TECHNOLOGICAL CHARACTERIZATION OF INDIGENOUS ENTEROCOCCAL POPULATION FOR PROBIOTIC POTENTIAL

MUSHTAQ HUSSAIN¹, MUHAMMAD TANWEER KHAN¹, ABDUL WAJID² AND SHEIKH AJAZ RASOOL¹*

¹Department of Microbiology, University of Karachi, Karachi, Pakistan
²HEJ Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan

Abstract

Probiotics are the live microbial supplements of single or mixed cultures that produce health beneficial effects when ingested. Diversity in metabolic and/or physiological attributes has made Enterococcus a probiotic organism and quite conversely a second or third most common agent of nosocomial infections. The present study is a technological screening for the selection of potential probiotic isolates from the indigenous enterococcal population. Over 500 enterococcal strains have been isolated from sewage samples and baby fecal material, respectively collected from all 18 towns and well recognized hospitals of Karachi. Production of several enzymes and bioactive peptides/proteins has been screened from isolated microbes for instance alkaline phosphatase, bacteriocins, β-galactosidase, urease, protease, cytolysin and lipase etc. Among the total, 95.7%, 78.2% and 3.4% of enterococci have been found as producers of β-galactosidase, bacteriocin and hemolysin (cytolysin) respectively. Other metabolites have been less frequently produced by the isolates. The high prevalence of β-galactosidase suggests the constitutive nature of gene while fluctuation in different metabolite production indicates their dispensability and concomitantly delineates the significance of selection for probiotic organisms. Moreover, far less frequency of hemolytic enterococci suggest low prevalence of pathogenicity island in the indigenous enterococcal population. Conclusively, the findings facilitate not only the down right selection of occult probiotic enterococci but also provide baseline information for composition of potentially probiotic and pathogenic enterococci in the local microbial population.

Introduction

Probiotics are generally defined as live microbial supplements which provide health benefits to the host by bringing balance in the host intestinal microbial flora (Fuller, 1989). Probiotics have been found as prophylactic/therapeutic agents in case of many gastrointestinal ailments like lactose maldigestion, infections, constipation, cholesterolemia, hypertension, colorectal carcinoma, ulcerative colitis, Crohn's diseases, irritable bowel syndrome (IBS), food allergies and antibiotic induced diarrhoea (Daly & Davis, 1998; Sanders, 1998; Famularo et al., 2005; Capurso et al., 2006; Fan et al., 2006; Parkes, 2007). Additionally, they are also known for the production of butyric acid and other cytokine inducing factors which have anti-aging and immuno-modulating effects respectively (Matsuzaki et al., 1998; Roy et al., 2006; Vizoso Pinto et al., 2007). Certain In vivo studies are concluded on the note that LAB decreases the occurrences of DNA damages, inhibit activity of cancer causing enzymes and other cancer associated changes, this implies their role against cancer (Goldin & Gorbach, 1984; Ling et al., 1994; Pool-Zobel et al., 1993; 1996). World Health Organization actuation for the use of alternative therapeutics such as probiotics as disease control measures has intensified their public and research interest to...
considerable extent (Bengmark, 1998; Dunne & Shannahan, 2002). Indeed, a Leatherhead
food RA’s 1996 report has estimated that the probiotics share in global market is currently
over US$6.6 billions (Cathro & Hilliam, 1993). The therapeutic and preventive properties
of probiotics are primarily based on the metabolic potential of their constituent microorganisms.
Bacteria used in probiotic supplements are found to be the producers of various metabolites
including enzymes, antimicrobial peptides and/or proteins and other biologically active
substances (Tuomola et al., 2001; Nes et al., 2007). Among the enzymes perhaps the most
significant is the β-galactosidase which helps in lactose digestion and conversely renders
oligomerization of the products with substrate, cumulatively the enzyme ameliorate the
disorders associated with lactose intolerance (Kotz et al., 1994; Lin et al., 1998; Sanders,
1998). Protease and lipase have their role in maintaining microbial balance in gastrointestinal
tract by facilitating formation of biofilms. Moreover, products of proteolytic enzyme may
abstrusely involve in the reduction of hypertension (Bouzaine et al., 2005; Nallaparradsey et
al., 2006; Tallon et al., 2007). Urease producing microbes may inhibit growth of various
pathogenic bacteria and fungi in the gut of the host (Zwolinska-Wcislo et al., 2006).
Bacteriocins, the antimicrobial peptides or proteins, are traditionanly defined as peptides
which exhibit antimicrobial activity against closely related organisms (Jack et al., 1995).
These are yet another arsenal of probiotic microorganisms in order to establish microbial
balance in the gut and indeed included in selection criteria for the microorganisms that tend to
be the part of effective probiotics. Unlike the earlier believes, their antimicrobial potential
ranges from gram negative food spoilage causing bacteria (Cintas et al., 1997; Eijsink et al.,
1999) to even viruses (Wachman et al., 1999) and fungi (Saeed et al., 2006).

