Pak. J. Bot., 38(5): 1389-1396, 2006.

EFFECT OF LEAD AND CHROMIUM ON GROWTH, PHOTOSYNTHETIC PIGMENTS AND YIELD COMPONENTS IN MASH BEAN [VIGNA MUNGO (L.) HEPPER]

MUMTAZ HUSSAIN, MUHAMMAD SAJID AQEEL AHMAD* AND ABIDA KAUSAR

Department of Botany, University of Agriculture Faisalabad, (38040), Pakistan.

Abstract

A pot experiment was carried out to study the effect of lead and chromium on growth, chlorophyll contents and yield components in two mash bean [*Vigna mungo* (L.) Hepper] cultivars i.e. Fs-1 and Mash-97. Fourteen-day old plants were exposed to 20 or 40 mg L^{-1} lead or chromium whereas control plants were treated with distilled water only. Application of both lead and chromium caused a significant reduction in all growth parameters as compared with that of control. The extent of decrease in growth due to chromium compared with lead. Although high concentration of both metals in the rooting media drastically reduced all photosynthetic pigments, chromium application caused more reducing effect as compared to chromium. In addition, all yield attributes of both cultivars of mash bean reduced due to both metals in rooting mediaum. The sensitivity of mash bean to chromium was greater as compared to lead. In conclusion, mash bean cultivar FS-1 proved to be tolerant as it showed less reduction in growth, photosynthetic pigments and yield as compared to Mash-97.

Keywords: lead, chromium, growth, photosynthetic pigments, yield

Introduction

Worldwide, metal contamination has extremely increased in the biosphere as a result of anthropogenic activities. This situation is alarming in the developing world where untreated waste water is extensively used for irrigation or is disposed off in water resources (UNIDO, 2002). These metals are deposited in different soil profiles leading to long-term metal contamination. These metals are mostly absorbed by plants easily and prove toxic to plants that can be observed as growth retardation as a result of alterations in biochemical process like inhibition of enzyme activity, protein penetration and impaired nutrition *etc.* (Poschenrieder, 1990; Arun *at al.*, 2005).

In the recent era, lead (Pb) contamination has gained a considerable attention as a potent environmental pollutant. Significant increases in the Pb content of cultivated soils have been observed near urban and industrial areas where it tends to accumulate in the surface ground layer (de Abreu *et al.*, 1998). Despite regulatory measures adopted in many countries to have a check on Pb input in the environment, it continues to be one of the most serious global environmental hazards in the developing world (Yang *et al.*, 2000).

Chromium is a naturally occurring element found in rocks, animals, plants, soil, and in volcanic dust and gases. Chromium exists in the environment in several different forms with more common forms as chromium (III) and chromium (VI). Chromium (III) occurs naturally in the environment and is an essential nutrient whereas chromium (VI) is

Corresponding author: Muhammad Sajid Aqeel Ahmad, sajidakeel@yahoo.com

generally produced by industrial processes. The impact of Cr contamination in the physiology of plants depends on the metal speciation, which is responsible for its mobilization, subsequent uptake and resultant toxicity in the plant system (Shanker *et al.*, 2005).

Mash bean [*Vigna mungo* (L.) Hepper] is among the most important pulse crops of the world. It has great value as food, fodder and green manure. In addition to improving the soil fertility, it is a cheap source of protein for direct human consumption. Chemical analysis of mash bean seed indicates that it contains protein (20-24%), oil (2.1%), Fats (1-2%), carbohydrates and a fair amount of vitamin A and B (James, 1981). Thus it has a great potential to improve protein deficiency in human beings by providing a low cost protein.

Keeping in view the increasing use of sewage water for irrigation and resultant excessive accumulation of lead and chromium in different soil profiles, it was of great importance to evaluate their toxic effects on growth, photosynthetic pigments and yield components in mash bean, a potential legume crop of Pakistan.

