Pak. J. Bot., 36(4): 733-743, 2004.

PHYCOCHEMISTRY AND BIOACTIVITY OF TWO STONEWORT ALGAE (CHAROPHYTA) OF SINDH

B. GHAZALA, B. NAILA, MUSTAFA SHAMEEL, SALEEM SHAHZAD AND SULTAN MAHMOOD LEGHARI¹

Department of Botany University of Karachi, Karachi-75270, Pakistan

Abstract

Two stonewort green algae, *Chara contraria* A. Braun *ex* Kützing and *Nitella flexilis* (Linnaeus) C. A. Agardh were collected from Kinjhar and Haleji lakes, Distt. Thatta, Sindh during October to December 1999. Their methanol extracts revealed the presence of a variety of saturated and unsaturated fatty acids (FAs) by GC-MS and β -sitosterol by EI-MS & ¹H-NMR. In *C. contraria*, 9 saturated, 5 mono- and 2 tri-unsaturated FAs were detected, and *N. flexilis* contained 5 saturated, 7 mono-, 2 di-, 2 tri- and 3 poly-unsaturated FAs; while 4 FAs remained unidentified. The C13:1, C14:0, C16:0, C16:3, C17:2, C17:3, C29:0 and C29:3 acids were most commonly present in appreciable quantities (8.053-20.423 %) in them. Their methanol extracts showed little antibacterial activity but a strong antifungal activity against 6 of the 10 tested fungal pathogens. They displayed no bioactivity in brine shrimp bioassay and insecticidal tests. *Chara contraria* exhibited appreciable phytotoxicity (6.66 %) and antitumour activity (31 %) but *N. flexilis* did not, they showed specific differences.

Introduction

A large number of green seaweeds growing at the seashore of Karachi and the adjacent coastal areas of Sindh have been investigated phycochemically (Usmanghani *et al.*, 1985; Qasim, 1986; Shameel, 1987, 1993; Aliya *et al.*, 1995; Aliya & Shameel 1999, 2003), and their bioactivities were studied (Usmanghani *et al.*, 1984; Naqvi *et al.*, 1992; Aliya *et al.*, 1994; Atta-ur-Rahman *et al.*, 1997; Rizvi & Shameel, 2003). Only a few studies were conducted on stonewort green algae of this area (Khaliq-uz-Zaman *et al.*, 1998, 2001; Shameel *et al.*, 1999). This paucity of knowledge initiated a research program to compare the observations made on green seaweeds with their freshwater counterparts of Sindh (Ghazala *et al.*, 2003, 2004a-d). The present investigation is a continuation of this program in which taxonomy, phycochemistry and bioactivity of two stonewort algae *Chara contraria* A. Brun *ex* Kützing and *Nitella flexilis* (Linnaeus) C. A. Agardh have been studied.

Materials and Methods

Collection of material: Specimens were collected during October to December 1999 from the bottom of a shallow water pond at Hyderabad and from sandy bottom of Kinjhar and Haleji lakes of District Thatta (Sindh) at a depth of 10-40 cm.

Detection of fatty acids: The algae under investigation weighting 1 kg fresh weight (*C. contraria*) and 4811.2 g dry wt. (*N. flexilis*) were percolated with *n*-hexane: chloroform (1:1, v/v) in a respirator for two weeks. The extract so obtained was reduced under vacuum and partitioned between EtOAc and water (1:1, v/v), which on evaporation ¹Department of Freshwater Biology & Fisheries, University of Sindh, Jamshoro-76080, Pakistan.

yielded 15 g (*C. contraria*) and 10 g (*N. flexilis*) of residue. It was saponified, refluxed, esterified, methylated and finally subjected to GC-MS, as described in Ghazala *et al.*, (2004a).

Isolation of sterol & terpene: Thalli were thoroughly washed with tap water to remove debris and animal castings. Dried and chopped material weighing 650.5 g was soaked in methanol for almost three weeks. The MeOH fraction on evaporation under vacuum gave 38.4 g thick crude algal material, and the slurry was loaded on to silica gel column for chromatography eluting with *n*-hexane: chloroform and finally with methanol in increasing order of polarity by 2 % (v/v) respectively, as given by Ghazala *et al.*, (2003).

