Pak. J. Bot., 36(1): 83-92, 2004.

PERFORMANCE OF PROMISING SUGARCANE CLONE FOR YIELD AND QUALITY TRAITS IN DIFFERENT ECOLOGICAL ZONES OF SINDH

IMTIAZ AHMED KHAN, ABDULLAH KHATRI, MUHAMMAD AQUIL SIDDIQUI, GHULAM SHAH NIZAMANI AND SABOOHI RAZA

Plant Genetics Division, Nuclear Institute of Agriculture, Tando Jam, Sindh, Pakistan. E-mail: niatjam@hyd.paknet.com.pk

Abstract

A new sugarcane clone AEC86-347, was obtained from seed (fuzz), of a cross combination of NCo 310 x CP57-614, imported from ARS, USDA, Canal Point, Florida, USA. The genotype was evaluated for the stability of its performance for economic characters at six different locations in the Province of Sindh for the two consecutive years. Significant (P \leq 0.01) differences were observed in genotypes and locations x genotypes interactions for the three traits i.e., cane yield, commercial cane sugar and sugar yield. This phenomenon indicates the presence of genetic variability amongst the genotypes and their differential response to varying environments. High mean performance of AEC86-347 with 'b' values more than 1.00 for cane yield, sugar yield and CCS (%) indicated its potential to take advantage of favourable environmental conditions for yield under different locations.

Introduction

Estimation of stability of a new genotype for yield and quality traits is pre-requisite in plant breeding programme prior to its release for commercial planting. Productivity of a genotype in favourable environments does not indicate its adaptability and stability, whereas performance of a genotype in diverse environments is somehow a true evaluation practice of its inherent potential for adaptativeness (Pandey *et al.*, 1981). Therefore, varietal trials are normally conducted over various locations for different years, after achieving meaningful results before deciding the release of a new cultivar in a particular region (Narendra *et al.*, 1988; Bakhsh *et al.*, 1991; Basford & Cooper 1998). Stability analyses of sugarcane cultivar performance tests conducted under different environments have been reported by many researcher, (Pollock 1975; Ruschel 1977; Tai *et al.*, 1982; Kang & Miller 1984; Milligan *et al.*, 1990; Khan *et al.*, 1997).

Productivity stability is shown by some cane varieties in both predictable and unpredictable environments. In a predictable environment (i.e. climatic, soil type, day length and controllable variables such as fertilization, sowing dates and harvesting methods), a high level of genotype and environmental interaction was desirable, so as to ensure a maximum yield or financial return; whereas, in an unpredictable environment (inter and intra-season fluctuation, fluctuation in quantity and distribution of rainfall and prevailing temperature), a low level of interaction is desirable so as to ensure maximum uniformity of performance over a number of locations or seasons (Khan, 1981).

After examining the stability of standard variety in varietal trials of sugarcane Pollock (1975) and Ruschel (1977) have suggested that clone selection against the average of several standard varieties was better than against a single one as the 'b' values were more precisely estimated when several rather than one standard variety was used to

measure the effects of environment. The stability-variance parameters may also be used to compare the stability character of various experimental cultivars to that of a check one. Selected cultivars should have high mean yields and low stability variance (Kang and Miller 1984).

The performance of crop plants varies in different environments, which indicates their adaptability to specific region or over wide areas. The objective of this study was, therefore, to estimate the stability and adaptability potential of new sugarcane clone AEC86-347 by its growth performance under different agroclimatic conditions in the province of Sindh, Pakistan.