Materials and Methods

Ten seeds of the two cultivars [Fs-1 and Mash-97] were sown in plastic pots containing 10 kg sandy loam soil [ECe = 1.2 ds/m and pH = 7.95] and after germination thinned to leave four plants of similar size. Fourteen-day old plants were exposed to 20 and 40 mg L⁻¹ of lead nitrate [Pb(NO₃)₂] or chromium chloride [CrCl₃.6H₂O] dissolved per liter distilled water, while control plants were treated with distilled water only. Plants were irrigated regularly with tap water during the course of study. The selected levels were used on the basis of lead (20-30 mg Kg⁻¹ soil at 0-90 cm depth) and chromium (20-40 mg Kg⁻¹ soil at 0-90 cm depth) content reported in Pakistani soils irrigated regularly by metal contaminated water in the vicinities of large cities like Faisalabad (Ensink *et al.*, 2002; UNIDO 2002; van der Hoek *et al.*, 2002; Ensink *et al.*, 2007). The experiment was laid down in a completely randomized design (CRD) with four replicates.

The data for relative increase in various growth attributes were started 10 days after treatment for three consecutive 7-day harvest intervals. After each harvest, roots and shoots were separated after harvesting from soil, and shoot and root lengths were measure using a meter rod. The fresh weight of shoots and roots were determined with the help of analytical balance, thereafter plants were oven dried at 70 °C to a constant dry weight and data for dry weights were recorded. The chlorophyll (Chl. a, b and total) contents were determined at third-harvest following the method of Arnon (1949). A 0.5 g fresh leaf sample was chopped into small pieces and extracted with 80% acetone. The absorbance was read at 645 nm and 663 nm using spectrophotometer (Hitachi, U-2001, Japan) and total amount of chlorophyll a, b and total chlorophyll were calculated. At maturity, data for number of pods per plant, seeds per pod, 100-seeds weight and yield per plant were recorded.

Statistical analysis: Analysis of variance (ANOVA) of the data was computed using a STATISTICA package for windows, Kernel Release 5.5A (StatSoft, Inc, Tulsa, OK 74104, USA). The Visual General Linear Model (GLM) was fitted using the same statistical package for assessing variation within treatments and interaction terms by splitting their degree of freedom into contrast comparisons.

1390

METAL TOXICITY IN MASH BEAN

Results

Application of metals in the rooting medium significantly reduced all growth attributes of both mash bean cultivars. The growth rate of both cultivars was found to be maximum at first interval thereafter decreased consistently. Metal stress reduced the growth rate of both cultivars as well. However, both levels of chromium were more toxic as compared to that of lead. Furthermore, highest level of both Cr and Pb maximally reduced the plant growth attributes. Moreover, this adverse effect of both metals was less on growth of FS-1 than that of Mash-97 (Fig. 1, 2 &3).

All photosynthetic pigments were drastically reduced by both metal treatments. Analysis of variance of the data for chlorophyll a, b and total chlorophyll contents revealed highly significant differences for genotypes and treatments. However genotype x treatment interaction differed non-significantly. Genotype FS-1 had higher photosynthetic pigments as compared to Mash-97 under both metal stresses. Overall, Fig. 5: Yield attributes of two mashbean cultivars when 14-day old plants were exposed to Pb or Cr in the root medium.

pigments of two mash bean genotypes under lead and chromium stresses.					
General effect	d.f.	Chl a	Chl b	Total Chl	
Intercept	1	34.63 ***	14.90 ***	136.34 ***	
Genotypes (G)	1	0.213 ***	0.224 ***	0.513 ***	
Treatment (T)	4	0.380 ***	0.186 **	0.313 ***	
C vs All	1	0.927 ***	0.322 ***	0.777 ***	
C vs Pb	1	0.441 ***	0.132 **	0.414 ***	
C vs Cr	1	1.197 ***	0.452 ***	0.932 ***	
Pb vs Cr	1	0.277 ***	0.143 ***	0.155 **	
V_1C vs V_1 Pb	1	0.169 **	0.060 **	0.160 *	
V ₁ C vs V ₁ Cr	1	0.470 ***	0.260 ***	0.555 ***	
V ₂ C vs V ₂ Pb	1	0.288 ***	0.073 ***	0.260 **	
V ₂ C vs V ₂ Cr	1	0.742 ***	0.194 **	0.385 ***	
$V_1 Pb_1 vs V_1 Pb_2$	1	0.040 *	0.097 **	0.146 *	
$V_1 Cr_1 vs V_1 Cr_2$	1	0.088 **	0.054 *	0.063 *	
$V_2 Pb_1 vs V_2 Pb_2$	1	0.053 *	0.045 *	0.054 *	
$V_2 Cr_1 vs V_2 Cr_2$	1	0.132 **	0.064 *	0.068 *	
G x T interaction	4	0.004 ns	0.003 ns	0.013 ns	
V ₁ Pb vs V ₂ Pb	1	0.093 **	0.122 **	0.354 ***	
V ₁ Cr vs V ₂ Cr	1	0.126 ***	0.055 **	0.094 *	
V ₁ Pb vs V ₂ Cr	1	0.049 ***	0314 ***	0.533 ***	
V ₁ Cr vs V ₂ Pb	1	0.002 ns	0.0006 ns	0.030 ns	
Error	30	0.008	0.0065	0.015	