Bioactivity tests: The methodologies for bactericidal activity, antifungal bioassay, food poisoning and phytotoxic activities, brine shrimp bioassay and insecticidal activity were the same as have been described previously (Ghazala *et al.*, 2003, 2004a).

Antitumour activity: Potato tubers obtained from local markets were sterilized by immersion in sodium hypochlorite for 20 minutes. After removing their ends potatoes were soaked for 10 minutes or more in Clorox. A core of the tissue was extracted from each tuber with sterilized cork borer (1.5 cm) radius. The 2 cm pieces were removed from each end and discarded; the remainder of the cylinder was cut into 0.5 cm discs with a surface-sterilized scalpel and knife. The discs were then transferred to 1.5 % agar plate (1.5 g of Merk agar dissolved in 100 mL of distilled water, autoclaved and 20 mL of it poured into each sterile Petri plate). The extracts were dissolved in 2 mL of DMSO. Plates were incubated at 27 °C for 12-20 days after which the tumours produced were counted with the naked eye. Significant activity was indicated when two or more independent assays gave consistent 20 % or greater inhibition. Details of the procedure may be found in Parveen (1997).

Results

Chara contraria **A. Braun** *ex* **Kützing:** Thallus coarse, usually heavily encrusted, 20-30 cm high; stem up to 730 μ m in diameter, stem cortex regularly diplostichous; stipulates in double whorls, paired with each leave; leaves 6-8 in a whorl, incurved or spreading; terminal cell of the stem and leaves ecorticated; sex organs monoecious, both organs produced at the same node, antheridia 311-470 μ m in diameter, oogonia 800 μ m long, spiral cells showing 13-15 convolutions (Fig. 1).

Nitella flexilis (Linnaeus) C.A. Agardh: Thallus 30-40 cm high; stem and leaves uncorticated, encrusted with lime; stem up to 0.8 mm thick; internodes 4.5-9.0 cm long; leaves up to 6 in a whorl, forked; last segment unicellular; stipule-circle lacking; antheridia borne above oogonia; crown developed on ooganium by tips of 5 two-celled coiled tubes (Fig. 2).

Detection of fatty acids: The GC-MS of the methylated fatty acids (FAs) revealed the presence of 9 saturated and 7 unsaturated FA-methyl esters in *C. contraria* and 9 saturated and 14 unsaturated FA-methyl esters in *N. flexilis*, while 4 FAs remained unidentified (Tables 1 & 2).

734

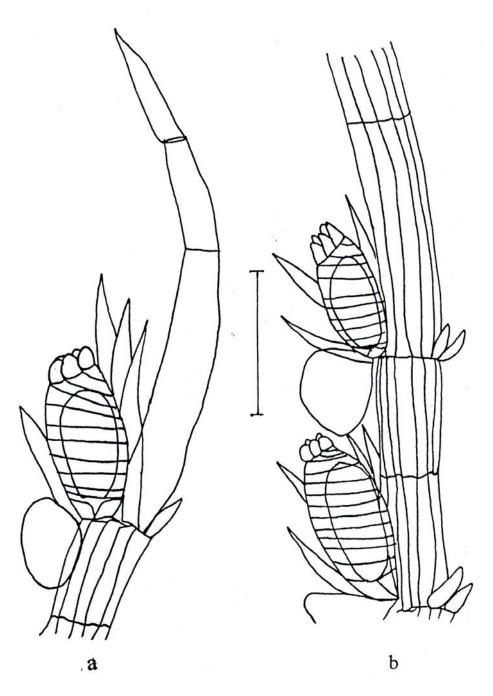


Fig. 1. Chara contraria: **a.** branchlet with globule and nucule, **b.** main thallus (scale: $400 \ \mu m$).

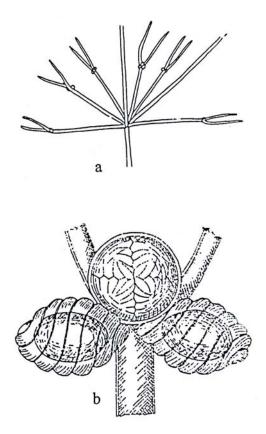


Fig. 2. *Nitella flexilis* (Linnaeus) C.A. Agardh: **a.** part of thallus showing whorl of forked leaves, **b.** reproductive organs (x 50).