Materials and Methods

True seed (fuzz) of different crosses of sugarcane was imported from USDA Canal Point, Florida, USA and grown at Experimental Farm of Nuclear Institute of Agriculture (NIA), Tandojam. The clone AEC86-347 was selected on the basis of high cane and sugar yield from the seedlings of the cross NCo 310 x CP57-614. Four sugarcane clones CP67-412, AEC82-1026, AEC86-328 and AEC86-347 along with commercial variety BL4 were evaluated at 6 locations in the Province of Sindh during 1999-00 and 2000-2001 viz., Tandojam, Nawabshah, Mir Wah, Degree, Badin and Sujawal for two consecutive years. The experimental layout was RCB design with 4 replications. The plot size was 8 x 10m, one metre apart. The sowing was done in the month of September at all locations and normal agronomic practices were followed through out the growth period. Three stools were randomly taken from each plot to determine their sugar contents according to Sugarcane Laboratory Manual for Queensland Sugar Mills (Anon., 1970), while three rows from each plot were harvested to record yield data. The data were analysed according to Steel and Torrie (1960). Stability parameters were estimated by using the methods of Eberhart & Russell (1966). Correlation studies were also carried out.

Results and Discussion

Cane yield and its components: Clone AEC86-347 maintained its superiority at all locations. It showed increase of 15.01, 28.13, 48.61, 19.63, 30.41 and 27.63% over BL4 at Tando Jam, Degree, Mir Wah, Badin, Sajawal and Nawabshah, respectively (Table 1). Significant (P \leq 0.05) differences were observed for cane yield and its other yield components amongst clone under study. Highest cane yield (t/ha) was produced by AEC86-347 (174.40) followed by BL4 (136.13) and CP67-412 (129.74) (Table 3). Yield differences close to or higher than 10% value reflect its impact on the economic benefit (Khan et al., 2000; Khan et al., 2002). Significant difference in plant height was observed among the clones. Highest plant height was observed in AEC86-347 (249.79 cm), followed by BL4 (203.09 cm) and CP67-412 (202.93 cm) (Table 3). Clone AEC86-347 kept its dominance for plant height at all locations and overall showed 22.99% increase over BL4 in cane length (Table 1 & 3). The cane girth of AEC86-347 was comparable to check BL4 (Table 1). The plant height and cane girth are the major contributing factors for high cane yield (Rehman et al., 1992). The high cane yield of AEC86-347 may be due to high number of stalks per stool (7.15) as compared with the commercial variety BL4 (5.41) (Table 3). Singh et al., (1985) and Raman et al., (1985) regarded the number of canes (stalks/stool) as the most important character contributing directly to higher yield.

Table 1. Perform	ance of 5 promi	sing sugarcane c	lones at 6 differe	ent locations in Sine	dh during 1999-2	2000 and 200	0-2001.
Clones / Locations	Stalk / Stool (Nos)	Cane length (cm)	Cane girth (cm)	Weight/ Stool (ko)	Cane yield (t/ha)	CCS %	CCS (1/ha)
	(~~~)	()	Tando Jam) 	()		
AEC86-347	5.8ab	276.6 a	2.57 c	5.67 b	136.67 a	15.14 a	20.69 a
CP67-412	5.3bc	230.8 b	2.38 d	5.23 b	107.0 b	14.27 b	15.26 b
AEC86-328	5.0c	215.0 c	2.43 d	4.55 c	125.25 ab	15.56 b	19.49 a
AEC82-1026	6.4a	226.6 bc	3.03 a	5.31 b	109.50 b	14.48 b	15.85 b
BL 4	4.8c	214.1 c	2.75 b	6.68 a	118.83 ab	13.67 c	16.24 b
			Degree				
AEC86-347	9.11a	278.00a	2.68b	8.69a	219.11a	12.10a	26.51a
CP67-412	6.83b	238.50b	2.28c	5.67cd	156.08c	8.96c	13.98cd
AEC86-328	7.05b	220.67c	2.26c	5.17d	131.42d	8.90c	11.69d
AEC82-1026	7.53b	230.75bc	2.61b	6.78b	184.78b	9.69b	17.90b
BL 4	6.05c	264.50 a	3.01a	5.94c	171.00bc	9.20b	15.74bc
			Mir Wah				
AEC86-347	6.48b	214.50a	2.68a	5.53 a	184.28a	11.31a	20.84a
CP67-412	5.64c	195.33b	2.32b	4.70 b	144.00bc	9.78bc	14.08b
AEC86-328	7.40a	166.67c	2.32b	3.37 c	100.17d	10.00b	10.00c
AEC82-1026	5.35c	175.17c	2.72a	4.03 b	145.98b	9.62bc	14.04b
BL 4	4.99c	142.00b	2.67a	3.97bc	124.00c	9.35c	11.59c