Table 1. Analyses of variance (ANOVA) and contrast comparisons for photosynthetic pigments of two mash bean genotypes under lead and chromium stresses.

*, **, ** = significant at 0.05, 0.01 and 0.001 levels, respectively. ns = non-significant, $V_1 = FS-1$, $V_2 = Mash-97$, C = Control, Pb₁ = Lead nitrate (20 mg/L), Pb₂ = Lead nitrate (40 mg/L), Cr₁ = Chromium chloride (20 mg/L), Cr₂ = Chromium chloride (40 mg/L), The 4 degree of freedom have been split into contrasts to check the variation within treatments (T) or variety x treatment (V x T) interaction.

Fig. 1. Relative decrease in shoot and root lengths of two mashbean cultivars when 14- day old plants were exposed to Pb or Cr in the root medium.

Fig. 2. Relative decrease in shoot and root fresh weights of two mashbean cultivars when 14-day old plants were exposed to Pb or Cr in the root medium.

Fig. 3. Relative decrease in shoot and root dry weights of two mash bean cultivars when 14-day old plants were exposed to Pb or Cr in the root medium.

Fig. 4. Photosynthetic pigments of two mash bean cultivars when 14-day old plants were exposed to Pb or Cr in the root medium.

Conoral offect	d f	Pods/plant	Seeds/pod	Vield/nlant	100 seed weight
General effect	1	1 ous/plain	Seeus/pou		100 seed weight
Intercept	1	230.40 ***	455.62 ***	6.14 ***	3.55 ***
Genotypes (G)	1	6.40 ***	3.02 *	0.0023 ***	0.123 ***
Treatment (T)	4	4.83 ***	8.18 ***	0.0027 ***	0.085 ***
C vs All	1	9.50 ***	18.90 ***	0.0051 ***	0.194 ***
C vs Pb	1	6.02 ***	10.02 ***	0.0034 ***	0.120 ***
C vs Cr	1	10.08 ***	21.33 ***	0.0061 ***	0.209 ***
Pb vs Cr	1	0.78ns	2.53 *	0.0007 **	0.018 *
V ₁ C vs V ₁ Pb	1	2.04 *	4.16 *	0.0012 ***	0.065 **
V_1C vs V_1Cr	1	6.00 **	12.04 ***	0.0056 ***	0.106 **
V ₂ C vs V ₂ Pb	1	4.16 **	7.04 **	0.0020 ***	0.055 **
V ₂ C vs V ₂ Cr	1	4.17 **	9.37 ***	0.0025 ***	0.103 ***
$V_1 Pb_1 vs V_1 Pb_2$	1	3.13 *	2.00 *	0.0014 ***	0.049 **
$V_1 Cr_1 vs V_1 Cr_2$	1	2.00 *	3.12 *	0.0005 *	0.010 *
$V_2 Pb_1 vs V_2 Pb_2$	1	2.00 *	3.13 *	0.0006*	0.015 *
$V_2 Cr_1 vs V_2 Cr_2$	1	2.00 *	3.13 *	0.0005 *	0.068 ***
G x T interaction	4	0.21 ns	0.21 ns	0.0001 ns	0.004 ns
V ₁ Pb vs V ₂ Pb	1	5.06 **	3.06 *	0.0015 ***	0.044 **
V ₁ Cr vs V ₂ Cr	1	1.00 ns	0.25 ns	0.0002 *	0.052 **
V1 Pb vs V2 Cr	1	5.06 **	5.06 **	0.0020 ***	0.099 ***
V1 Cr vs V2 Pb	1	1.00 ns	0.0001 ns	0.0000 ns	0.015 *
Error	30	0.300	0.425	0.0004	0.0023