Extraction of sterol and terpene: Pure sterol compound was eluted in a mixture of *n*-hexane: chloroform (90:10) from column and purified on preparative thick layer silica gel glass plates in solvent system *n*-hexane: chloroform (80:20). Purity was then checked on TLC card in the above solvent system and by spraying with Ce $(SO_4)_2$ a pinkish red spot was found. After ascertaining the purity of the compound the isolated sterol was subjected to spectral analysis (EIMS and ¹H-NMR). In this way β -sitosterol was identified, but *trans*-phytol could not be detected (Table 3).

Bioactivities: Methanol extract of *C. contraria* showed no bioactivity against any one of the 10 tested bacterial species but displayed a strong antifungal activity against 6 of the 10 tested fungal organisms (Table 5). It exhibited phytotoxicity against *Lemna minor* of low quality at the three concentrations and its cytotoxic activity against brine shrimp was observed to be non-significant. It revealed an appreciable antitumour activity, which enhanced from 10 to 31 % with increasing concentration of the extract. The extract of *N. flexilis* exhibited antibacterial activity against 3 of the 10 tested bacterial species and antifungal activity against 6 of the 10 tested fungal organisms (Table 3). Its cytotoxic and insecticidal activities were found to be non-significant.

Chara contraria and four fractions (A-D) of Nitella flexilis.					
Acid	Systematic name	Common	Molecular	Mol.	Rel.
type	Systematic nume	name	formula	wt.	% age
		Chara contraria			
	Fraction A				99.754
C14:0	<i>n</i> -Tetradecanoate	Myristate	$C_{15}H_{30}O_2$	242	2.448
C15:0	n-Pentadecanoate	Pentadecylate	$C_{16}H_{32}O_2$	256	1.53
C16:0	<i>n</i> -Hexadecanoate	Palmitate	$C_{17}H_{34}O_2$	270	6.12
C17:3	5,8,11-Heptadecatrienoate	-	$C_{18}H_{30}O_2$	278	38.862
C18:1	8-Octadecenoate	Oleate	$C_{19}H_{36}O_2$	296	5.506
C18:0	9-Methyl-heptadecanoate	-	$C_{19}H_{38}O_2$	298	2.448
C19:1	10-Nonadecenoate	Nonadecylenate	$C_{20}H_{38}O_2$	310	1.836
C20:1	9-Eicosenoate	Gadoleate	$C_{21}H_{40}O_2$	324	7.65
C22:0	Docosanoate	Behenate	$C_{23}H_{46}O_2$	354	3.06
C29:3	Nonacosatrienoate	-	$C_{30}H_{54}O_2$	446	7.956
-	Unidentified	-	-	330	7.65
-	Unidentified	-	-	410	9.18
-	Unidentified	-	$C_{29}H_{52}O_2$	432	5.508
	Fraction B				99.918
C20:1	9-Eicosenoate	Gadoleate	$C_{21}H_{40}O_2$	324	4.697
C22:1	11-Docosenoate	Cetoleate	$C_{23}H_{44}O_2$	352	14.518
C23:1	Tricosenoate	-	$C_{24}H_{46}O_2$	366	3.843
C24:0	<i>n</i> -Tetracosanoate	Lignocerate	$C_{25}H_{50}O_2$	382	17.934
C29:3	Nonacosatrinoate	-	$C_{30}H_{54}O_2$	446	53.375
C29:0	n-Nonacosanoate	-	$C_{30}H_{60}O_2$	452	5.551
	Fraction C				99.735
C17:0	<i>n</i> -Heptadecanoate	Margarate	$C_{18}H_{36}O_2$	284	9.81
C18:0	9-Methyl-heptadecanoate	-	$C_{19}H_{38}O_2$	298	17.004
C29:1	10-Nonadecenoate	Nonadecylenate	$C_{20}H_{38}O_2$	310	7.194
C21:0	n-Heneicosanoate	-	$C_{22}H_{44}O_2$	340	23.871
C22:1	11-Docosenoate	Cetoleate	$C_{23}H_{44}O_2$	452	41.856
		Nitella flexilis			
	Fraction A	-			99.99
C11:0	Undecanoate	Undecylate	$C_{12}H_{24}O_2$	200	0.6711
C14:1	9-Tetradecenoate	Mysistoleate	$C_{15}H_{28}O_2$	240	2.013
C15:3	3,7,11-Trimethyl-2,6,10- dodecatrienoate	-	$C_{16}H_{26}O_2$	250	10.066
C15:0	n-Pentadecanoate	Pentadecylate	$C_{16}H_{32}O_2$	256	6.039

 Table 1. Fatty acids detected as methyl esters in three fractions (A-C) of

 Chara contraria and four fractions (A-D) of *Nitella flexilis*.