PERFORMANCE OF PROMISING SUGARCANE CLONE

85

		- ~	: (10000	0000
ocations	Stalk / Stool (Nos)	Cane length (cm)	Cane girth (cm)	Weight/ Stool (kg)	Cane yield (t/ha)	CCS %	CCS (t/ha)
			Badin				
7	6.22a	264.67a	2.58c	7.41a	154.83a	12.04a	18.6 4a
	5.39b	240.50b	2.35d	5.03c	132.83b	9.94c	13.20b
8	4.90b	177.17d	2.39d	5.10c	86.83c	11.69ab	10.15c
26	4.08c	203.50c	2.71b	4.63c	85.22c	11.42b	9.73c
	5.22b	237.39b	2.92a	6.38b	129.42b	9.80c	12.68bc
			Sajawal				
17	7.86a	287.50a	2.47b	8.93a	114.33a	12.28a	14.04a
	5.63c	166.83d	2.33c	6.50c	66.33 c	10.83c	07.18b
8	8.46a	266.83b	2.28c	6.72c	84.52 b	11.48b	09.70b
)26	6.56b	226.67c	2.62a	6.62c	69.83 c	10.12d	07.07b
	5.00c	219.50c	2.65a	8.17b	87.67 b	10.78c	09.45b
			NawabSha	ч			
47	7.36a	177.42a	2.53a	8.11a	237.17a	12.24a	29.02a
	7.75a	145.60b	2.29b	6.41c	172.17bc	09.46c	16.28b
28	6.41b	148.05b	2.34b	5.81cd	158.83c	10.24b	16.26b
)26	5.51c	110.14c	2.53a	5.60d	154.33c	08.81d	13.59b
	6.40b	141.00b	2.61a	7.10b	185.83b	08.84d	16.43b

86

Quebedeadux & Martin (1986) proposed that both the stalk number and weight should be assessed to have an accurate yield potential of the variety. Similar findings were also reported by Khan *et al.*, (1997 and 2000). Our results are fully in agreement with the finding of these researchers.

Commercial cane sugar: (CCS% and CCS t/ha): Significant ($P \le 0.05$) differences were recorded for CCS% amongst all the entries under trials at different locations. Clone AEC86-347 showed the highest CCS% (12.52%), followed by clone AEC86-328 (11.31%) and AEC82-1026 (10.69%) (Table 3). The highest CCS% of AEC86-347 was observed at Tando Jam (15.14%) and lowest at Mir Wah (11.31%) (Table 1). The maximum sugar (CCS t/ha), was produced by AEC86-347 (21.83) followed by BL4 (13.98) whereas, the lowest sugar yield was recorded in AEC86-328 (12.94) (Table 3). Highest sugar yield (t/ha) was recorded at Nawabshah (29.02) and lowest yield by AEC82-1026 at Sujawal (07.07) (Table 1). Clone AEC86-347 showed 21.90% and 56.15% increase over BL4 in CCS% and sugar yield, respectively (Table 3).

Genotype - environments interaction analysis: The mean squares (MS) for genotypes, locations and locations x genotypes interaction were significant ($P \le 0.01$) and years, years x locations, years x genotypes and locations x years x genotypes interactions were non-significant for cane yield (t/ha), commercial cane sugar (CCS%) and sugar yield (t/ha). This indicated the presence of genetic variability in the genotypes and varied response of the genotypes to locations for the traits under study. The mean squares for locations, genotypes, and locations x genotypes and differential response of genotypes to various environments for these characters (Table 2). Tai *et al.*, (1982) reported that mean square for cultivars x locations and cultivars x years were significant but were very much smaller than the mean squares for cultivars for all the seven traits. The cultivars x locations mean square greatly exceeded the three factors i.e., cultivars x locations x years mean squares indicating that the differential response of the cultivars may be permanent characteristics for the locations.