Table 2. Analyses of variance (ANOVA) and contrast comparisons for yield attributes of two mash bean genotypes under lead and chromium stresses.

*, **, ** = significant at 0.05, 0.01 and 0.001 levels, respectively. ns = non-significant, $V_1 = FS-1$, $V_2 = Mash-97$, C = Control, Pb₁ = Lead nitrate (20 mg/L), Pb₂ = Lead nitrate (40 mg/L), Cr₁ = Chromium chloride (20 mg/L), Cr₂ = Chromium chloride (40 mg/L), The 4 degree of freedom have been split into contrasts to check the variation within treatments (T) or variety x treatment (V x T) interaction.

Fig. 5. Yield attributes of two mash bean cultivars when 14-day old plants were exposed to Pb or Cr in the root medium.

METAL TOXICITY IN MASH BEAN

Discussion

In this study, metal treatments drastically reduced growth of both mash bean cultivars. It was observed that both metals were more toxic at higher levels as compared to their lower ones. This decrease in growth might be attributed to decrease in photosynthetic pigments that were drastically reduced in this study (Sharma & Sharma, 2003) that lead to decreased photosynthesis and hence decreases supply of photosynthesis products to the actively growing organs that suppressed growth (Fargašová, 1998). Moreover disturbance in nutrient uptake and metabolism as a result of increased metal content in the growth environment (data not reported) might explain this reduction in growth (Panda & Choudhary, 2005).

Chlorophyll a, b and total chlorophyll were drastically reduced under both metal treatments especially at higher level. In this study, severe chlorosis on older leaves and scarce appearance on younger leaves suggested that decline in chlorophyll content in shoots of metal treated plants result mostly from its enhanced degradation or reduced synthesis (Stobart *et al.*, 1985; Somashekaraiah *et al.*, 1992). Moreover, chlorophyll a/b ratio was not affected under metal treatments (Figure 4). This suggested that both chlorophyll a and b were equally sensitive to metal stress in both mash bean cultivars (Gajewska *et al.*, 2006).

All yield parameters were drastically reduced under both metal stresses. This reduction in yield might be due to decreased photosynthesis as a consequence of reduction in photosynthetic pigments under both metal stresses (Fargašová, 1998). In addition, decrease vegetative growth under metal stress lead to suppressed reproductive growth (Arun *et al.*, 2005). Moreover, flower and pod senescence as a consequence of metal toxicity lead to production of less number of viable pods and seeds that reduced yield under metal stress (Sharma & Dubey, 2005).

Overall, highly toxic effects of chromium and lead metals on growth, photosynthetic pigments and yield components in mash bean were observed in this study. Moreover, mash bean cultivar FS-1 proved to be more tolerant as compared to Mash-97.