	Table 1 (Cont'd.)				
Acid	Systematic name	Common	Molecular	Mol.	Rel.
type	Systematic name	name	formula	wt.	% age
C16:3	Hexadecatrienoate	-	$C_{17}H_{28}O_2$	264	32.212
C17:2	9,12-Heptadecadienoate	-	$C_{18}H_{32}O_2$	280	42.279
C18:5	Octadecapentaenoate	-	$C_{19}H_{28}O_2$	288	3.355
C18:2	5,8-Octadecadienoate	-	$C_{19}H_{34}O_2$	294	3.355
	Fraction B				99.99
C14:1	9-Tetradecenoate	Mysistoleate	$C_{15}H_{28}O_2$	240	21.333
C14:0	<i>n</i> -Tetradecanoate	Mysistate	$C_{15}H_{30}O_2$	242	25.997
C16:0	<i>n</i> -Hexadecanoate	Palmitate	$C_{17}H_{34}O_2$	270	41.329
C18:1	8-Octadecenoate	Oleate	$C_{19}H_{36}O_2$	296	1.999
C18:0	<i>n</i> -Octadecanoate	Stearate	$C_{19}H_{38}O_2$	298	1.333
-	Unidentified	-	-	274	7.999
	Fraction C				99.99
C8:1	7-Octynoate	-	$C_9H_{14}O_2$	154	1.923
C13:1	9-Tridecenoate	Decylacrylate	$C_{14}H_{26}O_2$	226	59.613
C14:1	13-Tetradecynoate	-	$C_{15}H_{26}O_2$	238	1.923
C15:4	Pentadecatetraenoate	-	$C_{16}H_{24}O_2$	248	1.923
C16:1	9-Hexadecenoate	Palmitoleate	$C_{17}H_{32}O_2$	268	17.307
C18:5	Octadecapentaenoate	-	$C_{19}H_{28}O_2$	288	3.846
C18:2	5,8-Octadecadienoate	-	$C_{19}H_{34}O_2$	294	2.884
C19:1	10-Nonadecenoate	Nonadecylenate	$C_{20}H_{38}O_2$	310	1.923
-	Unidentified	-	-	190	4.807
-	Unidentified	-	-	318	3.846
	Fraction D				99.99
C13:1	9-Tridecenoate	Decylacrylate	$C_{14}H_{26}O_2$	226	14.691
C14:0	<i>n</i> -Tetradecanoate	Myristate	$C_{15}H_{30}O_2$	242	29.855
C15:3	3,7,11-Trimethyl-2,6,10- dodecatrienoate	-	$C_{16}H_{26}O_2$	250	12.795
C15:0	<i>n</i> -Pentadecanoate	Pentadecylate	$C_{16}H_{32}O_2$	256	3.791
C16:0	<i>n</i> -Hexadecanoate	Palmitate	$C_{17}H_{34}O_2$	270	23.695
C18:5	Octadecapentaenoate	-	$C_{19}H_{28}O_2$	288	4.739
C18:2	5,8-Octadecadienoate	-	$C_{19}H_{34}O_2$	294	3.791
C18:0	n-Octadecanoate	Stearate	$C_{19}H_{38}O_2$	298	3.317
C22:4	6, 9, 12, 15-Docosatetraenoate	-	$C_{23}H_{38}O_2$	346	3.317

Table 1 (Cont'd.)