The foremost bacterial groups that constitute majority of the probiotic supplements
include Lactic Acid Bacteria (LAB) and Bifidobacteria (du Toit et al., 1998; Sanders,
2000). However, probiotics properties for certain enterococci strains have also been
stipulated (Linaje et al., 2004; Saavedra et al., 2003). E. faecium M-74 and E. faecium
SF68 are two well known and commercially used probiotics strains. In particular, use of
E. faecium SF68 has been found active in reducing the recovery period of acute
diarrhoea, and decreasing blood cholesterol level (Benyacoub et al. 2003; Richelsen et
al., 1996). Adhesion of enterotoxigenic strain, Escherichia coli K88 (an etiological agent
of piglets diarrhoea) to piglet intestinal mucus was also found inhibited by E. faecium
18C23 by steric hindrance and alteration of pH (Jin et al., 2000). Additionally, E. faecium
EK13 a bacteriocin producing strain was successfully used to alleviate the experimental
contamination of gonorobiotic Japanese quails by Salmonella enterica serovar Duesseldorf
(Laukova et al., 2003). Enterococci though generally considered as normal inhabitant of
gastrointestinal tract but they are concomitantly the second to third most common agent
of nosocomial infections (Foulquie Moreno et al., 2006). Considering these, excluding
pathogenic enterococci from the consortium of microbes as being the candidate for
probiotics holds great importance. Metabolic characterization of enterococci will strongly
abet in this connection. Hence the study has been designed in order to explore the
probiotic potentials residing in the local enterococcal population, which has been isolated
from sewage and baby fecal material.

Materials and Methods

Isolation: During June, August and November 2006 and January 2007, sewage samples
were collected from randomly selected 5 different stations of main sewage lines from all 18
towns of Karachi. Similarly 20 samples of baby (<3 months) fecal material were also
collected from well recognized hospitals situated at different regions of Karachi. After
serial dilutions, samples were dispensed and spread over Bile Esculin Agar (BE; Merck).
The black colonies (appeared after 24 hours of incubation) on BE plates are of enterococci, which were subsequently patched over Brain Heart Infusion agar (BHI; Merck).

Enzymatic screening: For Amylase, β-galactosidase, lipase and protease production 1% soluble starch (w/v), 0.01% X-Gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside; w/v), 0.1% Tween-20 and 0.1% Tween-80 (v/v), and 1% casein (w/v) were added in BHI agar respectively. However, simple BHI agar was used for screening alkaline phosphatase and catalase. Urease activity was checked by mixing 4M filter-sterile urea solution in Urea agar base (Oxoid). After 24 hours of incubation, lipase and protease activity was detected as precipitated zones around patches on their respective agar plates. However, pink zone over urea agar plate was reflective of urease production. On dispensing iodine, clear zones around patch over starch agar plate indicated hydrolysis of starch or amylase production by tested strain. Effervescence and yellow color production over patch present on BHI agar plate on dispensing 3% hydrogen peroxide and 5mM 4-nitrophenylphosphate/para-nitrophenylphosphate pNPP (disodium salt hexahydrate), chromogenic substrate (Sigma) indicated catalase and alkaline phosphatase production respectively (Fig. 1). Animal liver tissues and simple BHI agar were used as positive and negative control respectively.