References

- Arun, K.S., C. Cervantes, H. Loza-Tavera and S. Avudainayagam. 2005. Chromium toxicity in plants. *Environ. Int.*, 31: 739-753.
- Baccouch, S.A.C. and E. El Ferjani. 1998. Nickel-induced oxidative damage and antioxidant responses in *Zea mays* shoots. *Plant Physiol. Biochem.*, 36: 689-694.
- Chaney, R.L. and J.A. Ryan. 1994. Risk Based Standards for Arsenic Lead and Cadmium in Urban Soils. Dechema, Frankfurt, Germany. 11: 163.
- de Abreu, C.A., M.F. de Abreu and J.C. de Andrade. 1998. Distribution of lead in the soil profile evaluated by DTPA and Mehlich-3 solutions. *Bragantia*, 57: 185-192.
- Ensink, J.H.J., R.W. Simmons and W. van der Hoek. 2007. Wastewater Use in Pakistan: The Cases of Haroonabad and Faisalabad. The International Development Research Centre, Canada. <u>http://www.idrc.ca/fr/ev-68336-201-1-DO_TOPIC.html</u>
- Ensink, J.H.J., W. van der Hoek, Y. Matsuno, S. Munir and M.R. Aslam. 2002. The use of untreated wastewater in peri-urban agriculture in Pakistan: Risks and opportunities. IWMI Research Report no. 64, International Water Management Institute, Colombo, Sri Lanka.
- Fargašová, A.1998. Root growth inhibition, photosynthetic pigments production, and metal accumulation in *Synapis alba* as the parameters for trace metals effect determination. *Bull. Environ. Contam. Toxicol.*, 61: 762-769.

- Gajewska, E., M. Skłodowska, M. Laba and J. Mazur. 2006. Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. *Biol. Plant.*, 50 (4): 653-659.
- James, A.D. 1981. Legumes in United States. Department of Agriculture, Beltsville, Maryland Plenum press New York.
- Panda, S.K. and S. Choudhary. 2005. Chromium stress in plants. Braz. J. Plant Physiol., 17(1): 19-102.
- Shanker, A.K., C. Cervantes., H.L. Tavera and S. Avudainayagam. 2005. Chromium toxicity in plants. J. Environ. Int. 31: 739-753.
- Sharma, D.C and C.P. Sharma. 2003. Chromium uptake and toxicity effects on growth and metabolic activities in wheat, *Triticum aestivum. Indian. J. Exp. Biol.*, 34:689-91.
- Sharma, P. and R.S. Dubey. 2005. Lead toxicity in plants. Braz. J. Plant Physiol., 17(1): 35-52.
- Somashekaraiah, B.V., K. Padmaja and A.R.K. Prasad. 1992. Phytotoxicity of cadmium ions on germinating seedlings of mungbean (*Phaseolus vulgaris*): Involvement of lipid peroxides in chlorophyll degradation. *Physiol. Plant.*, 85: 85-89.
- Stobart, A.K., W.T. Griffiths, I. Ameen-Bukhari and R.P. Sherwood. 1985. The effect of Cd²⁺ on the biosynthesis of chlorophyll in leaves of barley. *Physiol. Plant.*, 63: 293-298.
- UNIDO. 2002. Industrial Policy and the Environment in Pakistan (NC/PAK/97/018), United Nations Industrial Development Organization (UNIDO), 11 December 2000.
- van der Hoek, W., M.U. Hassan, J.H.J. Ensink, S. Feenstra, L. Raschid-Sally, S. Munir, R. Aslam, N. Ali, R. Hussain and Y. Matsuno. 2002. Urban Wastewater: A valuable resource for agriculture - A case study from Haroonabad, Pakistan. IWMI Research Report no. 63, International Water Management Institute, Colombo, Sri Lanka, pp: 14.
- Yang, Y.Y., J.Y. Jung., W.Y. Song., H.S. Suh and Y. Lee. 2000. Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. *Plant Physiol.*, 124: 1019-1026.

(Received for publication 18 September, 2006)

PAKISTAN BOTANICAL SOCIETY OFFICERS AND COUNCIL FOR 2006

President

Dr. M. Ashraf Department of Botany, University of Agriculture, Faisalabad.

Vice-President

Dr. S.M. Saqlain Naqvi Department of Biochemistry, University of Arid Agriculture, Rawalpindi.

Dr. Muhammad Tahir Rajput Department of Botany, University of Sindh, Jamshoro.

Dr. Mufakhira Jan Durrani Department of Botany, University of Balochistan, Quetta.

Dr. Farrukh Hussain Department of Botany, University of Peshawar, Peshawar.

Mr. Shafiq-ur-Rehman Department of Botany, University of AJ&K Muzaffarabad.

Secretary/Treasurer

Dr. M. Yasin Ashraf NIAB, Faisalabad.