Mol. wt. = Molecular weight, Rel. % age = Relative percentage.

	extracts of Chara contraria and Nitella flexilis.				
Acid	Systematic name	Molecular	Mol.	Rel.	% age
type	Systematic name	formula	wt.	C.C.	N.F.
I. Satu	rated fatty acids			43.829	34.005
C11:0	<i>n</i> -Undecanoate	C12H2402	200	-	0.167
C14:0	<i>n</i> -Tetradecanoate	$C_{15}H_{30}O_2$	242	0.815	13.963
C15:0	<i>n</i> -Pentadecanoate	$C_{16}H_{32}O_2$	256	0.509	2.457
C16:0	<i>n</i> -Hexadecanoate	$C_{17}H_{34}O_2$	270	2.037	16.256
C17:0	<i>n</i> -Heptadecanoate	$C_{18}H_{36}O_2$	284	3.266	-
C18:0	9-Methyl-heptadecanoate	$C_{19}H_{38}O_2$	298	6.477	1.162
C21:0	<i>n</i> -Heneicosanoate	$C_{22}H_{44}O_2$	340	7.949	-
C22:0	<i>n</i> -Docosanoate	$C_{23}H_{46}O_2$	354	1.018	-
C24:0	<i>n</i> -Tetracosanoate	$C_{25}H_{50}O_2$	382	5.972	-
C29:0	<i>n</i> -Nonacosanoate	$C_{30}H_{60}O_2$	452	15.786	-
II. Mo	nounsaturated fatty acids			15.063	30.677
a. Mor	noenoic fatty acids			15.063	29.711
C13:1	9-Tridecenoate	$C_{14}H_{26}O_2$	226	-	18.57
C14:1	9-Tetradecenoate	$C_{15}H_{28}O_2$	240	-	5.836
C16:1	9-Hexadecenoate	$C_{17}H_{32}O_2$	268	-	4.326
C18:1	8-Octadecenoate	$C_{19}H_{36}O_2$	296	1.833	0.499
C19:1	10-Nonadecenoate	$C_{20}H_{38}O_2$	310	3.006	0.480
C20:1	9-Eicosenoate	$C_{21}H_{40}O_2$	324	4.111	-
C22:1	11-Docosenoate	$C_{23}H_{44}O_2$	352	4.834	-
C23:1	Tricosenoate	$C_{24}H_{46}O_2$	366	1.279	-
	oynoic fatty acids			-	0.96
C8:1	7-Octynoate	$C_9H_{14}O_2$	1.54	-	0.480
C14:1	13-Tetradecynoate	$C_{15}H_{26}O_2$	238	-	0.480
	unsaturated fatty acids			-	13.076
C17:2	9,12-Heptadecadienoate	$C_{18}H_{32}O_2$	280	-	10.569
C18:2	5,8-Octadecadienoate	$C_{19}H_{34}O_2$	294	-	2.507
	iunsaturated fatty acids			33.364	13.768
C15:3	3,7,11-Trimethyl-2,6, 10-dodecatrienoate	$C_{16}H_{26}O_2$	250	-	5.715
C16:3	Hexadecatrienoate	$C_{17}H_{28}O_2$	264	-	8.053
C17:3	5,8,11-Heptadecatrienoate	$C_{18}H_{30}O_2$	278	12.941	-
C29:3	Nonacosatrienoate	$C_{30}H_{54}O_2$	446	20.423	-
	yunsaturated fatty acids	50 5. 2		-	4.294
C15:4	Pentadecatetraenoate	$C_{16}H_{24}O_2$	248	-	0.480
C18:5	Octadecapentaenoate	$C_{19}H_{28}O_2$	288	-	2.985
C22:4	6,9,12,15-Docosatetraenoate	$C_{23}H_{38}O_2$	346	-	0.829
IV. Un	identified fatty acids			7.437	4.161
-	-	-	190	-	1.201
-	-	-	274	-	1.999
-	-	-	318	-	0.961
-	-	-	-	7.437	-

 Table 2. Total fatty acids analysed as methyl esters present in the methanol extracts of Chara contraria and Nitella flexilis.

Mol. wt. = Molecular weight, Rel. % age = Relative percentage, C.C. = *Chara contraria*, N.F. = *Nitella flexilis*.