Correlation studies: The cane yield was highly positively correlated with cane length (0.957^{**}) , and weight per stool (0.988^{**}) (Table 5). Sugar contents and sugar yield were positively correlated with each other. The cane and sugar yields were positively correlated with each other at 1% level of significance (0.961^{**}) .

loc	ations fo	or 2 years (1999-2000) and 2000-2001)	•	
Parameters	d.f	Cane yield (t/h)	CCS (%)	CCS (t/h)	
		MS	MS	MS	
Locations (L)	5	400093.547**	110.760**	341.604**	
Error (a)	6	5528.447**	59.047**	104.427**	
Year (Y)	2	164.463ns	0.451ns	4.782ns	
Y x L	10	692.960ns	0.279ns	10.791ns	
Error (b)	12	497.031ns	0.647ns	9.291ns	
Genotype (G)	4	18882.863**	48.506**	546.031**	
LxG	20	1736.282**	9.231**	33.226**	
Y x G	8	185.366ns	0.168ns	3.611ns	
L x Y x G	40	349.444ns	0.195ns	5.660ns	
Error (c)	48	310.483ns	0.201ns	6.061ns	

 Table 2. Pooled analysis of variance for 3 traits of 5 sugarcane clones grown at 6 locations for 2 years (1999-2000 and 2000-2001).

CCS= Commercial Cane Sugar, MS = Mean square; ** = Significance at 1% level

Table 3. Poo	ded mean performa	nce for 7 traits of 5 s	sugarcane clones	grown at 6 location	s for 2 years (1999	-2000 and 200	0-2001).
Clone	Stalk / Stool (Nos)	Cane length (cm)	Cane girth (cm)	Weight/ Stool (kg)	Cane yield (t/h)	C.C.S (%)	CCS (t/h)
AEC86-347	7.15a	249.79a	2.58c	7.56a	174.40a	12.52a	21.83a
CP67-412	6.10c	202.93b	2.32d	5.52c	129.74bc	10.54c	13.67b
AEC86-328	6.54b	199.06bc	2.34d	5.12d	114.50d	11.31b	12.94b
AEC82-1026	5.91c	195.48c	2.70b	5.48c	124.94c	10.69c	13.35b
BL 4	5.41d	203.09b	2.77a	6.20b	136.13b	10.27c	13.98b
Different letters sho	w significant differen	nces at P≤0.05					

IMTIAZ A. KHAN ET AL.,

101 0		igui cune ci		at o location	15 IOI 2 j cui	
Clone	Cane yi	eld (t/h)	C.C.	S.(%)	CCS	(t/h)
	S ² d	b	S ² d	b	S ² d	b
AEC86-347	0.011	1.090	0.022	1.204	0.012	1.011
CP67-412	0.030	0.982	0.023	0.882	0.033	0.858
AEC86-328	0.048	0.663	0.114	0.823	0.163	0.869
AEC82-1026	0.050	1.108	0.019	1.122	0.088	1.022
BL 4	0.014	0.969	0.180	0.975	0.014	0.839

Table 4. Regression coefficient 'b' and variance due to deviation from regression for 3 traits of 5 sugarcane clones grown at 6 locations for 2 years.

Stability studies: Regression coefficient 'b' is a measure of stability in crop plants (Finlay & Wilkinson, 1963). Other researchers (Eberhart & Russel, 1966; Paroda & Hayes, 1971; Ali et al., 2002) suggested that both regression coefficient 'b' and deviation from regression coefficient 'S²d' may be taken into consideration in identifying a stable genotype. Regression coefficient 'b' values for cane yield, CCS and sugar yield were 1.090, 1.204 and 1.011, respectively while, deviation from regression coefficient 'S²d' values were 0.011, 0.022 and 0.012 for the above mentioned three characters respectively for clone AEC86-347 (Table 4). A cultivar with 'b' value less than 1.0 has above average stability and is specially adapted to low-performing environments, a cultivar with 'b' value greater than 1.0 has below average stability and is specially adapted to high performing environments and a cultivar with 'b' value equal to 1.0 has average stability and is well or poorly adapted to all environments depending on having a high or low mean performance (Finlay & Wilkinson 1963) but a cultivar with b = 1.00 and $S^2 d = 0.00$ may be defined as stable (Eberhart & Russell 1966), The 'b' value being greater than 1.00 for cane yield, sugar yield and CCS percentage indicated the potential of AEC86-347 to take advantage of favourable environments. Tai et al., (1982) reported that the cultivar CP70-1133 had the highest means of tonnes cane per hectare (TCH) and tonnes sugar per hectare (TSH) and was found relatively stable for these two characters as both the characters have b=1.05 and $(S^2d) = 0.12$. This cultivar, however, had 'b' values less than 1.00 for brix (%), sucrose (%), purity (%) and sugar per tonne. Though, this cultivar did not produce high sugar content, yet the stability parameters and mean performance for TCH and TSH indicated as the best choice for its release to the sugar industry.