Joint Secretary

Dr. Syeda Saleha Hassney Department of Botany, University of Sindh, Jamshoro.

Chief Editor

Dr. Abdul Ghaffar, Department of Botany, University of Karachi.

COUNCIL

The Officers of the Pakistan Botanical Society, the President and Secretary ex officio, Prof. Nuzhat Parveen, Shipowners College, Karachi; Dr. A. Qayyum Soomro, University of Sindh, Jamshoro; Dr. Shahida Hasnain, University of the Punjab, Lahore; Dr. Manzoor H. Soomro, PSF, Islamabad; Dr. Fazle Malik Sarim, University of Peshawar; Dr. A. Razzak Mahar, Shah Abdul Latif University, Khairpur; Dr. Tayyab Hussain Bukhari, Govt. College, Toba Tek Singh.

Vol. 38(5): Special Issue	Contents	December,	2006
			Page
Muhammad Ashraf and Hab	bib-ur-Rehman Athar - Preface		1357
Sayed Anwar-ul-Haque - Sa	alinity problems and crop prod	uction in coastal	1359
regions of Bangladesh - Review	w Article		
Abdallah Atia, Ahmed Deb	ez, Mokded Rabhi, Habib-ur-	Rehman Athar,	1367
and Chedly Abdelly - Alle	eviation of salt-induced seed of	dormancy in the	
perennial halophyte Crithmum	maritimum L. (Apiaceae)		
Shahid Umar - Alleviating ad	lverse effects of water stress on	yield of sorghum,	1373
mustard and groundnut by pota	assium application		
M.U. Shirazi, M.A. Khan,	Mukhtiar Ali, S. M. Mujtal	ba, S. Mumtaz,	1381
Muhammad Ali, B. Khanza	da, M.A. Halo, M. Rafique, J	A. Shah, K.A.	
Jafri, and N. Depar - Growth	h performance and nutrient cont	ents of some salt	
tolerant multipurpose tree spec	ties growing under saline environ	ment	
Mumtaz Hussain, Muhamm	nad Sajid Aqeel Ahmad and	Abida Kausar -	1389
Effect of lead and chromium	n on growth, photosynthetic pig	gments and yield	
components in mash bean [Vig	na mungo (L.) Hepper]		
Bechir Ben-Rouina, Chedlia	Ben Ahmed, Habib-ur-Rehma	n Athar, and M.	1397
Boukhriss - Water relations, p	roline accumulation and photosy	nthetic activity in	
olive tree (Olea europaea L. cv	v "Chemlali") in response to salt	stress	
Ameer Khan, Muhammad S	Sajid Aqeel Ahmad, Habib-ur	-Rehman Athar	1407
and Muhammad Ashraf - In	teractive effect of foliar applied	ascorbic acid and	
salt stress on wheat (Triticum d	<i>testivum</i> L.) at seedling stage		
A. R. Gurmani, A. Bano and	Muhammad Salim - Effect of	growth regulators	1415
on growth, yield and ions accu	mulation of rice (Oryza sativa L.) under salt stress	
Muhammad Asif, Mehbook	o-ur-Rahman and Yusuf Zafa	ar - Genotyping	1425
analysis of six maize (Zea	mays L.) hybrids using DN	A fingerprinting	
technology			
Sezgin Celik - Studies on the g	germination of three endangered	Centurea species	1431
Vishandas, Zia-ul-Hassan, M	Muhammad Arshad and Ahm	ad Naqi Shah -	1439
Phosphorus fertigation at first	irrigation due to its unavailabili	ty at sowing time	
prevents yield losses in Triticu	m aestivum L.		
M. Kashif Shahzad Sarwar,	Ihsan Ullah, Mehboob-ur-Ra	hman, M. Yasin	1449
Ashraf and Yusuf Zafar - Gl	ycinebetaine accumulation and it	s relation to yield	
and yield components in cottor	n genotypes grown under water d	eficit condition	
Muhammad Sajid Aqeel Ahr	mad, Qasim Ali, Rohina Bashir	; Farrukh Javed	1457
And Ambreen Khadija Alvi -	Time course changes in ionic con	nposition and total	
soluble carbohydrates in two bar	rley cultivars at seedling stage unde	er salt stress	
Tayyaba Shaheen, Mehboob	-ur-Rahman and Yusuf Zafar -	 Chloroplast rps8 	1467
gene of cotton reveals the cons	served nature through out plant ta	xa	
Chedlia Ben-Ahmed, B.	Ben-Rouina, Habib-ur-Rehm	ian Athar, M.	1477
Boukhriss - Olive tree (Olea	a europaea L. cv. "Chemlali")	under salt stress:	
water relations and ions conten	ıt		
Jim Morris, John Collopy a	nd Khalid Mahmood - Canopy	conductance and	1485
water use in Eucalyptus planta	tions		
B. Shaharoona, Riffat Bibi, M	uhammad Arshad, Zahir Ahme	d Zahir, and Zia-	1491
ul-Hassan - 1-Aminocyloprop	pane-1-carboxylate (ACC)-deamin	nase rhizobacteria	
extenuates ACC-induced classic	al triple response in etiolated pea s	eedlings	
Roubina Kauser, Habib-ur	-Rehman Athar, and Muha	mmad Ashraf -	1501
Chlorophyll fluorescence can	n be used as a potential inc	licator for rapid	
assessment of water stress toler	rance in canola (Brassica napus	L.)	