Compounds/ Organisms	Chara contraria	Nitella flexilis
I. Natural products	%	%
B-Sitosterol	-	+
Trans-phytol	-	-
II. Antibacterial activity	mm	mm
Bacillus cereus	-	6
Corynebacterium diphtheriae	-	† 6.5
Escherichia coli	-	-
Klebsiella pneumoniae	-	-
Proteus mirabilis	-	-
Pseudomonas aeruginosa	-	-
Salmonella typhi	-	-
Shigella boydii	-	†8
Staphylococcus aureus	-	-
Streptococcus pyogenes	-	-
III. Antifungal activity	%	%
Alternaria alternata	-	-
Curvularia lunata	2.9	3.0
Drechslera australiensis	-	-
Fusarium solani	-	-
Fusarium sporotrichoids	3.2	3.5
Fusarium proliferatum	-	-
Macrophomina phaseolina	3.5	3.7
Rhizoctonia solani	3.5	3.6
Sclerotium rolfsii	3.6	3.4
Trichoderma harzianum	3.3	3.0
IV. Phytotoxicity	%	%
500 μg/mL concentration	6.66	Х
V. Brine shrimp bioassay		
1000 μg/mL LD ₅₀	-	-
VI. Insecticidal activity		
Tribolium castaneum	Х	-
VII. Antitumour activity	0⁄0	%
100 µg	31	х

Table 3. Comparison of phycochemistry and bioactivity of stonewort algae.

+ = Present, - = Absent /no activity, x = Not tested, \dagger = Decrease in bacterial population/ unit area.

Discussion

The methanol extract of *C. contraria* revealed the presence of 9 saturated and 7 unsaturated FAs, while 1 FA could not be identified (Table 2). Nonacosatrienoic acid (C29:3) was found to be in largest amount (20.423 %) as compared to all the other FAs, so much so that it appeared to be the most dominant acid, while pentadecylic acid (C15:0) was present in the smallest amount (0.51 %). Other prevalent acids were nonacosanoic (C29:0, 15.786 %) and 5, 8, 11-heptadecatrienoic (C17:3, 12.94 %) acids. Unsaturated FAs were found to be in slightly larger quantity (48.427 %) than saturated FAs (43.829 %), while a proportion of 7.437 % remained unidentified. In a previous study a total number of 23 FAs were detected in *C. corallina* var. *wallichii* including a wide variety of saturated (36.5 %) and unsaturated (63.5 %) FAs and hexadecadienoic acid occurred in greatest amount (23.7 %), while pentadecylic (10.61 %) and palmitic (17.69 %) acids were the major SFAs (Khaliq-uz-Zaman *et al.*, 1998). In this way the two species of *Chara* differed from each other.

β-Sitosterol was isolated from *C. contraria*. It has also been obtained from the MeOH extract of *C. wallichii* in a dominant proportion (76.8 %) apart from three other sterols *i.e.* cholesterol, clerosterol and stigmasterol which occurred in small quantities (Shameel *et al.*, 1999). Sitosterol and fucosterol were detected as principal sterols in *N. opaca* (Heilbron, 1942); while clionasterol, an isomer of sitosterol and 28-isofucosterol were found to be the major sterols of *C. vulgaris* and *N. flexilis* (Patterson, 1972). In *C. australis* and *C. buckelii* also sitosterol was observed to be present along with several other sterols (Patterson *et al.*, 1991). It appears that β-sitosterol is the major sterol of *Chara*.

The extract of *C. contraria* exhibited a variable amount of bioactivity against a variety of tests (Table 3). A strong antibacterial, antifungal and phytotoxic activities were also noted in the MeOH, EtOAc-soluble part of MeOH extract and 4 isolated sterols from *C. wallichii* against a variety of test organisms (Khaliq-uz-Zaman *et al.*, 2001). Functional derivaties of 2-(methylthio) propane-1,3-dithiol, extracted from *C. globularis*, were found to possess insecticidal properties (Jacobsen & Pedersen, 1983). Subsequently *C. aspera* was observed to accumulate benzo[a]pyrene, a carcinogenic compound in its thallus (Isha *et al.*, 1987).

The methanol extract of *N. flexilis* revealed the presence of 5 saturated and 14 unsaturated FAs (Table 2). The former were present in smaller amount (34.005 %) than the latter (61.82 %). Similar observations were made on *C. corallina* var. *wallichii* (Khaliq-uz-Zaman *et al.*, 1998) and several other freshwater green algae of Sindh (Ghazala *et al.*, 2004a-d). Tridecenoic acid (C13:1) was found to be in largest quantity (18.576 %) and undecanoic acid (C11:0) occurred in the smallest amount (0.167 %). The unsaturated acids included 7 mono-, 2 di-, 2 tri- and 3 poly-unsaturated FAs. The monounsaturated acids also included 2 monoyenoic acids (C8:1 and C14:1) having one triple bond. The polyunsaturated acids were having 4-5 double bonds. Such acids were not detected in the previous studies on *Chara* (Khaliq-uz-Zaman *et al.*, 1998).

