et al., 2002; Fraternale et al., 2003; 
Malabadi et al., 2005) because it can enhance metabolism and growth processes of plants 
by influencing the enzymes involved in carbohydrate metabolism (Ries et al., 1977; Ries 
& Houtz, 1983). However, in contrast, the effect of TRIA in the present study was found 
to be non-significant under saline or non-saline conditions when applied as pre-sowing 
seed treatment.  

Foliar application of TRIA has been reported to increase chlorophyll contents in 
different crops such as pearl millet (Sivakumar et al., 2006), soybean (Krishnan & 
Kumari, 2008), and rice (Chen et al., 2002, 2003). However, when TRIA was applied as 
seed treatment did not alter the chlorophyll pigments of both wheat cultivars. 
Furthermore, no significant improvement in quantum yield of PSII was observed in the 
present study when TRIA was applied as pre-soaking seed treatment under saline or non-
saline conditions, though in other studies TRIA when applied as a foliar spray was found 
to improve the quantum yield of PSII in rice (Muthuchelian et al., 1995; Kumaravelu et 
al., 2000; Chen et al., 2003) and tomato (Borowski et al., 2000).  

Exogenous application of TRIA as seed treatment improved the net CO2 assimilation 
rate and transpiration rate when applied @ 10 µM under saline conditions and stomatal 
conductance under non-saline conditions. Positive effects of foliar-applied TRIA on net 
CO2 assimilation rate, transpiration rate and stomatal conductance have already been 
observed on different crops e.g., rice (Chen et al., 2003), maize (Ries, 1991), wheat 
(Ries, 1991) and soybean (Krishnan & Kumari, 2008). The mechanisms involved in 
effects of TRIA on photosynthesis are not clearly known yet. However, TRIA-induced 
increase in the activity of rubisco has been suggested as one of the possible mechanisms 
reported by (Houtz et al., 1985) and this possibility was also supported by increased 
expression of rbc by TRIA in rice seedlings (Chen et al., 2002). 

In conclusion, rooting medium salt stress adversely affected shoot and root fresh 
biomass, net CO2 assimilation rate, transpiration rate and stomatal conductance, but 
exogenous application of TRIA as seed treatment did not improve plant growth and gas 
exchange characteristics. Although, 10 µM TRIA improved net CO2 assimilation rate 
under saline conditions and stomatal conductance under non-saline conditions, but this 
level and others did not enhance the shoot fresh biomass of both cultivars.  
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