Sugar yield per unit area can be increased only, if there is a break through, in the production of sugarcane and the recovery of sugar. There is lack of good varieties and absence of mechanisms to carry out the package of technology and inputs to the farmers. The share of improved variety in the enhancement of cane yield and sugar recovery is about 20-25%, while rest is contributed by production technology (Javed *et al.*, 2001). Since the increase in cane and sugar yield in our country has mainly been due to an increase in the acreage (Hashmi, 1995), therefore, the evolution of high yielding clones is urgently needed, which could increase the cane and sugar yield per unit area.

The studies indicated that of all the clones under evaluation, AEC86-347 showed its potential for higher cane and sugar yields under prevailing agroclimatic conditions of Sindh, Pakistan. Moreover, on the basis of estimates of stability parameters, it may be concluded that the clone AEC86-347 has good adaptation potential under favourable as well as unfavourable environmental growing conditions in the Province of Sindh.

	Table 5. Correlation	n 'r' studies for ca	ne yield compor	tents and sugar con	itents.	
	Stalk / Stool (Nos)	Cane length (cm)	Cane girth (cm)	Weight/ Stool (kg)	Cane yield (t/h)	C.C.S (%)
Cane length (cm)	0.753*					
Cane girth (cm)	-0.437ns	0.077ns				
Weight/ stool (kg)	0.481ns	0.936**	0.386			
Cane yield (t/h)	0.546ns	0.957**	0.291	0.988**		
C.C.S (%)	0.896^{*}	0.931^{**}	-0.013	0.790*	0.817*	
CCS (t/h)	0.749*	0.996**	0.129	0.940^{**}	0.961**	0943**
* = Significant at 5% level	; ** = Highly significant	at 1% level, ns= Nor	n-significant			