From sterol and terpene fractions of the methanol extract of *N. flexilis* no natural product could be detected. A variety of sterols have been isolated previously from *C. corallina* var. *wallichii* (Khaliq-uz-Zaman *et al.*, 1998). The crude extract of *N. flexilis* showed a strong antifungal activity and a slight antibacterial activity. It did not display any significant cytotoxic and insecticidal activity (Table 3). It was observed that the

activity of thiol containing enzymes of *Nitella* is influenced by *p*-benzoquinone and pyrocatechol (Ivanova & Stom, 1980). *Nitella* spp., have the enzymatic machinary to decompose pyrocatechol, hydroquinone, phenol, *p*-cresol, guaiacol and other benzene derivatives (Stom *et al.*, 1979). The MeOH extract, its EtOAc-soluble part and four sterols isolated from *C. wallichii* showed bioactivity against 10 species of bacteria and 10 of fungi and its phytotoxicity against *Lemna minor* (Khaliq-uz-Zaman *et al.*, 2001).

References

- Aliya, R. and M. Shameel. 1999. Phycochemical evaluation of four coenocytic green seaweeds from the coast of Karachi. *Pak. J. Mar. Biol.*, 5: 65-76.
- Aliya, R. and M. Shameel. 2003. Marine natural products of *Caulerpa* (Siphonocladophyceae). *Pak. J. Bot.*, 35: 659-669.
- Aliya, R., M. Shameel, S. Perveen, M. S. Ali, K. Usmanghani and V. U. Ahmad. 1994. Acyclic diterpene alcohols isolated from four algae of Bryopsidophyceae and their toxicity. *Pak. J. Mar. Sci.*, 3: 15-24.
- Aliya, R., M. Shameel, K. Usmanghani, S. Sabiha and V.U. Ahmad. 1995. Fatty acid composition of two siphonaceous green algae from the coast of Karachi. *Pak. J. Pharm. Sci.*, 8: 47-54.
- Atta-ur-Rahman, M. A. Khan, M. Shabbir, M. Abid, M. I. Chaudhary, A. Nasreen, M. A. Maqbool, M. Shameel and R. Sualeh. 1997. Nematocidal study of marine organisms. *Pak. J. Nematol.*, 15: 95-100.
- Ghazala, B., M. Shameel, M.I. Choudhary, S. Shahzad and S.M. Leghari. 2003. Phycochemistry and bioactivity of certain freshwater green algae of Sindh. *Pak. J. Bot.*, 35:695-704.
- Ghazala, B., M. Shameel, M.I. Choudhary, S. Shahzad and S.M. Leghari. 2004a. Phycochemistry and bioactivity of *Tetraspora* (Volvocophyta) from Sindh. *Pak. J. Bot.*, 36: 511-527.
- Ghazala, B., M. Shameel, M.I. Choudhary, S. Shahzad and S.M. Leghari. 2004b. Phycochemistry and bioactivity of *Zgnema* (Zygnemaceae) from Sindh. *Int. J. Biol. Biotech.*, 1: 335-342.
- Ghazala, B., M. Shameel, M.I. Choudhary, S. Shahzad and S.M. Leghari. 2004c. Phycochemistry and bioactivity of two microalgae (Volvocophyta) from Sindh. Int. J. Biol. Biotech., 1: 343-350.
- Ghazala, B., M. Shameel, M.I. Choudhary, S. Shahzad and S.M. Leghari. 2004d. Phycochemistry and bioactivity of three green algae in comparison with seaweeds of Sindh coast. *Pak. J. Mar. Sci.*, 13: (in press).
- Heilbron, I.M. 1942. Some aspects of algal chemistry. J. Chem. Soc., 79: 78-89.
- Isha, P., U. Kirso and H. Kukk. 1987. Experimental investigation on the accumulation of carcinogens by macrophytes of Baltic Sea. *Eksp. Vodn. Toksikol.*, 12: 182-190.
- Ivanova, G.G. and D.I. Stom. 1980. Changes in the activity of thiol containing enzymes of aquatic plants under the effect of phenolic compounds. *Tsitologiya.*, 22:91-95.
- Jacobsen, N. and L.E.K. Pedersen. 1983. Synthesis and insecticidal properties of derivatives of propane-1,3-dithiol (analogs of the insecticidal derivatives of dithiolane and trithiane from the alga *Chara globularis* Thuillier). *Pestic. Sci.*, 14: 90-97.
- Khaliq-uz-Zaman, S.M., S. Shameel, M. Shameel, S.M. Leghari and V.U. Ahmad. 1998. Bioactive compounds in *Chara corallina* var. *wallichii* (A. Br.) R.D. Wood (Charophyta). *Pak. J. Bot.*, 30: 19-31.
- Khaliq-uz-Zaman, S.M., K. Simin and M. Shameel. 2001. Antimicrobial activity and phytotoxicity of sterols from *Chara wallichii* A. Br. (Charophyta). *Pak. J. Sci. Ind. Res.*, 44: 301-304.
- Naqvi, S.B. S., D. Sheikh, K. Usmanghani, M. Shameel and R. Sheikh. 1992. Screening of marine algae of Karachi for haemagglutinin activity. *Pak. J. Pharm. Sci.*, 5: 129-138.
- Parveen, Z. 1997. Use of potato disc assay for the screening of antitumor agents. In: Amtul, Z. (ed.): Workshop on the Use of Bioassay Techniques for New Drug Development. HEJ Res. Inst. Chem., Kar. Univ., p. 1-2.
- Patterson, G.W. 1972. Sterols of Nitella flexilis and Chara vulgaris. Phytochem., 11: 3481-3483.