Bacteriocin production: All isolated strains were stabbed on BHI agar plates and after overnight incubation were exposed to pre-autoclaved filter paper soaked with chloroform for 30 minutes. Plates were then over-layered using 0.6% soft agar previously mixed with 100µl log phase (OD600; 1.0) cultures of Enterococcus SM-18 & 43, Streptococcus pneumoniae, Staphylococcus aureus and Listeria monocytogenes as sensitive strains (Fig. 1).

Hemolytic assay: Blood (AB+ve), drawn from a volunteer in an EDTA vacutainer was dispensed in pre-autoclaved blood agar base at 5% concentration. Isolated strains were patched over plates and incubated for 24-48 hours and hemolytic patterns were then observed as greenish (α-hemolysis) or clear zone (β-hemolysis) around the patch (Fig. 1).

Results and Discussion

Out of 535, 500 strains of enterococci were isolated from main stream sewage lines of Karachi while remaining 35 were of baby fecal origin. Isolates/strains were differentiated on the basis of their colonial morphology, pigment production, time and site of collection. All isolates were subsequently designated as SM-No.code. Enzymatic screenings revealed that out of 535 isolates, 512 (95.7%) were positive for β-galactosidase production. This high frequency of β-galactosidase producers enterococci is akin to the previous reports in this connection suggesting constitutive nature of β-galactosidase gene in the organism (Tao et al., 2005). As β-galactosidase is known to hydrolyze the lactose into glucose and galactose, hence the production of the enzyme by enterococci when taken as probiotic, greatly reduces the ill manifestation caused by lactose mal digestion in humans. Additionally, oligomerization of products and substrate is also mediated by β-galactosidase which subsequently stimulates cytotoxic and humoral immunity via activation of macrophages and T-cells (Famularo et al., 2005; Montalto et al., 2006; Mountzouris et al., 2007; Parkes, 2007). Hence the production of this worthy enzyme by enterococci may also beneficially influence the host immune system. Followed by β-galactosidase, around 12.7% (68), 5.2% (28), 3.9% (21), and 3.5% (19) of...
the isolates showed positive activity for alkaline phosphatase, protease, lipase and urease respectively. Role of protease and lipase is well documented in biofilm formation; therefore, it seems plausible to state that the mentioned enzyme production would help the producer enterococci to inhabit GI tract and consequently inhibit colonization of various pathogenic organisms (Nallaparradey et al., 2006; Bourgogne et al., 2006). Conversely, if the protease and/or lipase activity is present in hemolytic (pathogenic) enterococci, it may aggravate the virulence of the organism (Tendolkar et al., 2003). Hence selection of protease and/or lipase producer organism(s) as a potential probiotic is dependent on their ability to exhibit hemolysis. Beside this other virulence factors must be taken into consideration which has been discussed later. In addition to biofilm formation, alteration of pH by the products of urease not only assists in the neutralization of acidic environment produced due to any physiological and pathological disorder, but also halts growth of any potentially pathogenic fungus in the intestine (Zwolinska-Weislo et al., 2006). However, production of biogenic amines of psychopathic nature as a by product of the urease activity belied rather belittled their producer exploitation as probiotics (Bover-Cid & Holzapfel, 1999). Only 1.2% of enterococcal isolates were found as catalase and amylase producer each. As enterococci are facultative anaeobes, the absence of catalase activity is considered as a tool for enterococcal identification. As mentioned earlier that in the present study only 1.2% of enterococci were found weakly positive for catalase production, this unorthodox or so called pseudopositive catalse activity is also reported by Frankenberg et al., (2002). Cumulatively, both frequencies of both catalase and β-galactosidase activities increase the fidelity in the selection of enterococci during isolation (Fig. 2).

Out of 535 isolates, only 18 (3.4%) have demonstrated hemolytic activity which could be further segregated as 2.2% (12) are β-hemolytic while the remaining 6 (1.2%) are α-hemolytic (Fig. 2.). Hemolysis produced by enterococci is the function of a virulence factor concomitantly a lantibiotic (post translationally modified bacteriocins), cytolysin (Cox et al., 2005). As probiotics must essentially be non pathogenic neither invasive hence exclusion of pathogenic enterococci must be necessary for others to be selected as probiotics (Sanders, 2000). In this connection screening for the phenotypic expression of cytolysin (hemolysis) facilitate the initial separation of potentially pathogenic enterococci.