IMTIAZ A. KHAN ET AL.,

References

- Anonymous. 1970. Sugarcane Laboratory Manual for Queensland Sugar Mills, Bureau of Sugar Experiemntal Station, Queensland 2, 9th Edition.
- Ali, N., F. Javidfar and A.A. Attary. 2002. Stability analysis of seed yield in winter type rapeseed (*Brassica napus*) varieties. *Pakistan. Journal of Botany*, 34: 151-155.
- Basford, K.E. and M. Cooper. 1998. Genotype x environment interactions and some consideration of their implications for wheat breeding in Australia. *Australian Journal of Agricultural Research*, 49: 153-174.
- Bakhsh, A., A. Ghafoor, M. Zubair and S.M. Iqbal. 1991. Genotype environment interaction for grain yield in lentil. *Pakistan Journal of Agricultural Research*, 12: 102-105.
- Ebberhart, S.A., and W.A. Russell. 1966. Stability parameters for comparing varieties. *Crop Science*, 6: 36-40.
- Finlay, R.W. and G.N. Wilkinson. 1963. The analysis of adaptiveness in a breeding programme. *Australian Journal of Agricultural Research*, 14: 742-754.
- Hashmi, S.A. 1995. It is time to take stock, Sugar Technologist Convention. *The DAWN*, Karachi, Wednesday, August 30 pp: 8.
- Javed, M.A., A. Khatri, I.A. Khan and R. Ansari. 2001. NIA-98 a new sugarcane variety. Agriculture and Technology. *The DAWN*, Karachi, Monday, July 16, pp: III.
- Kang, M.S. and J.D. Miller. 1984. Genotype environment interaction for cane and sugar yield and their implications in sugarcane breeding. *Crop Science*, 24: 435-440.
- Khan, A.Q. 1981. Varietal buffering in sugarcane. Indian Sugar, 31: 409-411.
- Khan, I.A., A. Khatri, M. Ahmad, K.A. Siddiqui, N.A. Dahar, M.H. Khanzada and G.S. Nizamani. 1997. Genetic superiority of exotic clones over indigenous clones for quantitative and qualitative traits. *The Nucleus*, 34: 153-156.
- Khan, I.A., A. Khatri, M.A. Javed, S.H. Siddiqui, M. Ahmad, N.A. Dahar, M.H. Khanzada and R. Khan. 2000. Cane and sugar yield potential of sugarcane line AEC81-8415. *Pakistan Journal* of Botany, 32: 101-104.
- Khan, I.A., A. Khatri, M.A. Javed, S.H. Siddiqui, M. Ahmad, N.A. Dahar, M.H. Khanzada and R. Khan. 2002. Performance of promising sugarcane clone AEC81-8415 for yield and quality characters II. Stability studies. *Pakistan Journal of Botany*, 34(3): 247-251.
- Khan, I.A., M.A. Javed, A. Khatri, M.A. Siddiqui, M.K.R. Khan, N.A. Dahar, M.H. Khanzada and R. Khan. 2002. Performance of exotic sugarcane clones at NIA, Tando Jam. Asian Journal of. Plant Science, 1: 238-240.
- Milligan, S.B., K.A. Gravios, K.P. Bischoff and F.A. Martin. 1990. Crop effects on broad-base heritabilities and genetic variances of sugarcane yield components. *Crop Science*, 30: 344-349.
- Narendra, K., P. Reddy, R.D.V.S. Rao and M. Roa. 1988. Genotype x environment interaction in rice (*Oryza sativa* L.). *Indian Journal of Agricultural Science*, 58: 473-475.
- Quebedeadux, J.P. and F.A. Martin. 1986. A comparision of two methods of estimating yield in sugarcane. *Repot of Projects. Deptt. of Agronomy Louisiana Agric. Expt. Stn.*, Louisiana State Univ. Baton Rouge, Louisiana, pp. 228.
- Pandey, B.P., S.K. Srivastava and R.S. Lal. 1981. Genotype x environment interaction in lentil. *LENS.*, 8: 14-17.
- Paroda, R.S. and J.D. Hayes. 1971. Investigation of genotype environment interaction for rate of ear emergence in spring barley. *Heredity*, 26: 157-176.
- Pollock, J.S. 1975. Selection consequences of differential performance of standard clones across environments. Sugarcane Breeding Newsletters International Society of Sugarcane Technologist, 35: 36-38.
- Raman, K., S.R. Bhat and B.K. Tripathi. 1985. Ratooning ability of sugarcane genotypes under late harvest conditions. *Indian Sugar*, 35: 445-448.
- Rehman, S., G.S. Khan and I. Khan. 1992. Coordinated uniform national varietal trial on sugarcane. *Pakistan Journal of Agricultural Research*, 13: 136-140.

Ruschel, R. 1977. Phenotypic stability of some sugarcane varieties (*Saccharum* spp.) in Brazil. *Proceeding of International Society Sugarcane Technologist*, 16: 275-281.

- Singh, R.K., R.S. Tehlan and A.D. Taneja. 1985. Investigating some morphological and quality traits in relation to cane and sugar yield. *Indian Sugar*, 35: 267-271.
- Steel, R.G.D. and J.H. Torrie. 1960. 'Principles and Procedure of Statistics'. McGraw Hill Book Company Inc: New York.
- Tai, P.Y.P., E.R. Rice, V. Chew and J.D. Miller. 1982. Phenotypic stability analyses of sugarcane cultivar performance tests. *Crop Science*, 22: 1179-1184.

(Received for publication 5 January 2003)