- Patterson, G.W., K.C. McKenna, W.R. Lusby and M.A. Bisson 1991. Sterols of the Charophyceae. J. Nat. Prod., 54: 1141-1143.
- Qasim, R. 1986. Studies on fatty acid comosition of eighteen species of seaweeds from the Karachi coast. J. Chem. Soc. Pak., 8: 223-230.
- Rizvi, M.A. and M. Shameel. 2003. Biological activity and elementology of benthic algae from Karachi coast. Pak. J. Bot., 35: 717-729.
- Saygideger, S. 1997: Bioaccumulation and toxicity of lead in the green alga *Spirogyra fluvialis* Hilse and *Zygnema pectinatum* (Zygnemataceae). *Turk. J. Biol.* 21: 343-352.
- Shameel, M. 1987. Studies on the fatty acids from seaweeds of Karachi. In: 1. Ilahi and F. Hussain (Eds.): Modern Trends of Plant Science Research in Pakistan. Proc. Nat. Conf. Plant Sci., 3: 183-186.
- Shameel, M. 1990. Phycochemical studies on fatty acids from certain seaweeds. *Bot. Mar.* 33: 429-432.
- Shameel, M. 1993. Phycochemical studies on fatty acid composition of twelve littoral green seaweeds of Karachi coast. In: Proceedings of the National Seminar on Study and Management in Coastal Zones in Pakistan. N. M. Tirmizi & Q. B. Kazmi (Eds.): Pak. Nat. Commis. UNESCO, Karachi, p. 17-25.
- Shameel, S., S.M. Khaliq-uz-Zaman, M. Shameel, S.M. Leghari and V.U. Ahmad. 1999. Phycochemical investigations on *Chara wallichii* A. Braun. *In*: M. Ahmad & G.H. Razwani (Eds.): *Herb Medicines and Therapentics*. Dept. Pharmacog., Univ. Karachi., p. 156-174.
- Stom, D.I., S.S. Trinofeeva and L.I. Belykh. 1979. Decomposion of benzene and some phenols by aquatic plants. *Rast. Khim. Kantserogeny.*, 157-158.
- Usmanghani, K., M. Shameel, M. Sualeh, K. Khan and Z.A. Mahmood. 1984. Antibacterial and antifungal activities of marine algae from Karachi seashore of Pakistan. *Fitotrap.*, 55:73-77.
- Usmanghani, K. and M. Shameel. 1986. Studies on the antimicrobial activity of certain seaweeds from Karachi coast. *In*: R. Ahmad & A. San Pietro (Eds.): *Prospects for Biosaline Research*. Proc. US-Pak. Biosal. Res. Worksh., Karachi, p. 519-526.

(Received for publication 22 June 2004)