When checked against 5 different sensitive strains (indicators) out of a total of 535 isolates, 418 (78%) were found positive with different magnitude of bacteriocin production. Some isolates for instance Enterococcus SM-7, SM-18, SM-19, SM-168, SM-176, SM-222, SM-312 and SM-518 had shown antagonistic activity against all the tested strains. Additionally, their zone of inhibition (diameter) against tested strains ranges from 2.7cm to 4.2cm, suggesting their strong bacteriocinogenesis ability. With reference to indicator strains 75.3% and 35.9% of the isolates produced bacteriocin active against other enterococcal strains i.e., Enterococcus SM-43 & SM-18 respectively. Expectedly substantial drop in bacteriocinogenic isolates percentage was noticed when they were screened against distantly related organisms like Strepococcus pneumoniae, Staphylococcus aureus and Listeria monocytogenes. Only 31.5%, 4.3% and 3.5% of the isolates are active against Streptococcus pneumoniae, Staphylococcus aureus and Listeria monocytogenes respectively (Fig. 3). It is worth mentioning here that the frequency of bacteriocin producer varies considerably with the type of indicator strains exploited to screen it. On that basis it is possible that the total frequency of the bacteriocinogenic bacteria in the population may increase or decrease based on the use of different sensitive strains. Indeed, Klaenhammer (1988) has suggested that 99% of all bacteria are the producer of at least one bacteriocin, provided the activity has to be checked against suitable indicator(s).
Fig. 1. Screening for probiotic associated metabolites in enterococcal population. Arrow in each inset represents positive activity of the respective metabolite as mentioned in the Key: Amylase (A), Alkaline phosphatase (B), β-galactosidase (C), Bacteriocin (D), Catalase (E), Lipase (F), Protease (G), Urease (H), hemolysis (I).
Fig. 2. Metabolic profile of Indigenous enterococcal population: Bar graph suggest that most enterococci are positive for β-galactosidase activity while pathogenic enterococci are relatively less dense in the total population. (For details please see Result and Discussion in text).

Fig. 3. Bacteriocinogenesis in indigenous enterococcal population: Note the gradual descend in number of bacteriocin producer enterococci in local enterococcal population when screened against evolutionary distant organisms (see text for details).
Bacteriocins are generally referred as ribosomally synthesized antimicrobial peptides or proteins of bacterial origin, which inhibit growth of closely related organisms. However, in light of past decade it is now increasing evident that their antibacterial activity span is well beyond to what is earlier stipulated. Reportedly, bacteriocins from enterococci are also found active against even viruses and fungi. Bacteriocin production certainly helps enterococci to colonize in the GI tract triumphantly and this also renders to the inhibition of pathogenic organisms in the intestine (Wachsman et al., 1999; Saeed et al., 2006). In the study enterococcal isolates exhibiting antibacterial activity against *Streptococcus pneumoniae*, *Staphylococcus aureus* and *Listeria monocytogenes* provides additional advantage to them to be exploited as probiotics. Moreover, the difference in antibacterial spectrum of bacteriocinogenic enterococci plausibly implies the diversity of the bacteriocins produced by enterococcal population. These bacteriocins in addition to be an essential characteristic of probiotic may have many other industrial and therapeutic values.

Laconically, the present study suggests that preliminary screening of locally isolated enterococci has greater probiotic potentials primarily because of high frequency of β-galactosidase production and bacteriocinogenesis and less intense pathogenicity. On that ground further intense screening with reference to antibiotic resistance and bile salt tolerance etc., and *In vivo* animal model studies will certainly help in exploring more probiotic attributes in the isolated organisms. In addition to this molecular identification of other virulence factors like aggregation substance, membrane surface adhesion molecules etc among the organism population might also be helpful in order to develop a more conspicuous epidemiological picture of the indigenous enterococcal population. Studies in this regard are in process and will be reported in future.

Acknowledgement

We are indebted to Dr. Mujtaba Hasan Naqvi, Ex-Director General of Institute of Biotechnology and Genetic Engineering (KIBGE) for financial and technical support in order to conduct this work.

References

(Received for publication 26 November 2007)