Cont'd. inside back cover

Uzma Farooq and Asghari Bano - Effect of abscisic acid and chlorocholine chloride	1511
on nodulation and biochemical content of Vigna radiata L. under water stress	

Ruya Yilmaz, Serdal Sakcali, Celal Yarci, Ahmet Aksoy and Munir Ozturk 1519 - Use of *Aesculus hippocastanum* L. as a biomonitor of heavy metal pollution.

Tariq Aziz, Rahmatullah, Muhammad Aamer Maqsood, Mukkram. A. 1529 **Tahir, Iftikhar Ahmad and Mumtaz A. Cheema** - Phosphorus utilization by six Brassica cultivars (*Brassica juncea* L.) from tri-calcium phosphate; a relatively insoluble P compound

Gul Sanat Shah Khattak, Iqbal Saeed And Tila Muhammad - Breeding for 1539 heat tolerance in mungbean (*Vigna radiata* (L.) Wilczek)

Nazila Azhar, M. Yasin Ashraf, M. Hussain and F. Hussain - Phytoextraction 1551 of lead (Pb) by EDTA application through sunflower (*Helianthus annuus* L.) cultivation: Seedling growth studies.

Muhammad Ibrahim, Ambreen Anjum, Nabeela Khaliq, Muhammad Iqbal 1561 **and Habib-ur-Rehman Athar -** Four foliar applications of glycinebetaine did not alleviate adverse effects of salt stress on growth of sunflower

Muhammad Aslam, Iftikhar A. Khan, Muhammad Saleem and Zulfiqar Ali
 Assessment of water stress tolerance in different maize accessions at germination and at early growth stage

Nudrat Aisha Akram, Muhammad Shahbaz, Habib-ur-Rehman Athar, and 1581 Muhammad Ashraf - Morpho-physiological responses of two differently adapted populations of *Cynodon dactylon* (L.) Pers. and *Cenchrus ciliaris* L. to salt stress

M. Yasin Ashraf, Kalsoom Akhter, F. Hussain and Javed Iqbal - Screening 1589 of different accessions of three potential grass species from Cholistan desert for salt tolerance

Nabila Tabbasam, **Mehboob-ur-Rahman and Yusuf Zafar** - DNA-based 1599 genotyping of sorghum hybrids

Abdul Hameed, Muhammad Zaheer Ahmed and Muhammad Ajmal Khan - 1605 Comparative effects of NaCl and seasalt on seed germination of coastal halophytes

Tanwir Ahmad Malik, Sana-Ullah, and Samina Malik - Genetic linkage 1613 studies of drought tolerant and agronomic traits in cotton

Qasim Ali, Habib-ur-Rehman Athar and Muhammad Ashraf - Influence of 1621 exogenously applied brassinosteroids on the mineral nutrient status of two wheat cultivars grown under saline conditions

M. A. Khan, M.U. Shirazi, Mukhtiar Ali, S. Mumtaz, A. Sherin, and M. Y. 1633 Ashraf - Comparative performance of some wheat genotypes growing under saline water

Naeem Iqbal and Muhammad Yasin Ashraf - Does seed treatment with 1641 glycinebetaine improve germination rate and seedling growth of sunflower (*Helianthus annuus* L.) under osmotic stress

Irfan Afzal, Shahzad Maqsood Ahmad Basra, Amjad Hameed and 1649 Muhammad Farooq - Physiological enhancements for alleviation of salt stress in wheat

Muhammad Saeed Akram, Qasim Ali, Habib-ur-Rehman Athar and 1661 **Ahmed Saeed Bhatti -** Ion uptake and distribution in *Panicum antidotale* Retz. under salt stress

Sulman Shafeeq, Mehboob-ur-Rahman and Yusuf Zafar - Genetic variability 1671 of different wheat (*Triticum aestivum* L.) genotypes/cultivars under induced water stress

Ihsan Ullah, Mehboob-ur-Rahman and Yusuf Zafar - Genotypic variation for drought tolerance in cotton (<i>Gossypium hirsutum</i> L.): seed cotton vield responses	1679
Ismat Nawaz, Zia-Ul-Hassan, Atta Muhammad Ranjha and Muhammad	1689
Arshad - Exploiting genotypic variation among fifteen maize genotypes of	
Pakistan for potassium uptake and use efficiency in solution culture	
Munir Ahmad, Zahid Akram, Muhammad Munir and Muhammad Rauf -	1697
Physio-morphic response of wheat genotypes under rainfed conditions	
Qasim Ali, Habib-ur-Rehman Athar and Muhammad Ashraf - Ion transport	1703
in four canola cultivars as influenced by salt stress	
S.F. Afzali, M.A. Hajabbasi, H. Shariatmadari, K. Razmjoo, and A.H.	1709
Khoshgoftarmanesh - Comparative adverse effects of PEG- or NaCl-induced	
osmotic stress on germination and early seedling growth of a potential medicinal	
plant Matricaria chamomilla	
Mukkram Ali Tahir, Rahmatullah, Tariq Aziz, M.Ashraf, Shamsa Kanwal	1715
and Muhammad Aamer Maqsood - Beneficial effects of silicon in wheat	
(Triticum aestivum L.) under salinity stress	
Shamyla Nawazish, Mansoor Hameed and Shaista Naurin - Leaf anatomical	1723
adaptations of Cenchrus ciliaris l. from the salt range, Pakistan against drought stress	
Farah Naz, Shafqat Farooq, Rubina Arshad, Muhammad Afzaal and	1731
Muhammad Akram - Discriminating upland and lowland rice genotypes	
through proteomic approach	
Muhammad Akram, Shafqat Farooq, Muhammad Afzaal, Farah Naz, and	1739
Rubina Arshad - Chlorophyll fluorescence in different wheat genotypes grown	
under salt stress	
Muhammad Afzaal, Shafqat Farooq, Muhammad Akram, Farah. Naz,	1745
Rubina Arshad and Asghari Bano - Differences in agronomic and physiological	
performance of various wheat genotypes grown under saline conditions	
Rubina Arshad, Shafqat Farooq and Farooq-E-Azam - Rhizospheric bacterial	1751
diversity: Is it partly responsible for water deficiency tolerance in wheat?	
Shamaila Rafiq, Tahira Iqbal, Amjad Hameed, Zulfiqar Ali Rafiqi and	1759
Naila Rafiq - Morphobiochemical analysis of salinity stress response of wheat	
Published by the Pakistan Botanical Society.	
Printed at Karachi University Press, Karachi-75270, Pakistan. Phone: 9243186, 49	69237.
Copies available from the Chief Editor, Pakistan Journal of Botany, Departm	nent of
Botany, University of Karachi, Karachi-75270, Pakistan. Phone: 4387867.	

Price: Each issue Rs. 100/ US\$20; Vol. Rs. 600/US\$120 or in exchange.